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Let  and . 
Definition. A set function  is submodular if for any 

, .  

• For , concave , 

  is submodular. 

• W.L.O.G.  .   
• Problem of consideration: 

         

• Key structure:  

   

     : # of distinct weights in   
• Applications: mean-risk optimization, concave cost facility 

location, etc. 
• This problem is polynomial-time solvable [1, 2].  

• How to fully describe conv  when  is an open problem. 

N = {1,2,…, n} 2N = {S : S ⊆ N}
g : 2N → ℝ

X, Y ∈ 2N g(X ) + g(Y ) ≥ g(X ∩ Y ) + g(X ∪ Y )
a ∈ ℝn

+ f : ℝ → ℝ

F(X ) := f (∑
i∈X

ai), ∀X ⊆ N

f (0) = 0

min f (
n

∑
i=1

aixi) : x ∈ {0,1}n,
n

∑
i=1

xi ≤ k

𝒫m
k = (w, x) ∈ ℝ × {0,1}n : w ≥ f (

n

∑
i=1

aixi),
n

∑
i=1

xi ≤ k

m a

(𝒫m
k ) m ≥ 2

Motivation 

• Propose three classes of strong valid linear inequalities for conv
, with explicit forms and facet conditions.  

• Full linear characterization of conv .  
• A computational study using proposed inequalities in a branch-

and-cut framework. 

• Extensions to (i) the case of ; (ii) mixed-binary conic 
optimization. 

(𝒫2
k)

(𝒫2
2)

m ≥ 3

Main Contributions • Given submodular , a permutation  of , 

(EPI)  ,  

     and  for .  

• facet-defining for conv  with , 

G : 2N → ℝ δ N

w ≥
n

∑
i=1

ρδi
xδi

ρδi
= G({δ1}) ρδi

= ρδi
({δ1, …, δi−1}) i ∈ [2,n]

(𝒫2
k(S )) S ⊆ N |S | ≤ k

Extended Polymatroid Inequalities (EPIs) 

• ,  lift   valid for conv  to obtain  

  

    valid for conv .  

• Lifting problem for  :  

 

• Objective value with , or its support :  

. 

B = [b] ⊆ N w ≥ π⊤x (𝒫2
k(B))

w ≥
b

∑
i=1

πixi +
n

∑
j=b+1

ϕjxj

(𝒫2
k)

j ∈ [b + 1,n]

ϕj := min w −
b

∑
i=1

πixi −
j−1

∑
i=b+1

ϕixi

s.t. w ≥ f (aj +
j−1

∑
i=1

aixi),

j−1

∑
i=1

xi ≤ k − 1,

x ∈ {0,1}j−1 .
x X

ϕX
j = f (aj + ∑

i∈X

ai) − ∑
i∈X∩B

πi − ∑
i∈X \B

ϕi

Lifting Problems 

• Given permutation , , 

(SI)   

    , .  

• define conv  [1]  

• valid for conv  with 

δ = {δ1, …, δn} i0 ∈ {0,1,…, k − 1}

w ≥
i0

∑
i=1

ρδi
xδi

+
n

∑
i=i0+1

ψ xδi

ψ = [ f (kα) − f (i0α)]/(k − i0) ρδi
= f (iα) − f ((i − 1)α)

(𝒫1
k)

(𝒫1
k(ℐc)) c ∈ {L, H}

Separation Inequalities (SIs) 

•  and . 
• In ,  - weights in :  , , with ; 

       - ; 
       - : first  lower-/higher-weighted items,  ; 
       - ,  ; 
       - ; 
       - . 

• Marginal return: , , .  
• For any ,  

 

[ j] = {1,2,…, j} [i, j] = {i, i + 1,…, j}
𝒫2

k a aL aH 0 ≤ aL ≤ aH
ℐc := {i ∈ N : ai = ac}, c ∈ {L, H}
ct t c ∈ {L, H}
dL = |ℐL ∩ [k − 1] | dH = |ℐH \[k − 1] |
ℐL ∩ [k − 1] = ℒ = (ℒ1, ℒ2, …, ℒdL

)
ℐH \[k − 1] = ℋ = (ℋ1, ℋ2, …, ℋdH

)
ρi(X ) = g(X ∪ {i}) − g(X ) X ⊆ N i ∈ N \X

B ⊆ N

𝒫m
k (B) = (w, x) ∈ ℝ × {0,1}|B| : w ≥ f (∑

i∈B

aixi), ∑
i∈B

xi ≤ k

Notation 
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Full Linear Characterization of conv  (𝒫2
2)

Super-average inequality: 

   

Assumption.  
Theorem. Under the given assumption, the set of 

 constructed by the lifted-EPIs, lower-SIs, 
higher-SIs, the super-average inequality, together with 
the trivial bounds and the cardinality constraint, is conv

.  

w ≥ ∑
i∈ℐL

f (2aL)xi /2 + ∑
i∈ℐH

f (2aH)xi /2

f (aL + aH) − f (aL) ≤ f (2aH)/2.

