

ON THE POLYHEDRALITY OF CHVÁTAL-GOMORY CLOSURE

HAORAN ZHU UNIVERSITY OF WISCONSIN-MADISON

OVERVIEW

- *Chvátal-Gomory procedure* was the first cutting-plane procedure has ever been introduced: Given closed convex set K and a valid inequality $cx \leq \delta$ with $c \in \mathbb{Z}^n$, $cx \leq \lfloor \delta \rfloor$ is called the CG cut of K.
- *CG closure* of a closed convex set *K* is defined as

$$K' := \bigcap_{\substack{(c,\delta) \in \mathbb{Z}^n \times \mathbb{R}, \\ K \subseteq \{cx \le \delta\}}} \{cx \le \lfloor \delta \rfloor \}.$$

- Seminal result by Schrijver [1980]: If K is a rational polyhedron, then K' is a rational polyhedron. He further asked: whether K' is a (rational) polytope if K is an irrational polytope?
- This long-standing open problem was answered in the affirmative independently by Dunkel and Schulz [2010] and Dadush et al. [2011]. In particular, Dadush et al. [2011] proved the stronger result: K' is a rational polytope if K is a compact convex set.
- **Question:** Can the boundedness assumption be further relaxed? What is the necessary condition for K' to be a rational polyhedron?

MAIN RESULT

Theorem 1

Given a closed convex set K, TFAE:

- K' is a rational polyhedron;
- K' is finitely-generated;
- there exists a rational polyhedron P such that $K' \subseteq P \subseteq K$.

Theorem 2

If K is the sum of a compact convex set and a rational polyhedral cone, then K' is a rational polyhedron.

Corollary 1

If K is a polyhedron with $int(K) \cap \mathbb{Z}^n \neq \emptyset$, then K' is a rational polyhedron if and only if $conv(K \cap \mathbb{Z}^n)$ is a rational polyhedron.

- ► Theorem 2 generalizes the same result for compact convex set and rational polyhedron.
- ► Fundamentally different proof technique than that of Dunkel and Schulz [2010], Dadush et al. [2011] and Braun and Pokutta [2014], which lends itself to potential applications to more classes of cutting planes.

COUNTEREXAMPLES

- ightharpoonup K has rational polyhedral recession cone, but K cannot be written as the sum of a compact set and its recession cone:
 - $K = \{x \in \mathbb{R}^2_+ \mid x_1 \cdot x_2 \ge 1\}.$

- $\operatorname{conv}(K \cap \mathbb{Z}^2)$ is a rational polyhedron, but K' is not a polyhedron: $x_1 \geq 1, x_2 \geq 1$ are not CG cuts.
- $K = \{x \in \mathbb{R}^2_+ \mid (x_1 0.5)(x_2 0.5) \ge 1\}.$

- Both $\operatorname{conv}(K \cap \mathbb{Z}^2)$ and K' are rational polyhedra.
- ightharpoonup K can only be written as the sum of a compact convex set and an irrational polyhedral cone:
- $K = \{ x \in \mathbb{R}^2 \mid \sqrt{2}x_1 x_2 = 0 \}.$
- K' = K which is an irrational polyhedron, even though $\operatorname{conv}(K \cap \mathbb{Z}^2) = \{(0,0)\}$ is a rational polyhedron.

KEY LEMMA FOR THEOREM 1

Lemma 1: Gordan's Lemma (Hilbert basis)

 $C \subseteq \mathbb{R}^n$ is a rational polyhedral cone, then $C \cap \mathbb{Z}^n$ is finitely generated: there exists $\{g^1, \dots, g^m\} \subseteq C \cap \mathbb{Z}^n$ such that every $x \in C \cap \mathbb{Z}^n$ is an **integral conical combination** of these points.

• **Dickson's Lemma:** Poset (\mathbb{N}^n, \leq) has no infinite antichain. Here *Antichain (chain)* is a subset of a poset that no (every) two elements are comparable with each other.

Lemma 2

Given a rational polyhedral cone $C \subseteq \mathbb{R}^n$, a sequence $\{v^i\}_{i \in \mathbb{N}} \subseteq C \cap \mathbb{Z}^n$ and a vector $q \in \mathbb{Q}^n$. Then there exist $a, b \in \mathbb{N}$ such that $v^a - v^b \in C$ and $v^a q - \lfloor v^a q \rfloor = v^b q - \lfloor v^b q \rfloor$.

