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Problem
The stability number α(G) of a graph G = (V,E) is the largest car-
dinality of a stable set in G. Computing α(G) is a central problem in
combinatorial optimization, well-known to be NP-hard [Karp, 1972].

Figure 1: α = 3
ϑ-rank(G) = 0
G acritical

Figure 2: α = 2
ϑ-rank(G) = 1
G critical

Figure 3: α = 3
ϑ-rank(G) = 2
G critical.

A starting point to define hierarchies of approximations for the stabil-
ity number is the following formulation by Motzkin and Straus [1965],
which expresses α(G) via quadratic optimization over the standard
simplex ∆n = {x ∈ Rn : x ≥ 0,

∑n
i=1 xi = 1}:

1

α(G)
= min{xT (AG + I)x : x ∈ ∆n}, (M-S)

where AG is the adjacency matrix of G.

Based on (M-S), de Klerk and Pasechnik in [2] proposed the coposi-
tive reformulation:

α(G) = min{t : t(I + AG)− J ∈ COPn},

where COPn = {M ∈ Sn : xTMx ≥ 0 ∀x ∈ Rn+} is the copositive
cone. Parrilo [1] introduced the cones:

K(r)
n =

{
M ∈ Sn :

( n∑
i=1

x2
i

)r
(x◦2)TMx◦2 is a sum of squares

}
.

Notice thatK(r)
n ⊆ COPn for any r ≥ 0. Here, x◦2 = (x2

1, x
2
2, . . . , x

2
n).

De Klerk and Pasechnik [2] used these cones to define the following
parameters:

ϑ(r)(G) = min{t : t(I + AG)− J ∈ K(r)
n },

Some known results about this hierarchy are the following:

• α(G) ≤ ϑ(r+1)(G) ≤ ϑ(r)(G).

• ϑ(r)(G)→ α(G) as r →∞.
• ϑ(0) = ϑ′(G). Here, ϑ′(G) is the stengthening of the Lovász

theta number (with nonnegativity).

• ϑ(r)(G) < α(G) + 1 for r ≥ α(G)2 (see [2]).

• ϑ(α(G)−1)(G) = α(G) for every graph with α(G) ≤ 8 (see [3]).

Conjecture 1 (De Klerk and Pasechnik, 2002). For any graph G
we have: ϑ(α(G)−1)(G) = α(G).

Is it not even know whether finite convergence holds:

Conjecture 2 (weaker). For any graph G there exists r ∈ N such
that ϑ(r)(G) = α(G).

In other words Conjecture 2 is claiming that the polynomial( n∑
i=1

x2
i

)r
(x◦2)T

(
α(G)(AG + I)− J

)
x◦2 (1)

is a sum of squares for some r ∈ N, while Conjecture 1 is claiming
the same result for r = α(G)−1. Define the ϑ-rank(G) as the smallest
r for which the polynomial (1) is sum of squares or, equivalently, the
smallest r for which ϑ(r)(G) = α(G).

Example 1
If χ(G) = α(G) (that is, V is covered by α(G) cliques), then
ϑ-rank(G) = 0.

Example 2
Let G = C5 be the 5-cycle and let M = 2(AG + I)− J . then
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Hence, it is a sum of squares. It shows that ϑ-rank(C5) ≤ 1.

Role of Critical Edges
An edge e of a graph G is critical if α(G \ e) = α(G) + 1. We say that
G is critical if all its edges are critical and acritical if it does not have
critical edges.

Figure 4: The
Petersen graph

is acritical

Figure 5: C4 is
acritical

Every odd cycle is critical while
every even cycle is acritical.

• It suffices to prove Conjectures 1 and 2 for critical graphs.

• For any acritical graph with α ≤ 8 we have ϑ(α−2)(G) = α(G).

• The problem of deciding whether ϑ(0)(G) = α(G) can be re-
duced in polynomial time to the same problem for acritical
graphs (for fixed α(G)).

• We can characterize the set of critical graphs with ϑ-rank = 0:

Theorem 1. Let G be a critical graph. Then ϑ-rank(G) = 0 (i.e,
ϑ(0)(G) = α(G)) if and only if G is the disjoint union of cliques.

Minimizers of (M-S)
Critical edges also play a crucial role in the analysis of the minimizers
of (M-S)

Theorem 2. Let x be feasible for (M-S) with support S := {i : xi >
0}, and C1, C2, . . . , Ck the connected components of the graph
G[S]. Then x is an optimal solution of (M-S) if and only if the
following holds:

• k = α(G),

•Ci is a clique of critical edges of G for all i ∈ [k],

•
∑
j∈Ci

xj = 1
α(G)

for all i ∈ [k].

Example 3
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Every optimal solution of problem (M-S)
associated to C5 has the following form (up
to symmetry)

x1 =
1

2
, x3 + x4 =

1

2
and x2 = x5 = 0.

Example 4
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The only two optimal solutions of problem
(M-S) associated to C6 are

x1 = x3 = x5 =
1

3
, x2 = x4 = x6 = 0 and

x1 = x3 = x5 = 0 , x2 = x4 = x6 =
1

3
.

Corollary 2.1. Problem (M-S) has finitely many optimal solutions
if and only if G has no critical edges.

• The property of having finitely many minimizers is very helpful in
the convergence analysis.

• We can perturb the Motzkin Strauss formulation such that it has
finitely many minimizers:

1

α(G)
= min{xT (Ac + AG + I)x : x ∈ ∆n}, (M-S-perturbed)

whereAc is the adjacency matrix by just considering the critical edges.

Theorem 3. If there is a polynomial-time algorithm for deciding
whether a standard quadratic program has finitely global minimiz-
ers, then P=NP.

Main Result

If G is acritical then we can prove Conjecture 2.

Theorem 4. Let G be an acritical graph, then there exists r ∈ N
such that ϑ(r)(G) = α(G).

Sketch of the Proof
We consider the Lasserre sum of squares hierarchy applied to problem
(M-S). Let fG(x) = xT (AG + I)x and

f
(r)
G = supλ s.t fG − λ = σ0 +

n∑
i=1

xiσi +
( n∑
i=1

xi − 1
)
q(x),

where σ0, σi are sum of squares, deg(σ0) ≤ 2r, deg(σi) ≤ 2r − 1.

Then f (r)
G ≤ f

(r+1)
G ≤ 1

α(G)
and f (r)

G → 1
α(G)

as r →∞.

We can link the bounds ϑ(r)(G) and f (r)
G :

For any integer r ≥ 0 we have

α(G) ≤ ϑ(2r)(G) ≤ 1

f
(r)
G

.

1) Proving finite convergence of the bounds f (r)
G implies finite conver-

gence for the bounds ϑ(r).

2) The classical sufficient optimality condition for nonlinear program-
ming are satisfied at every global minimizer of (M-S) when G is
acritical.

3) Using a real algebraic result of Marshall and Nie we conclude finite
convergence of both hierarchies for the class of acritical graphs.

Comments and Open Questions
• The fact of having finitely many minimizers is necessary for satis-

fying the optimality conditions in 2).

• We can consider the hierarchy ϑ̃(r)(G) derived by starting with the
formulation (M-S-perturbed) instead of (M-S). The difference is
that now we always have finitely many minimizers.

Theorem 5. For any graph G there exists r ∈ N such that
ϑ̃(r)(G) = α(G).

Question 1. Is it true that ϑ̃(r)(G) = ϑ(r)(G) for all r ∈ N?

So far we know that it is true for r = 0.
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