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OVERVIEW
• Chvátal-Gomory procedure was the first cutting-plane procedure has ever been introduced: Given

closed convex set K and a valid inequality cx ≤ δ with c ∈ Zn, cx ≤ bδc is called the CG cut of K.

• CG closure of a closed convex set K is defined as

K ′ :=
⋂

(c,δ)∈Zn×R,
K⊆{cx≤δ}

{cx ≤ bδc}.

• Seminal result by Schrijver [1980]: If K is a rational polyhedron, then K ′ is a rational polyhedron.
He further asked: whether K ′ is a (rational) polytope if K is an irrational polytope?

• This long-standing open problem was answered in the affirmative independently by Dunkel and
Schulz [2010] and Dadush et al. [2011]. In particular, Dadush et al. [2011] proved the stronger result:
K ′ is a rational polytope if K is a compact convex set.

• Question: Can the boundedness assumption be further relaxed? What is the necessary condition for K ′ to
be a rational polyhedron?

MAIN RESULT

Theorem 1

Given a closed convex set K, TFAE:
• K ′ is a rational polyhedron;
• K ′ is finitely-generated;
• there exists a rational polyhedron P

such that K ′ ⊆ P ⊆ K.

Theorem 2

If K is the sum of a compact convex set
and a rational polyhedral cone, then K ′ is
a rational polyhedron.

Corollary 1

If K is a polyhedron with int(K) ∩ Zn 6= ∅,
thenK ′ is a rational polyhedron if and only
if conv(K ∩ Zn) is a rational polyhedron.

I Theorem 2 generalizes the same result for
compact convex set and rational polyhedron.

I Fundamentally different proof technique
than that of Dunkel and Schulz [2010],
Dadush et al. [2011] and Braun and Pokutta
[2014], which lends itself to potential appli-
cations to more classes of cutting planes.

COUNTEREXAMPLES
IK has rational polyhedral recession cone, but K
cannot be written as the sum of a compact set and
its recession cone:

�K = {x ∈ R2
+ | x1 · x2 ≥ 1}.
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• conv(K ∩Z2) is a rational
polyhedron, but K ′ is

not a polyhedron:
x1 ≥ 1, x2 ≥ 1 are not

CG cuts.

�K = {x ∈ R2
+ | (x1 − 0.5)(x2 − 0.5) ≥ 1}.
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• Both conv(K ∩Z2) and K ′

are rational polyhedra.

IK can only be written as the sum of a compact
convex set and an irrational polyhedral cone:
�K = {x ∈ R2 |

√
2x1 − x2 = 0}.

• K ′ = K which is an irrational polyhedron,
even though conv(K ∩ Z2) = {(0, 0)} is a rational
polyhedron.

KEY LEMMA FOR THEOREM 1
Lemma 1: Gordan’s Lemma (Hilbert basis)

C ⊆ Rn is a rational polyhedral cone, then C ∩Zn is finitely generated: there exists {g1, . . . , gm} ⊆
C ∩ Zn such that every x ∈ C ∩ Zn is an integral conical combination of these points.

• Dickson’s Lemma: Poset (Nn,≤) has no infinite antichain. Here Antichain (chain) is a subset of a
poset that no (every) two elements are comparable with each other.

Lemma 2

Given a rational polyhedral cone C ⊆ Rn, a sequence {vi}i∈N ⊆ C ∩Zn and a vector q ∈ Qn. Then
there exist a, b ∈ N such that va − vb ∈ C and vaq − bvaqc = vbq − bvbqc.

• For each vi ∈ C ∩ Zn, by Gordan’s Lemma it can be written as: vi = G · λi, for λi ∈ Nm.

• Folklore: An infinite poset contains either an infinite chain or an infinite antichain.

• Within this infinite poset {λi}i∈N, by Gordan’s Lemma, there exists an infinite chain {λi}i∈I′ .

• For rational vector q, write it as q = 1
D z for D ∈ N, z ∈ Zn. Hence {viq − bviqc | i ∈ I ′} ⊆

{0, 1
D , . . . ,

D−1
D }, which is a finite set. So there exists a, b ∈ I ′ such that vaq − bvaqc = vbq − bvbqc.

• Moreover, λa and λb are comparable, say λa ≥ λb, then va − vb = G · (λa − λb) ∈ C.

P
K

I Assume σP (ci) > bσK(ci)c, then: σK(ci) ≥ ciqi := σP (c
i) > bσK(ci)c,

for some extreme point qi ∈ P .
I We obtain bσK(ci)c = bσP (ci)c: CG cuts cix ≤ bσK(ci)c for K are the
same as the CG cuts cix ≤ bσP (ci)c for P .
I Since extreme point qi ∈ P is finitely many, there exists q ∈ P and infinite
index set I ⊆ N, such that ciq = σP (c

i) for i ∈ I .
I cq = σP (c) if and only if c ∈ C for some rational polyhedral cone C.
I By Lemma 3, there exist two CG cuts cax ≤ bσK(ca)c and cbx ≤ bσK(cb)c,

such that σP (ca − cb) = (ca − cb)q ∈ Z.
I So cax ≤ bσK(ca)c = bcaqc is dominated by cbx ≤ bσK(cb)c = bcbqc and (ca − cb)x ≤ (ca − cb)q, the
second inequality is valid to P ⊇ K ′, hence cax ≤ bσK(ca)c is dominated by finitely many CG cuts of K.

PROOF SKETCH OF THEOREM 2 FOR POLYHEDRAL K

Theorem 3: extension of Kronecker [1884]

Let n,N0 ∈ N and π 6= 0 ∈ Rn. Then
Zn−πZ≥N0contains a dense subset of Vπ :=
{αTx = 0 for any α ∈ Qn s.t. αTπ ∈ Q}.

• Any valid inequality αx ≤ β, β ∈ Z, for large N0

and small ε, find ci − ni · α ∈ Vπ ∩ (Zn − αZ≥N0
):

0 =
∑
λi(c

i − niα), ‖ci − niα‖ < ε.

• ∀v ∈ rec({x ∈ K | αx = β}) : αT v = 0, v ∈ Qn.
Hence Theorem 4 implies: (ci − niα) · v = 0.
• Additional argument implies bσK(ci)c ≤ niβ:

{cix ≤ bσK(ci)c,∀i} ⊆ {cix ≤ niβ,∀i}
⊆ {αx ≤ β}.

•Argue for all finitely many facet-defining inequal-
ity αx ≤ β of K, concludes the proof.


