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OVERVIEW R KEY LEMMA FOR THEOREM 1

o Chudtal-Gomory procedure was the first cutting-plane procedure has ever been introduced: Given

s , , , Lemma 1: Gordan’s Lemma (Hilbert basis)
closed convex set K and a valid inequality cx < § with c € Z", cx < |4] is called the CG cut of K.

C C R™ is a rational polyhedral cone, then C NZ"™ is finitely generated: there exists {g*, ..., g™} C
C' N Z"™ such that every x € C' N Z" is an integral conical combination of these points.

e CG closure of a closed convex set K is defined as

K' = ﬂ {cx < |§]}.

ﬁ;@fﬁéﬁ’ e Dickson’s Lemma: Poset (N, <) has no infinite antichain. Here Antichain (chain) is a subset of a

poset that no (every) two elements are comparable with each other.

e Seminal result by Schrijver [1980]: If K is a rational polyhedron, then K’ is a rational polyhedron.
He further asked: whether K’ is a (rational) polytope if K is an irrational polytope?

e This long-standing open problem was answered in the affirmative independently by Dunkel and
Schulz [2010] and Dadush et al. [2011]. In particular, Dadush et al. [2011] proved the stronger result:
K’ is a rational polytope if K is a compact convex set.

Given a rational polyhedral cone C' C R", a sequence {v*};eny € C NZ" and a vector ¢ € Q™. Then
there exist a, b € N such that v* — v € C' and v%q — |v%q| = v°q — [v°q].

e Question: Can the boundedness assumption be further relaxed? What is the necessary condition for K’ to

h T e For each v* € C NZ", by Gordan’s Lemma it can be written as: v* = G - \’, for \* € N™.
e a rational polyhedron’

o Folklore: An infinite poset contains either an infinite chain or an infinite antichain.

MAIN RESULT COUNTEREXAMPLES

e Within this infinite poset {\'};cn, by Gordan’s Lemma, there exists an infinite chain {\"};c ;.

» K has rational polyhedral recession cone, but K e For rational vector ¢, write it as ¢ = 5z for D € N,z € Z". Hence {v'q — [v'q| | i € I'} C

cannot be written as the sum of a compact set and {0, 5,..., 251}, which is a finite set. So there exists a, b € I’ such that v%q — [v%q| = v’q — |v’q].
Given a closed convex set K, TFAE: 1ts recession cone:

Theorem 1

e Moreover, A% and A\’ are comparable, say A\, > )\, then v® —v* = G - (\* — \%) € C.

e K'is arational polyhedron;

K:{ZCGR3_|£E1£U221}

e K’ is finitely-generated; > Assume op(c’) > |ok(c')], then: ok (c') > c'q" := op(c’) > |ok(c)],

for some extreme point ¢* € P.

e there exists a rational polyhedron P conv(K NZ?*) is a rational

such that K/ C P C K. polyhedron, but K’ is » We obtain |og(c')| = |op(c’)]|: CG cuts ¢’z < |ok(c')] for K are the
not a polyhedron: same as the CG cuts c'x < |op(c)| for P.
Theorem 2 r1 2> 1,22 > 1 are not » Since extreme point ¢* € P is finitely many, there exists ¢ € P and infinite
CG cuts. index set I C N, such that c¢'q = op(c*) fori € I.
If K is t}}e sum of a compact convex set » cq = op(c) if and only if ¢ € C for some rational polyhedral cone C.
and a rational polyhedral cone, then K" is Bl h , G 0 - ) 4 obo < .
a rational polyhedron. K ={z eR% | (x1 —0.5)(z2 — 0.5) > 1}. > By Lemma 3, there exist two CG cuts ¢z < [ox(¢?)J and &'z < |ox ("),

such that op(c® — ) = (¢* — ®)q € Z.
Lo Both conv(K NZ2) and K » So ¢’z < |ok(c?)| = |c*q] is dominated by ¢’z < |og(c®)] = |[Pq] and (¢* — c*)z < (¢* — ¥)q, the

Corollary 1 are rational polyhedra. second inequality is valid to P O K’, hence c?x < |0k (c*)]| is dominated by finitely many CG cuts of K.

If K is a polyhedron with int(K) NZ™ # 0,
PROOF SKETCH OF THEOREM 2 FOR POLYHEDRAL K

then K’ is a rational polyhedron if and only

if conv(K NZ") is a rational polyhedron. il = -
2| Theorem 3: extension of Kronecker [1884] o Vv Erec({r € K | ax = 8}) : av v = 0,0 € Q".
| Hence Theorem 4 implies: (¢’ — n;a) - v = 0.
» Theorem 2 generalizes the same result for | Let n,No € Nand 7 # 0 € R"™. Then e Additional argument implies |0k (c') ] < n;f:
compact convex set and rational polyhedron. | ™ /& can only be written as the sum of a compact 7" — >y, contains a dense subset of V; := , | |
convex set and an irrational polyhedral cone: {aTz = 0forany a € Q" s.t. o771 € Q). (dix < |og ()], Vi) C {¢x < niB,Vi)
» Fundamentally different proof technique _ 2 e —
K = {LIZ’ c R \/i’lfl To — O} C {a,flj < 6}
than that of Dunkel and Schulz [2010], , L , , . . - -
Dadush et al. [2011] and Braun and Pokutta K’ = K which is an irrational polyhedron, e Any valid inequality ax < 5, 0 € Z, tor large Ny
[2014] WhiCl:l lends itself to potential appli- | €VEY though conv(K N Z*) = {(0,0)} is a rational and small ¢, find ¢' —n; -a € Vx N (Z"™ — aZ>nN,): e Argue for all finitely many facet-defining inequal-
’ P bP polyhedron. 0=> A\il(c"—n;a),l|c —na| <e. ity ax < 8 of K, concludes the proof.

cations to more classes of cutting planes.



