SHATTERING INEQUALITIES FOR LEARNING OPTIMAL DECISION TREES Justin J. Boutilier, Carla Michini, and Zachary Zhou University of Wisconsin-Madison

Background

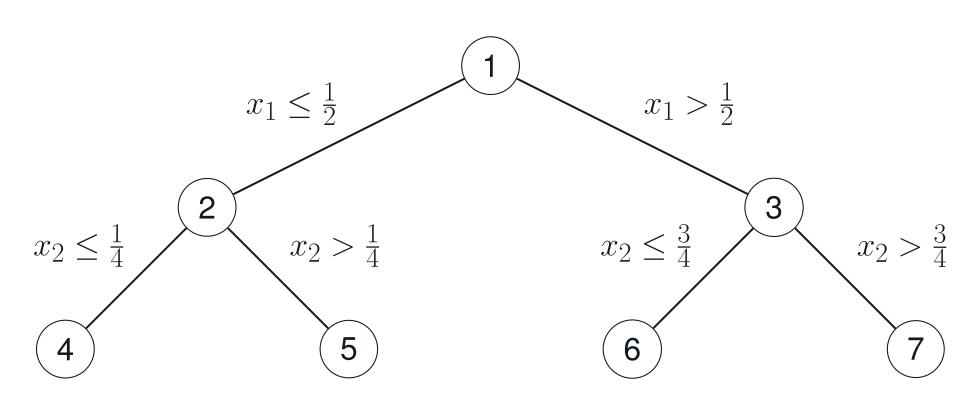


Fig. 1: An example of a univariate decision tree.

- Decision trees are among the most popular techniques for interpretable may chine learning
- Observations begin at the root node and are guided down the tree via test at each branch node until they reach a leaf node where they are classified
- The problem of learning an *optimal* decision tree is NP-hard, where optimality criteria may include accuracy, size of the tree, etc.; it is the subject of recent literature, both within and outside of the MIP community
- Many formulations and techniques now exist for learning optimal *univariate* decision trees, which perform tests involving only a single feature at branch nodes
- Considerably less work has been done pertaining to *multivariate* decision trees, which perform tests involving multiple features
- Although they may seem less interpretable than univariate splits, multivariate splits allow the decision tree to capture hyperplane boundaries more succinctly and accurately

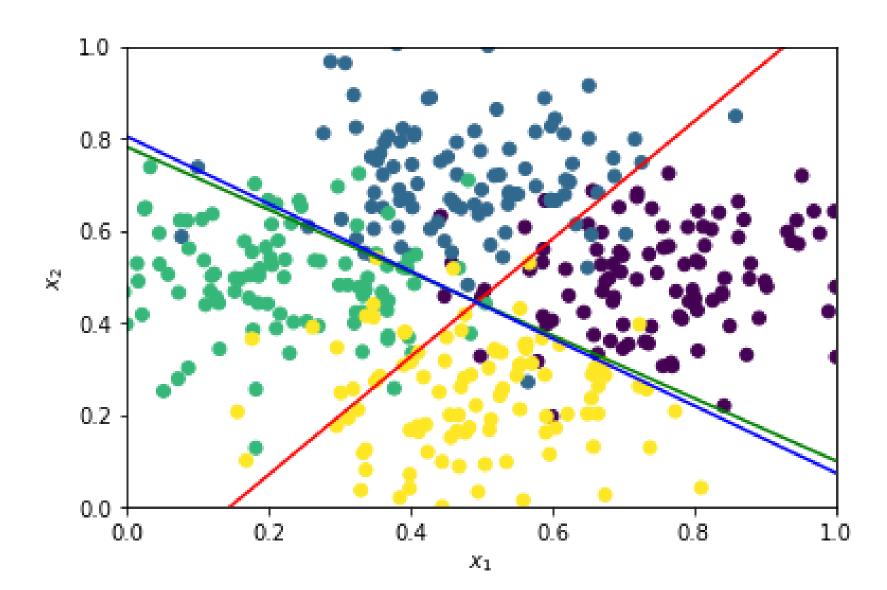


Fig. 2: A 4-class dataset in \mathbb{R}^2 that demonstrates the effectiveness of multivariate splits. A multivariate decision tree of depth 2 is sufficient to learn optimal decision boundaries, which are the diagonal lines. In contrast, a univariate tree is unable to capture these diagonal boundaries and thus generalizes poorly.

Our Contribution

Our goal is to efficiently compute optimal multivariate decision trees using MIP techniques. We propose a MIP model, and provide a class of valid inequalities for learning optimal multivariate decision trees. We show that our model can be solved using a Benders-like decomposition, where our valid inequalities can be used as feasibility cuts.