(w, x) ∈ ℝn+1

(𝒫2
2)

• Lifted-EPIs:    

•   an EPI for . 

Proposition. The lifting coefficients of a lifted-EPI are  

 

where .  

• facet-defining for conv  

• stronger than approximate lifted inequalities (ALIs) 
proposed in [4] 

Example. 

w ≥
k

∑
i=1

ρixi +
n

∑
i=k+1

ζixi

w ≥
k

∑
i=1

ρixi 𝒫2
k([k])

ζj =
ζ[k−1]

j ,  if j ∈ ℐL\[k],

min {ζℋi−1
, ζℋ(min{i−1,dL})∪ℒ(dL−i+1)∪(ℐH∩[k−1])

j },  if j = ℋi, i ∈ [dH],

ζℋ0
= ζℋ(min{0,dL})∪ℒ(dL−0)∪(ℐH∩[k−1])

j = ζ[k−1]
j

(𝒫2
k)

Exact Lifting of EPIs 

    : optimal support 
      of the jth lifting          
      problem

    : candidate optimal      
      support of the jth  
      lifting problem

• Lower-SIs: lifted SIs of conv  

• Higher-SIs: lifted SIs of conv   

Proposition. The lower-SI lifting coefficients are 

 

Proposition. Suppose for a given ,  

. 

The lifting coefficients in higher-SIs are  

  

• facet-defining for conv  if the base SIs are facet-
defining for conv  or conv  

Example.

(𝒫1
k(ℐL))

(𝒫1
k(ℐH))

ηj = {
η[k−1], j = |ℐL | + 1,
min{ηj−1, η[k−1−s]∪Hs}, j = |ℐL | + 1 + s, s ∈ [n − 1 − |ℐL | ] .

i0 ∈ {0,1,…, k − 2}

f (aL + (i0 + 1)aH) − f (aL + i0aH) ≤
f (kaH) − f (i0aH)

k − i0

γj = {
γ[k−1], j = |ℐH | + 1,

min{γj−1, γLt∪[k−1−t]}, j = |ℐH | + 1 + t, t ∈ [n − 1 − |ℐH | ] .

(𝒫2
k)

(𝒫1
k(ℐL)) (𝒫1

k(ℐH))

Exact Lifting of SIs 

    : candidate optimal      
      support of the jth  
      lifting problem

1. Multi-weighted Case ( ) 

Method 1. If  is monotone, convert  to .  

Example. Given [                                               ] such that  

The proposed inequalities for conv  w.r.t. to any of  

  

are valid for conv  w.r.t.  if    non-decreasing. 

Method 2. Approximately lift the proposed inequalities.  

Proposition. Given any  valid for conv , 

  

is valid for conv ,  

. 

: all items with a pair of distinct weights.   
2. Mixed-binary conic optimization  

 

where  is a cone. Inspired by [3], conv  is 

if  ,   concave,  has two weights. 

m ≥ 3
f 𝒫m

k 𝒫2
k

a =

(𝒫2
k)

(𝒫4
k) a f

w ≥ π⊤x (𝒫2
k(S ))

w ≥
s

∑
i=1

πixi +
n

∑
i=s+1

[ f (𝒯i + ai) − f (𝒯i)]xi

(𝒫m
k )

𝒯i := max {∑
i∈T

aj : T ⊆ [i − 1], |T | = k − 1}
S = [s] ⊆ N

𝒮 := {(x, y) ∈ 𝔹n × ℝm : ∃w ∈ ℝ+ s.t. w ≥ F(x), 1⊤x ≤ k, Ay + Bw ∈ 𝒦}

𝒦 (𝒮)
{(x, y) ∈ [0,1]n × ℝm : ∃w ∈ ℝ+ s.t. (w, x) ∈ conv(𝒫2

2), Ay + Bw ∈ 𝒦}
F(x) = f (a⊤x) f a ∈ ℝn

+

Extensions 

                      .    ≤ ≤ ≤

[                                               ] ̂a =

[                                               ] ̂a =

[                                               ] ̂a =

Computational Study 

• Test problem 
Cardinality-cons-
trained mean-risk 
minimization. 

• Methods 
- SOCP; 
- ALI: branch-and-     
   -cut with ALIs [4]; 
- LEPI-LSI: branch- 
   and-cut with    
   lifted-EPIs and    
   lower-SIs. 

• Implementation 
Python 3.6  
Gurobi 7.5.1

Figure 1. Performance profile of 
the three solution methods 


