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Fig. 1: An example of a univariate decision tree.

• Decision trees are among the most popular techniques for interpretable ma-
chine learning

• Observations begin at the root node and are guided down the tree via tests
at each branch node until they reach a leaf node where they are classified

• The problem of learning an optimal decision tree is NP-hard, where optimality
criteria may include accuracy, size of the tree, etc.; it is the subject of recent
literature, both within and outside of the MIP community

• Many formulations and techniques now exist for learning optimal univariate
decision trees, which perform tests involving only a single feature at branch
nodes

• Considerably less work has been done pertaining to multivariate decision
trees, which perform tests involving multiple features

• Although they may seem less interpretable than univariate splits, multivariate
splits allow the decision tree to capture hyperplane boundaries more suc-
cinctly and accurately

Fig. 2: A 4-class dataset in R2 that demonstrates the effectiveness of multivariate splits. A multivariate decision tree

of depth 2 is sufficient to learn optimal decision boundaries, which are the diagonal lines. In contrast, a univariate

tree is unable to capture these diagonal boundaries and thus generalizes poorly.

Our Contribution

Our goal is to efficiently compute optimal multivariate decision trees using MIP
techniques. We propose a MIP model, and provide a class of valid inequalities
for learning optimal multivariate decision trees. We show that our model can be
solved using a Benders-like decomposition, where our valid inequalities can be
used as feasibility cuts.

Notation

• Data:

– Training set: N observations, p numerical features, K classes:{
(xi, yi) ∈ [0, 1]p × [K]

}N
i=1

– Formulation defined over full binary tree of depth D ∈ N:

* Branch nodes B = {1, . . . , 2D − 1}; ∀t ∈ B, learn parameters (at, b) ∈ Rp × R:
· If a>t x ≤ bt, then observation x is sent to t’s left child 2t

· Otherwise, x is sent to t’s right child 2t + 1

* Leaf nodes L = {2D, . . . , 2D+1 − 1}; ∀t ∈ L, assign a class k ∈ [K]

• Decision variables:

– ckt ∈ {0, 1}, ∀k ∈ [K], t ∈ L: equals 1 iff leaf node t assigned class label k

– dt ∈ {0, 1}, ∀t ∈ B: equals 1 iff branch node t applies a split

– wit ∈ {0, 1}, ∀i ∈ [N ], t ∈ B ∪ L: equals 1 iff observation i reaches node t

– zit ∈ {0, 1}, ∀i ∈ [N ], t ∈ L: equals 1 iff observation i is sent to leaf t and is
correctly classified as yi

– (at, bt) ∈ Rp × R, ∀t ∈ B: the hyperplane defining the multivariate split at branch
node t

Formulation

Let α ≥ 0 be a complexity parameter in the objective to deter the model from using all
branch nodes to split data. Our model, which we call S-OCT, is

minimize
c,d,w,z,a,b

1

N

N − N∑
i=1

∑
t∈L

zit

 + α
∑
t∈B

dt (1a)

subject to
∑
t∈L

wit = 1 ∀i ∈ [N ], (1b)

wit = wi,2t + wi,2t+1 ∀i ∈ [N ], t ∈ B, (1c)
wi,2t+1 ≤ dt ∀i ∈ [N ], t ∈ B, (1d)
K∑
k=1

ckt = 1 ∀t ∈ L, (1e)

zit ≤ wit ∀i ∈ [N ], t ∈ L, (1f)
zit ≤ cyi,t ∀i ∈ [N ], t ∈ L, (1g)

ckt ∈ {0, 1} ∀k ∈ [K], t ∈ L, (1h)
dt ∈ {0, 1} ∀t ∈ B, (1i)
wit ∈ {0, 1} ∀i ∈ [N ], t ∈ B ∪ L, (1j)
zit ∈ {0, 1} ∀i ∈ [N ], t ∈ L, (1k)
(at, bt) ∈ Ht(w) ∀t ∈ B, (1l)

where, ∀t ∈ B, w ∈
{
{0, 1}N×(B∪L) : (1b)− (1d)

}
,

Ht(w) = {(at, bt) ∈ Rp × R : a>t x
i + 1 ≤ bt ∀ i ∈ [N ] : wi,2t = 1, (2)

a>t x
i − 1 ≥ bt ∀ i ∈ [N ] : wi,2t+1 = 1

}
.

• Master problem (1a)-(1k) routes observations to leaves to minimize error rate plus reg-
ularization term

• LP feasibility subproblem enforces (1l) by checking existence of (at, bt) ∈ Ht(w) ∀t ∈
B, ensuring a multivariate decision tree can fulfill master problem’s routing; if not, then
must add feasibility cuts on the w variables

Shattering Inequalities

• Points {xi} can be shattered by a linear classifier if for any partition {xi} =
X1∪̇X2 there exists a hyperplane separating X1 and X2

• Let I =
{
I ⊆ [N ] :

{
xi
}
i∈I cannot be shattered by linear classifiers

}
. For

I ∈ I, let Λ(I) ⊂ {−1, 1}I be assignments of binary labels so that points in
I cannot be separated. The following shattering inequalities enforce (1l):∑
i∈I :λi=−1

wi,2t+
∑

i∈I :λi=+1

wi,2t+1 ≤ |I|− 1 ∀I ∈ I, λ ∈ Λ(I), t ∈ B. (3)

• Only need to consider minimal subsets I ′ ∈ I in (3). Suppose Ht(w) = ∅
for some integral w, t ∈ B; let I(t′) = {i ∈ [N ] : wit′ = 1} ∀t′ ∈ B ∪ L:∑

i∈I ′∩I(2t)

wi,2t +
∑

i∈I ′∩I(2t+1)

wi,2t+1 ≤ |I ′| − 1. (4)

I ′ indexes an Irreducible Infeasible Subsystem (IIS) of the constraints in (2),
and can be found efficiently

• Shattering inequalities for minimal I ′ ∈ I always involve ≤ p + 2 variables

• In Figure 3, let xi = (0, 0), (0, 1), (1, 0), (1, 1) be indexed by i = 1, 2, 3, 4 resp.
One shattering ineqaulity is w1,2t + w4,2t + w2,2t+1 + w3,2t+1 ≤ 3

Fig. 3: Example of finding a shattering inequality in R2. The master problem proposes sending the red points to the

left child and the blue points to the right child of some branch node t.

Experimental Results

Fig. 4: Testing accuracy comparison between CART, OCT-H, and S-OCT on select datasets, D = 3.

We compare against CART and OCT-H across 10 different datasets and for max
depths D = 2, 3, 4. We set a time limit of 10 minutes for all models. Overall,
S-OCT reduces training time by 59.5% w.r.t. to OCT-H.