	Notation
	• Data:
	– Training set: N observations, p numerical features, K classes:
	$\left\{ (\mathbf{x}^i, y^i) \in [0, 1]^p \times [K] \right\}_{i=1}^N$
	– Formulation defined over full binary tree of depth $D \in \mathbb{N}$:
	* Branch nodes $\mathcal{B} = \{1, \dots, 2^D - 1\}; \forall t \in \mathcal{B}$, learn parameters • If $\mathbf{a}_t^\top \mathbf{x} \leq b_t$, then observation \mathbf{x} is sent to t 's left child $2t$ • Otherwise, \mathbf{x} is sent to t 's right child $2t + 1$
1a-	* Leaf nodes $\mathcal{L} = \{2^D, \dots, 2^{D+1} - 1\}; \forall t \in \mathcal{L}$, assign a class k
	Decision variables:
sts	- $c_{kt} \in \{0,1\}, \ \forall k \in [K], \ t \in \mathcal{L}$: equals 1 iff leaf node t assigned c

- $-d_t \in \{0,1\}, \forall t \in \mathcal{B}$: equals 1 iff branch node t applies a split
- $-w_{it} \in \{0,1\}, \forall i \in [N], t \in \mathcal{B} \cup \mathcal{L}$: equals 1 iff observation i reaches node t
- $-z_{it} \in \{0,1\}, \forall i \in [N], t \in \mathcal{L}$: equals 1 iff observation i is sent to leaf t and is correctly classified as y^i
- $-(\mathbf{a}_t, b_t) \in \mathbb{R}^p \times \mathbb{R}, \ \forall t \in \mathcal{B}$: the hyperplane defining the multivariate split at branch node t

Formulation

Let $\alpha \geq$ branch no

	I UIIIIIIIIIIIIIII		
0 be a complexity parameter in the objective to deter the model from using all odes to split data. Our model, which we call S-OCT, is			
minimize c,d,w,z,a,b	$\frac{1}{N} \left(N - \sum_{i=1}^{N} \sum_{t \in \mathcal{L}} z_{it} \right) + \alpha \sum_{t \in \mathcal{B}} d_t$		(1a)
subject to	$\sum_{i=1}^{n} w_{it} = 1$	$\forall i \in [N],$	(1b)
	$t \in \mathcal{L}$ $w_{it} = w_{i,2t} + w_{i,2t+1}$ $w_{i,2t+1} \leq d_t$ K	$ \forall i \in [N], \ t \in \mathcal{B}, \\ \forall i \in [N], \ t \in \mathcal{B}, $	
	$\sum c_{kt} = 1$	$\forall t \in \mathcal{L},$	(1e)
	$k=1$ $z_{it} \le w_{it}$ $z_{it} \le c_{y^i,t}$	$ \forall i \in [N], \ t \in \mathcal{L}, \\ \forall i \in [N], \ t \in \mathcal{L}, $	(1f) (1g)
	$c_{kt} \in \{0, 1\}$ $d_t \in \{0, 1\}$	$\forall k \in [K], \ t \in \mathcal{L}, \\ \forall t \in \mathcal{B}, \end{cases}$	(1h) (1i)
	$w_{it} \in \{0, 1\}$ $z_{it} \in \{0, 1\}$	$\forall i \in [N], \ t \in \mathcal{B} \cup \mathcal{L}, \\ \forall i \in [N], \ t \in \mathcal{L}, \\ \forall t \in \mathcal{P} \end{cases}$	(1j) (1k) (1l)
	$(\mathbf{a}_t, b_t) \in \mathcal{H}_t(\mathbf{w})$	$\forall t \in \mathcal{B},$	(11)

• Master problem (1a)-(1k) routes observations to leaves to minimize error rate plus regularization term

where, $\forall t \in \mathcal{B}, \mathbf{w} \in \left\{ \{0, 1\}^{N \times (\mathcal{B} \cup \mathcal{L})} : (1b) - (1d) \right\},\$

 $\mathcal{H}_t(\mathbf{w}) = \{ (\mathbf{a}_t, b_t) \in \mathbb{R}^p \times \mathbb{R} : \mathbf{a}_t^\top \mathbf{x}^i + 1 \le b_t \}$

• LP feasibility subproblem enforces (1) by checking existence of $(\mathbf{a}_t, b_t) \in \mathcal{H}_t(\mathbf{w}) \ \forall t \in \mathcal{H}_t(\mathbf{w})$ \mathcal{B} , ensuring a multivariate decision tree can fulfill master problem's routing; if not, then must add feasibility cuts on the w variables

Shattering Inequalities

- Points $\{x^i\}$ can be shattered by a linear classifier if for any partition $\{x^i\} = 1$ $X_1 \dot{\cup} X_2$ there exists a hyperplane separating X_1 and X_2
- Let $\mathcal{I} = \left\{ I \subseteq [N] : \{x^i\}_{i \in I} \text{ cannot be shattered by linear classifiers} \right\}$. For $I \in \mathcal{I}$, let $\Lambda(I) \subset \{-1, 1\}^I$ be assignments of binary labels so that points in *I* cannot be separated. The following *shattering inequalities* enforce (1I):

$$\sum_{i \in I: \lambda_i = -1} w_{i,2t} + \sum_{i \in I: \lambda_i = +1} w_{i,2t+1} \le |I| - 1 \quad \forall I \in \mathcal{I}$$

