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Motivation

Let N = {1,2,...,n}and 2" = {S: S C N}.

Definition. A set function g : 2¥ — R is submodular if for any
X,Ye2V,gX)+g(¥)>gXNnY)+gXUY).

e Fora € R, concavef : R = R,

FX):=f 2 a; |,VX € N is submodular.
ieX
W.L.O.G. f(0) =0.
Problem of consideration:
n n
min 4 f Zaixi :x € {0,1}", in <k
i=1 i=1
Key structure:
n
w,x) ERX{0,1}:w>f Za,.x,. Y x <k
i=1 i=1

P =

m: # of distinct weights in a

Applications: mean-risk optimization, concave cost facility
location, etc.

This problem is polynomial-time solvable [1, 2].
How to fully describe conv(9*}') when m > 2 is an open problem.

Main Contributions

e Propose three classes of strong valid linear inequalities for conv
(9’,%) , with explicit forms and facet conditions.
e Full linear characterization of conv(@%).

e A computational study using proposed inequalities in a branch-
and-cut framework.

e Extensions to (i) the case of m > 3; (ii) mixed-binary conic
optimization.

Notation

e [j1=1{1,2,....,j}and [i,j] = {i,i + 1,..., j}.

e In g’,%, -weights ina: a;, ay, with0 < q; < ay;
-J.={ieN:ag,=a.},c€{L H};
- ¢! first t lower-/higher-weighted items, ¢ € {L, H};
-dp = I nlk=1]|, dy = | Iy\lk = 1]];
-IiNnk=11=2=(Z,Z,....Z,);
-INk=11=H =(H '\, 75, ... 7 4,)-

e Marginal return: p,(X) = g(X U {i}) —g(X),X C N,i € N\X.

e ForanyB C N,

Pr(B) = {(W,x) e R x {0,1}18: 2f<2aixi),2xi§ k}
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Lifting Problems

e« B=[b] CN, liftw > 7" x valid for Conv(@,%(B)) to obtain

b n
w 2> Zﬂixi+ Z Pix;
i=1

j=b+1
valid for conv(g’i).

e Lifting problem for j € [b + 1,n]:
b J=1
i=1

i=b+1

j=1
st. w2fla+ Zaixi ,
i=1

j=1
in <k-1,
i=1

x e {01}/,
e Objective value with x, or its support X:

o =rla+2a)- X n— X b

ieX ieEXNB ieX\B

Extended Polymatroid Inequalities (EPIs)

e Given submodular G : 2 — R, a permutation & of N,

n
(EPI) w > Z Ps X,
i=1

Ps, = G({o;}) and ps. = péi({él, e, 0;_1}) fori € [2,n].
o facet-defining for conv(@,%(S NwithSCN, |S| <k

Separation Inequalities (SIs)

5,},ip € {0,1,....k — 1},
lO n
SD w> Y psXs+ D, W,

i=1 i=ig+1
w = [f(ka) = flg)]/(k —ip), ps, = fia) — f((i = D).
e define Conv(g’i) [1]
» valid for Conv(g’i(f J)withe € {L,H}

e Given permutation 6 = {6y, ...,
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Exact Lifting of EPIs

k n
e Lifted-EPIs: w > Z pPix; + Z ix;
i=1 i=k+1
k
w 2> Z p;x; an EPI for ZP2([k]).
i=1
Proposition. The lifting coefficients of a lifted-EPI are
g, ifj € 7, \[k],
Cj = min {C%H’ Cj%(min{i—1,dL})US’(dL—i+l)U(JHﬂ[k—lD}’ ifj =%,i € [dy],

_ 2 (min{0,d, NDUL(d, ~0)U(I yNk=11) _ s[k—1]
=¢ = k=11,

where (g ;

o facet-defining for conv(g’%)

e stronger than approximate lifted inequalities (ALIs)
proposed in [4]

Example.

