Overview

- Chvátal-Gomory procedure was the first cutting-plane procedure has ever been introduced: Given closed convex set K and a valid inequality $c x \leq \delta$ with $c \in \mathbb{Z}^{n}, c x \leq\lfloor\delta\rfloor$ is called the CG cut of K.
- CG closure of a closed convex set K is defined as

$$
K^{\prime}:=\bigcap_{\substack{(c, \delta) \in \mathbb{Z}^{n} \times \mathbb{R}, K \subseteq\{c x \leq \delta\}}}\{c x \leq\lfloor\delta\rfloor\} .
$$

- Seminal result by Schrijver [1980]: If K is a rational polyhedron, then K^{\prime} is a rational polyhedron. He further asked: whether K^{\prime} is a (rational) polytope if K is an irrational polytope?
- This long-standing open problem was answered in the affirmative independently by Dunkel and Schulz [2010] and Dadush et al. [2011]. In particular, Dadush et al. [2011] proved the stronger result: K^{\prime} is a rational polytope if K is a compact convex set.
- Question: Can the boundedness assumption be further relaxed? What is the necessary condition for K^{\prime} to be a rational polyhedron?

Main result

Theorem 1

Given a closed convex set K, TFAE

- K^{\prime} is a rational polyhedron;
- K^{\prime} is finitely-generated;
- there exists a rational polyhedron P such that $K^{\prime} \subseteq P \subseteq K$.

Theorem 2

If K is the sum of a compact convex set and a rational polyhedral cone, then K^{\prime} is a rational polyhedron.

Corollary 1

If K is a polyhedron with $\operatorname{int}(K) \cap \mathbb{Z}^{n} \neq \emptyset$, then K^{\prime} is a rational polyhedron if and only if $\operatorname{conv}\left(K \cap \mathbb{Z}^{n}\right)$ is a rational polyhedron.

- Theorem 2 generalizes the same result for compact convex set and rational polyhedron.
- Fundamentally different proof technique than that of Dunkel and Schulz [2010], Dadush et al. [2011] and Braun and Pokutta [2014], which lends itself to potential applications to more classes of cutting planes.

COUNTEREXAMPLES

- K has rational polyhedral recession cone, but K cannot be written as the sum of a compact set and its recession cone:

$$
K=\left\{x \in \mathbb{R}_{+}^{2} \mid x_{1} \cdot x_{2} \geq 1\right\}
$$

- $\operatorname{conv}\left(K \cap \mathbb{Z}^{2}\right)$ is a rational polyhedron, but K^{\prime} is not a polyhedron: $x_{1} \geq 1, x_{2} \geq 1$ are not CG cuts.
$\square K=\left\{x \in \mathbb{R}_{+}^{2} \mid\left(x_{1}-0.5\right)\left(x_{2}-0.5\right) \geq 1\right\}$.

- Both $\operatorname{conv}\left(K \cap \mathbb{Z}^{2}\right)$ and K^{\prime} are rational polyhedra.
- K can only be written as the sum of a compac convex set and an irrational polyhedral cone:
$\square K=\left\{x \in \mathbb{R}^{2} \mid \sqrt{2} x_{1}-x_{2}=0\right\}$.
- $K^{\prime}=K$ which is an irrational polyhedron, even though $\operatorname{conv}\left(K \cap \mathbb{Z}^{2}\right)=\{(0,0)\}$ is a rational polyhedron.

Key lemma for Theorem 1

Lemma 1: Gordan's Lemma (Hilbert basis)

$C \subseteq \mathbb{R}^{n}$ is a rational polyhedral cone, then $C \cap \mathbb{Z}^{n}$ is finitely generated: there exists $\left\{g^{1}\right.$
$C \cap \mathbb{Z}^{n}$ such that every $x \in C \cap \mathbb{Z}^{n}$ is an integral conical combination of these points.

- Dickson's Lemma: Poset $\left(\mathbb{N}^{n}, \leq\right)$ has no infinite antichain. Here Antichain (chain) is a subset of a poset that no (every) two elements are comparable with each other.

Lemma 2

Given a rational polyhedral cone $C \subseteq \mathbb{R}^{n}$, a sequence $\left\{v^{i}\right\}_{i \in \mathbb{N}} \subseteq C \cap \mathbb{Z}^{n}$ and a vector $q \in \mathbb{Q}^{n}$. Then there exist $a, b \in \mathbb{N}$ such that $v^{a}-v^{b} \in C$ and $v^{a} q-\left\lfloor v^{a} q\right\rfloor=v^{b} q-\left\lfloor v^{b} q\right\rfloor$.