• Only need to consider *minimal* subsets $I' \in \mathcal{I}$ in (3). Suppose $\mathcal{H}_t(\mathbf{w}) = \emptyset$ for some integral $\mathbf{w}, t \in \mathcal{B}$; let $I(t') = \{i \in [N] : w_{it'} = 1\} \ \forall t' \in \mathcal{B} \cup \mathcal{L}$:

$$\sum_{e \in I' \cap I(2t)} w_{i,2t} + \sum_{i \in I' \cap I(2t+1)} w_{i,2t+1} \le \sum_{i \in I' \cap I(2t+1)} w_{i,2t+1} \le \sum_{i \in I' \cap I(2t)} w_{i,2t+1} = \sum_{i \in I' \cap I(2t)} w_{i,2t+1} = \sum_{i \in I' \cap I(2t)} w_{i,2t$$

I' indexes an Irreducible Infeasible Subsystem (IIS) of the constraints in (2), and can be found efficiently

- Shattering inequalities for minimal $I' \in \mathcal{I}$ always involve $\leq p + 2$ variables
- In Figure 3, let $x^i = (0,0), (0,1), (1,0), (1,1)$ be indexed by i = 1, 2, 3, 4 resp. One shattering ineqaulity is $w_{1,2t} + w_{4,2t} + w_{2,2t+1} + w_{3,2t+1} \le 3$

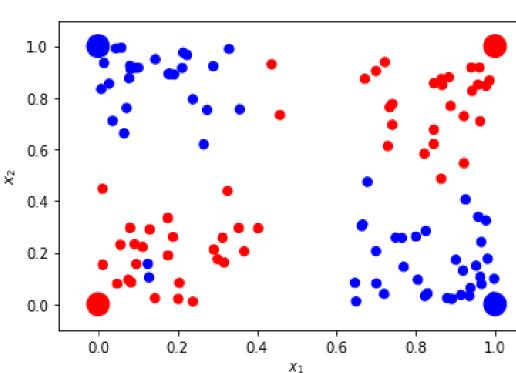


Fig. 3: Example of finding a shattering inequality in \mathbb{R}^2 . The master problem proposes sending the red points to the left child and the blue points to the right child of some branch node t.

Experimental Results

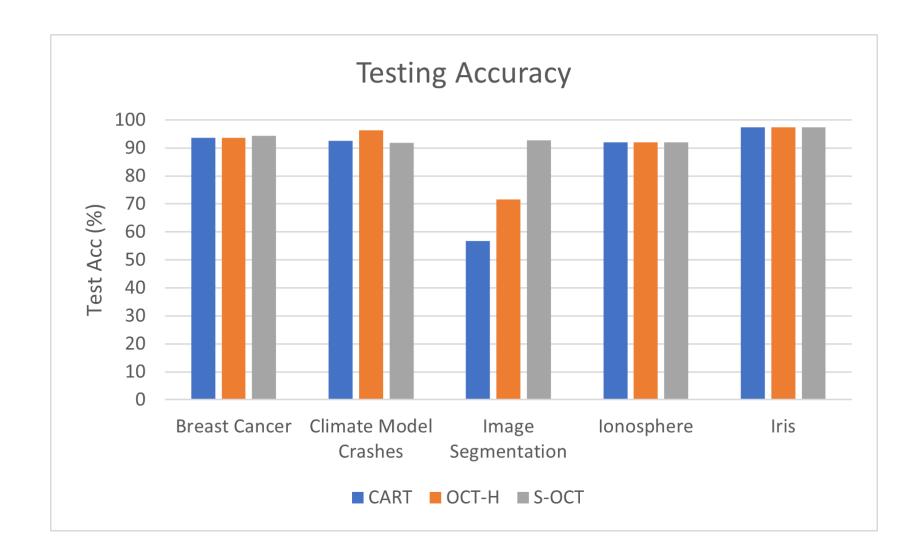


Fig. 4: Testing accuracy comparison between CART, OCT-H, and S-OCT on select datasets, D = 3.

We compare against CART and OCT-H across 10 different datasets and for max depths D = 2, 3, 4. We set a time limit of 10 minutes for all models. Overall, S-OCT reduces training time by 59.5% w.r.t. to OCT-H.

rs $(\mathbf{a}_t, b) \in \mathbb{R}^p \times \mathbb{R}$:

$$k \in [K]$$

class label k

$$: \mathbf{a}_t^{\top} \mathbf{x}^i + 1 \le b_t \qquad \forall i \in [N] : w_{i,2t} = 1, \qquad (2)$$
$$\mathbf{a}_t^{\top} \mathbf{x}^i - 1 \ge b_t \qquad \forall i \in [N] : w_{i,2t+1} = 1 \}.$$

 $\mathcal{I}, \ \lambda \in \Lambda(I), \ t \in \mathcal{B}.$ (3) |I'| - 1.(4)