: optimal support
of the jth lifting
problem

k-2 k-1 k k+1 k+2 k+3 items

N,

]

: candidate optimal
support of the jth
lifting problem

k-2 k-1 k k+tl k+2 k+3 items

N

)

Full Linear Characterization of conv(%3)

Super-average inequality:
w> Y fQax/2+ ) fQay)x/2
=4 i€esy
Assumption. f(a; + ay) — f(a;) < fQRay)/2.
Theorem. Under the given assumption, the set of

(w, x) € R™! constructed by the lifted-EPIs, lower-SIs,
higher-SIs, the super-average inequality, together with
the trivial bounds and the cardinality constraint, is conv

(F3)-

Exact Lifting of SIs

 Lower-SIs: lifted SIs of conv(@,i(f 7))

 Higher-SIs: lifted SIs of conv(@,lc(f )
Proposition. The lower-SI lifting coefficients are
1, J=15L+ 1,
{min{qj_l,n[k-l-ﬂuff‘}, j= 1Tl +1+ss€ln—1-|F|].
Proposition. Suppose for a given iy € {0,1,...,k — 2},
flkay) — f(gay)
k — iy '

flag + (g + Day) — f(a, + igay) <

The lifting coefficients in higher-SIs are
},[k—l], .] = |jH| + la
min{yj_l,yyu[k_l't]}, j=1Iyl+1+t,ten-1-|F4|].

e facet-defining for conv(g",%) if the base SIs are facet-
defining for conv(@,l(f 1)) or conv(@,i(f )
Example.

: candidate optimal
support of the jth
lifting problem

k-2 k-1 k k+l k+2 k+3

N

J

items

Computational Study

o Test problem
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Extensions

1. Multi-weighted Case (m > 3)
Method 1. If f is monotone, convert & to 9’,%

Example. Givena = [0 v0e00eeeee]suchthato<e<e<e®.
The proposed inequalities for conv(g’i) w.r.t. to any of
00000000
0000]
o]

are valid for conv(gJi) w.r.t. a if f non-decreasing.

a=|

Method 2. Approximately lift the proposed inequalities.
Proposition. Given any w > 7' x valid for conv(.@,%(S ),
= Zﬂixi+ Z Lf(Ti+a) = f(T )
i=1 i=s+1

is valid for conv(2"),

57,~:=max{Zaj:Tg[i—l],|T|=k—1}.

ieT
S = [s] € N: all items with a pair of distinct weights.

2. Mixed-binary conic optimization

S :={(y) eB"XR":Iw e R, st.w > F(x), 1"x <k,Ay +Bw € ¥}
where % is a cone. Inspired by [3], conv(&) is

{(x,y) €[0,1]"XR": Iw € R s.t.(w,x) € conv(g’%),Ay +Bw e X}
if F(x) =f(a"x), fconcave,a € R”" has two weights.

Table 1: The statistics are averaged across five trials. *+%2: i, instances are solved

Cardinality-cons-

trained mean-risk

minimization.

e Methods

- SOCP;

- ALI: branch-and-
-cut with ALIs [4];

- LEPI-LSI: branch-

| — socp
— AU
—— LEPI+LSI

and-cut with
lifted-EPIs and
lower-SIs.

within 30 min, and i instances exceed the time limit. The average number of total
LEPI-LSI cuts is m = # LEPIs + # LSIs.

n k method
LEPI-LSI -
5 ALI 49.38%0 -
SOCP 256.805:0 -
LEPI-LSI | 690.43°° -
ALI 797.79%2 | 6.40%
SOCP 1093.47%3 | 11.03%
LEPI-LSI | 3.09°° -
ALI 128.455:0 -
SOCP 1010.90%2 | 1.86%
LEPI-LSI | 1187.80%2 | 6.18%
ALI 1441.73%3 | 17.50%
SOCP 1620.44%* | 11.07%

# nodes # total cuts
1468.8 145.8 = 11.8 + 134.0
22164.8 2214.0
113052.6 N/A
154966.8 | 15496.0 = 1768.0 + 13728.0
176897.4 17689.2

225915.2 N/A
2929.4 291.6=22.4+269.2
91859.0 9183.6

687479.0 N/A

3272314 32721.4=7767.0+24954.4

332222.0 33220.8

543848.8 N/A

time (s) | end gap

1.45%0

20 60 80

o Implementation
Python 3.6
Gurobi 7.5.1

Figure 1. Performance profile of
the three solution methods
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LEPI-LSI | 92.3550 -
ALI 1287.11%2 | 10.06%
SOCP 1616.85%4 | 19.18%
LEPI-LSI 0,5 3.69%
ALI 0.5 12.93%
SOCP 05 15.06%
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724583.2 72456.2
1842034.0 N/A
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