- For each $v^{i} \in C \cap \mathbb{Z}^{n}$, by Gordan's Lemma it can be written as: $v^{i}=G \cdot \lambda^{i}$, for $\lambda^{i} \in \mathbb{N}^{m}$
- Folklore: An infinite poset contains either an infinite chain or an infinite antichain.
- Within this infinite poset $\left\{\lambda^{i}\right\}_{i \in \mathbb{N}}$, by Gordan's Lemma, there exists an infinite chain $\left\{\lambda^{i}\right\}_{i \in I^{\prime}}$
- For rational vector q, write it as $q=\frac{1}{D} z$ for $D \in \mathbb{N}, z \in \mathbb{Z}^{n}$. Hence $\left\{v^{i} q-\left\lfloor v^{i} q\right\rfloor \mid i \in I^{\prime}\right\} \subseteq$ $\left\{0, \frac{1}{D}, \ldots, \frac{D-1}{D}\right\}$, which is a finite set. So there exists $a, b \in I^{\prime}$ such that $v^{a} q-\left\lfloor v^{a} q\right\rfloor=v^{b} q-\left\lfloor v^{b} q\right\rfloor$.
- Moreover, λ^{a} and λ^{b} are comparable, say $\lambda_{a} \geq \lambda_{b}$, then $v^{a}-v^{b}=G \cdot\left(\lambda^{a}-\lambda^{b}\right) \in C$.

- Assume $\sigma_{P}\left(c^{i}\right)>\left\lfloor\sigma_{K}\left(c^{i}\right)\right\rfloor$, then: $\sigma_{K}\left(c^{i}\right) \geq c^{i} q^{i}:=\sigma_{P}\left(c^{i}\right)>\left\lfloor\sigma_{K}\left(c^{i}\right)\right\rfloor$, for some extreme point $q^{i} \in P$
- We obtain $\left\lfloor\sigma_{K}\left(c^{i}\right)\right\rfloor=\left\lfloor\sigma_{P}\left(c^{i}\right)\right\rfloor$: CG cuts $c^{i} x \leq\left\lfloor\sigma_{K}\left(c^{i}\right)\right\rfloor$ for K are the same as the CG cuts $c^{i} x \leq\left\lfloor\sigma_{P}\left(c^{i}\right)\right\rfloor$ for P.
- Since extreme point $q^{i} \in P$ is finitely many, there exists $q \in P$ and infinite index set $I \subseteq \mathbb{N}$, such that $c^{i} q=\sigma_{P}\left(c^{i}\right)$ for $i \in I$.
- $c q=\sigma_{P}(c)$ if and only if $c \in C$ for some rational polyhedral cone C.
- By Lemma 3, there exist two CG cuts $c^{a} x \leq\left\lfloor\sigma_{K}\left(c^{a}\right)\right\rfloor$ and $c^{b} x \leq\left\lfloor\sigma_{K}\left(c^{b}\right)\right\rfloor$, such that $\sigma_{P}\left(c^{a}-c^{b}\right)=\left(c^{a}-c^{b}\right) q \in \mathbb{Z}$.
- So $c^{a} x \leq\left\lfloor\sigma_{K}\left(c^{a}\right)\right\rfloor=\left\lfloor c^{a} q\right\rfloor$ is dominated by $c^{b} x \leq\left\lfloor\sigma_{K}\left(c^{b}\right)\right\rfloor=\left\lfloor c^{b} q\right\rfloor$ and $\left(c^{a}-c^{b}\right) x \leq\left(c^{a}-c^{b}\right) q$, the second inequality is valid to $P \supseteq K^{\prime}$, hence $c^{a} x \leq\left\lfloor\sigma_{K}\left(c^{a}\right)\right\rfloor$ is dominated by finitely many CG cuts of K.

Proof SKetch of Theorem 2 for polyhedral K

$$
\begin{aligned}
& \text { Theorem 3: extension of Kronecker [1884] } \\
& \text { Let } n, N_{0} \in \mathbb{N} \text { and } \pi \neq 0 \in \mathbb{R}^{n} \text {. Then } \\
& \mathbb{Z}^{n}-\pi \mathbb{Z}_{\geq N_{0}} \text { contains a dense subset of } V_{\pi}:= \\
& \left\{\alpha^{T} x=0 \text { for any } \alpha \in \mathbb{Q}^{n} \text { s.t. } \alpha^{T} \pi \in \mathbb{Q}\right\} .
\end{aligned}
$$

- Any valid inequality $\alpha x \leq \beta, \beta \in \mathbb{Z}$, for large N_{0} and small ϵ, find $c^{i}-n_{i} \cdot \alpha \in V_{\pi} \cap\left(\mathbb{Z}^{n}-\alpha \mathbb{Z}_{\geq N_{0}}\right)$: $0=\sum \lambda_{i}\left(c^{i}-n_{i} \alpha\right),\left\|c^{i}-n_{i} \alpha\right\|<\epsilon$.
- $\forall v \in \operatorname{rec}(\{x \in K \mid \alpha x=\beta\}): \alpha^{T} v=0, v \in \mathbb{Q}^{n}$ Hence Theorem 4 implies: $\left(c^{i}-n_{i} \alpha\right) \cdot v=0$.
- Additional argument implies $\left\lfloor\sigma_{K}\left(c^{i}\right)\right\rfloor \leq n_{i} \beta$:

$$
\begin{aligned}
\left\{c^{i} x \leq\left\lfloor\sigma_{K}\left(c^{i}\right)\right\rfloor, \forall i\right\} & \subseteq\left\{c^{i} x \leq n_{i} \beta, \forall i\right\} \\
& \subseteq\{\alpha x \leq \beta\}
\end{aligned}
$$

- Argue for all finitely many facet-defining inequality $\alpha x \leq \beta$ of K, concludes the proof.

