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BACKGROUND
In a graph G with vertex set V and edge set E,
a subset A ⊆ V is independent if no pair of two
elements in A is connected i.e.

∀a1, a2 ∈ A, (a1, a2) 6∈ E

• The stability number denoted by α(G) of G
is the maximum size of independent set.

• For a Erdös-Rényi random graph model
G(n, p) in which edge variable are i.i.d.
Bernoulli(p). Its stability number [5, 6, 10]
is well studied in the following two cases.

α(G(n, p)) ≈ 2 log 1
1−p

n, p is constant

α(G(n, p)) ≈ 2n

d
log d, d := np is constant

• We are interested in the graph with non-
i.i.d. edge variables as dependencies are
common in real-life models as social net-
works [3]. The hardness of analyzing such
model is not surprisingly rooted into the de-
pendency structure of edges.

MARKOV GRAPH MODEL

A Markov GMδ (n, p) is a model in which the prob-
ability of realizing edge (i, j) with i < j depends
on but only on the presence of its previous edge
(i−1, j). So edges are dynamically generated in a
Markov process. Here δ ∈ (0, 1) is a decay factor
and p is the initial state parameter.
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The left graph edge (i − 1, j) is present, the
probability of generating (i, j) is δq where q :=

P{X(j)
i = 1} and X

(j)
i is the variable of edge

(i− 1, j).

STABILITY NUMBER

Asymptotic stability number

Theorem . (ASN) For λ > 1, with high
probability,

α(GMδ (n, p)) ≤
(

1 +
2

3e
− e−h

)
· n

where h = δ
λ(1−δ) .

GREEDILY INDEPENDENT SET

Greedy stability number

Theorem . Let αG(GMδ (n, p)) to be size
of the maximal independent set returned by
greedy algorithm, then with high probability

αG(GMδ (n, p)) = Ω
(
n

1
w+1

)
where w = d 1

1−δ e and Ω means “asymptoti-
cally larger".

It’s clear that αG(GMδ (n, p)) ≤ α(GMδ (n, p)) and
therefore, this result provides a lower bound on
the stability number of G(p, t).

VERTEX DEGREE

deg vi and degGMδ (n, p) are the degrees of vertex
vi and the average vertex degree of the graph re-
spectively.

Asymptotic convergence of degree

Theorem . For ε > 0, with high probability,∣∣∣∣deg vi
n
− 1

(1− δ)i

∣∣∣∣ ≤ ε

(1− δ)i∣∣∣∣degGMδ (n, p)

log n
− 2

1− δ

∣∣∣∣ ≤ ε

1− δ

PROOF SKETCH OF ASN
The main technique is applying Chebyshev in-
equality on Hk,n the number of independent sets
of size k in GMδ (n, p).

P{α(GMδ (n, p)) > k} ≤ P{Hk,n > 0} ≤ E [Hk,n]

Our target is to find max{k : Hk,n = 0} for each n.
The idea is to evaluate the probability of a subset
of k vertices to be independent since

E [Hk,n] =
∑

|A|=k:A⊆V

P {A is independent}

INDEPENDENT SET

Let A be a subset of k vertices in GMδ (n, p).

Proposition . We say vn+1 is disconnected from A

if there is no edge present between any vertex in A and
vn+1.

(1− p)
k−1∏
j=1

(1− xj) ≤ zt+1(A) ≤
t∏

j=t+1−k

(1− δxj)

where zt+1(A) := P {vt+1 is disconnected from A}

This is the first ingredient of our proof and it leads
to the bound on greedy stability number. Further-
more, this proposition implies an upper bound on
the probability A to be independent.

Proposition . Let h = δ
λ(1−δ) and a := φλ + t,

P {A is independent} ≤
(
em−1 ·

(
1− m− 1

a

)a)h

PROOF SKETCH OF DEGREE
Follow from graph construction, we split edges
connecting vi into two parts.

deg vi =

i−1∑
j=1

X
(i)
j +

n∑
j=i+1

X
(j)
i (1)

The left part is the sum of first i − 1 states in
Markov chain while the right-hand side is the
sum of i-th states from different Markov pro-
cesses and they are pair-wisely independent since
we do not assume dependency between chains.
Let xi denote the success probability of i-th state
in Markov chain.

Proposition . Fix λ > 1,

∀i ≥ 2,
1

φλ + λi
≤ (1− δ)xi <

1

i

where φλ = max{ λ
λ−1 ,

1
(1−δ)p}.

From law of big-number, the right hand side is
approximately between n

λi and n
i . The left hand

side (1) is however more complicated due to the
variables therein are dependent. The idea is to
use Markov inequality to get concentration result
and its second moment can be bounded above.

Proposition .

E
[
S2
i−1
]
≤ 2δ

1− δ
E [Si−1] +

(
log(i− 1)

1− δ

)2

where Si−1 denotes the sum of first i− 1 states in our
model Markov procedure.
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