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Generalized Incremental Knapsack

•Generalized Incremental Knapsack (GIK) is an extension of the
classical knapsack problem to a multi-period, discrete setting:
I In each period, the knapsack capacity is Wt;
IWt is a function non-decreasing in t;
I Once an item has been packed in some period, it cannot be removed in

later periods.
I If item i is first inserted in the knapsack at time t, we earn profit pi,t ≥ 0.
I The goal is to maximize the total profit gained over the horizon T .

IP Formulation

max ∑T
t=1

∑n
i=1 pi,t(xi,t − xi,t−1)

s.t. ∑n
i=1wixi,t ≤ Wt ∀t ∈ [T ],

xi,t ≤ xi,t+1 ∀t ∈ [T − 1], i ∈ [n],

xi,t ∈ {0, 1} ∀t ∈ [T ], i ∈ [n].

Motivation

•The problem naturally models scenarios where resources
increase over time.
•The added time component of GIK provides an extra level of
complexity and differs from other generalizations of the
knapsack problem, such as the generalized assignment problem
(GAP) or the multiple knapsack problem (MKP).

Known Results for Special Cases

•Restricted cases of GIK:
I Time-invariant incremental knapsack (IIK): pi,t = pi · (T − t + 1) – that

is, each item gains profit pi ≥ 0 for each time it is in the knapsack.
I Incremental knapsack (IK): pi,t =

∑
t′≥t∆t′ · pi – that is, if an item is in

the knapsack at time t, it earns profit pi ·∆t.
• IIK is strongly NP-hard [2] and has a PTAS [3].
• IK has a PTAS [1].
•The above formulation (even for IIK) has an unbounded
integrality gap [2].

Our Contributions and Open Questions

•A polynomial-time (1
2 − ε)-approximation for GIK.

•A QPTAS for GIK.
•Can we improve upon the (1

2 − ε)-approximation in polynomial time?
•Does there exist a PTAS?

(1
2 − ε)-Approximation

Sequencing Reformulation

We reformulate the GIK problem as a sequencing problem on a single machine.

•Completion time: Cπ(i) = ∑
j∈[n]:π(j)≤π(i)wj.

•Profit: ϕπ(i) = max{pi,t : t ∈ [T + 1] and Wt ≥ Cπ(i)}, with the convention that WT+1 =∞ and pi,T+1 = 0.
•Equivalent GIK objective: find permutation π : [n]→ [n] such that Ψ(π) = ∑

i∈[n]ϕπ(i) is maximized.

Bucketing

•We partition the interval [0,∑i∈[n]wi] into K = dlog1+ε(
∑
i∈[n]wi)e intervals I0, . . . , IK.

• I0 = [0, 1]; Ik = ((1 + ε)k−1, (1 + ε)k] for k ∈ [K].
•An item is k-heavy if wi ≥ ε2 · (1 + ε)k, k-light otherwise.
•Profit decomposition:

Ψ(π) =
∑

k∈[K]0

∑
i∈Hk:Cπ(i)∈Ik

ϕπ(i)︸ ︷︷ ︸
Ψheavy(π)

+
∑

k∈[K]0

∑
i∈Lk:Cπ(i)∈Ik

ϕπ(i)︸ ︷︷ ︸
Ψlight(π)

.

Heavy Items Profit Contribution

(1 − ε)-approximate dynamic programming with enumeration of
internal permutation of k-heavy items whose completion time falls
in each interval Ik.
• Since by construction, the number of heavy items with
completion time falling in each interval is bounded, the
dynamic programming table can be computed in polynomial
time.

Light Items Profit Contribution

•We can formulate an instance of the generalized assignment
problem (GAP) over light items whose optimal solution is
feasible and gives a (1− ε)-optimal packing of light items in
our original GIK instance.
•A “slightly infeasible”, super-optimal solution to the GAP
instance is obtained using the Shmoys-Tardos algorithm [4].
• Feasibility with negligible profit loss is restored via rounding.

Theorem: (1
2 − ε)-Approximation

Taking the more profitable of the heavy solution and the light solution gives a polynomial-time (1
2 − ε)-approximated solution.

QPTAS

A self-improving algorithm:
(1) “Guess” the heavy items

(2)Create a residual GIK instance removing the weights of
guessed heavy items and solve it to (1

2 − ε)-optimality.

(3) Independently, find an (1− ε)-approximated solution for light
items in the original instance.

•Take the better of steps (1)+(2) and step (3) gives a
(2

3 −O(ε))-approximation.
•Repeating steps (1)-(3), but now using the

(2
3 −O(ε))-approximated algorithm in step (2) gives a

(3
4 −O(ε))-approximated algorithm.

•Repeat for d2
δe rounds gives a (1− δ)-approximated solution.

Running time: Guessing the heavy items takes time
O((nT )

1
δ5·log(n·wmax

wmin
)), thus the entire procedure takes time

O((nT )
1
δ5·log(n·wmax

wmin
)) · |I|O(1)).

Removing the Dependence on wmax
wmin

Ideal situation:

Real situation – small crossing is almost optimal:

Lemma 1 Suppose items are ordered in weight clusters
C1, . . . CM such that for any m1 < m2, if i ∈ Cm1, j ∈ Cm2, wi <
wj. There exists a permutation π with Ψ(π) ≥ (1 − ε)Ψ(π∗)
such that for every m ∈ [M ], at most O(logM

ε ) items from
weight clusters Cm+1, . . . , CM appear in π before items in Cm.
Idea for QPTAS:
• For every m ∈ [M ], we can use dynamic programming to
“guess” these O(logM

ε ) crossing items and their insertion times.
• For m = 1, . . . ,M , iteratively use the QPTAS for bounded
wmax
wmin

on the residual instance to find the internal near-optimal
permutation for items in Cm that are not crossing.
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