- For each $v^i \in C \cap \mathbb{Z}^n$, by Gordan's Lemma it can be written as: $v^i = G \cdot \lambda^i$, for $\lambda^i \in \mathbb{N}^m$.
- Folklore: An infinite poset contains either an infinite chain or an infinite antichain.
- Within this infinite poset $\{\lambda^i\}_{i\in\mathbb{N}}$, by Gordan's Lemma, there exists an infinite chain $\{\lambda^i\}_{i\in I'}$.
- For rational vector q, write it as $q = \frac{1}{D}z$ for $D \in \mathbb{N}, z \in \mathbb{Z}^n$. Hence $\{v^iq \lfloor v^iq \rfloor \mid i \in I'\} \subseteq \{0, \frac{1}{D}, \dots, \frac{D-1}{D}\}$, which is a finite set. So there exists $a, b \in I'$ such that $v^aq \lfloor v^aq \rfloor = v^bq \lfloor v^bq \rfloor$.
- Moreover, λ^a and λ^b are comparable, say $\lambda_a \geq \lambda_b$, then $v^a v^b = G \cdot (\lambda^a \lambda^b) \in C$.

- ► Assume $\sigma_P(c^i) > \lfloor \sigma_K(c^i) \rfloor$, then: $\sigma_K(c^i) \geq c^i q^i := \sigma_P(c^i) > \lfloor \sigma_K(c^i) \rfloor$, for some extreme point $q^i \in P$.
- ▶ We obtain $\lfloor \sigma_K(c^i) \rfloor = \lfloor \sigma_P(c^i) \rfloor$: CG cuts $c^i x \leq \lfloor \sigma_K(c^i) \rfloor$ for K are the same as the CG cuts $c^i x \leq \lfloor \sigma_P(c^i) \rfloor$ for P.
- Since extreme point $q^i \in P$ is finitely many, there exists $q \in P$ and infinite index set $I \subseteq \mathbb{N}$, such that $c^i q = \sigma_P(c^i)$ for $i \in I$.
- $ightharpoonup cq = \sigma_P(c)$ if and only if $c \in C$ for some rational polyhedral cone C.
- By Lemma 3, there exist two CG cuts $c^a x \leq \lfloor \sigma_K(c^a) \rfloor$ and $c^b x \leq \lfloor \sigma_K(c^b) \rfloor$, such that $\sigma_P(c^a c^b) = (c^a c^b)q \in \mathbb{Z}$.
- ▶ So $c^a x \leq \lfloor \sigma_K(c^a) \rfloor = \lfloor c^a q \rfloor$ is dominated by $c^b x \leq \lfloor \sigma_K(c^b) \rfloor = \lfloor c^b q \rfloor$ and $(c^a c^b)x \leq (c^a c^b)q$, the second inequality is valid to $P \supseteq K'$, hence $c^a x \leq \lfloor \sigma_K(c^a) \rfloor$ is dominated by finitely many CG cuts of K.

Proof sketch of Theorem 2 for polyhedral K

Theorem 3: extension of Kronecker [1884]

Let $n, N_0 \in \mathbb{N}$ and $\pi \neq 0 \in \mathbb{R}^n$. Then $\mathbb{Z}^n - \pi \mathbb{Z}_{\geq N_0}$ contains a dense subset of $V_{\pi} := \{\alpha^T x = 0 \text{ for any } \alpha \in \mathbb{Q}^n \text{ s.t. } \alpha^T \pi \in \mathbb{Q}\}.$

- Any valid inequality $\alpha x \leq \beta, \beta \in \mathbb{Z}$, for large N_0 and small ϵ , find $c^i n_i \cdot \alpha \in V_\pi \cap (\mathbb{Z}^n \alpha \mathbb{Z}_{\geq N_0})$: $0 = \sum \lambda_i (c^i n_i \alpha), \|c^i n_i \alpha\| < \epsilon$.
- $\forall v \in \text{rec}(\{x \in K \mid \alpha x = \beta\}) : \alpha^T v = 0, v \in \mathbb{Q}^n$. Hence Theorem 4 implies: $(c^i - n_i \alpha) \cdot v = 0$.
- Additional argument implies $\lfloor \sigma_K(c^i) \rfloor \leq n_i \beta$:

$$\{c^{i}x \leq \lfloor \sigma_{K}(c^{i}) \rfloor, \forall i\} \subseteq \{c^{i}x \leq n_{i}\beta, \forall i\}$$
$$\subseteq \{\alpha x \leq \beta\}.$$

• Argue for all finitely many facet-defining inequality $\alpha x \leq \beta$ of K, concludes the proof.