Sum of Squares Hierarchies for the Stability Number of a Graph

Luis Felipe Vargas*
CWI, Amsterdam

luis.vargas@cwi.nl

Problem

The stability number $\alpha(G)$ of a graph $G=(V, E)$ is the largest car dinality of a stable set in G. Computing $\alpha(G)$ is a central problem in combinatorial optimization, well-known to be NP-hard [Karp, 1972].

$\vartheta-\operatorname{rank}(G)=1$
starting point to define hierarchies of approximations for the stabil ity number is the following formulation by Motzkin and Straus [1965], which expresses $\alpha(G)$ via quadratic optimization over the standard simplex $\Delta_{n}=\left\{x \in \mathbb{R}^{n}: x \geq 0, \sum_{i=1}^{n} x_{i}=1\right\}$:

$$
\frac{1}{\alpha(G)}=\min \left\{x^{T}\left(A_{G}+I\right) x: x \in \Delta_{n}\right\}
$$

(M-S)
where A_{G} is the adjacency matrix of G.

Based on (M-S), de Klerk and Pasechnik in [2] proposed the copositive reformulation

$$
\alpha(G)=\min \left\{t: t\left(I+A_{G}\right)-J \in \mathrm{COP}_{n}\right\}
$$

where $\operatorname{COP}_{n}=\left\{M \in \mathcal{S}^{n}: x^{T} M x \geq 0 \forall x \in \mathbb{R}_{+}^{n}\right\}$ is the copositive cone. Parrilo [1] introduced the cones:
$\mathcal{K}_{n}^{(r)}=\left\{M \in \mathcal{S}^{n}:\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{r}\left(x^{o r}\right)^{T} M x^{0^{2}}\right.$ is a sum of squares $\}$.
Notice that $\mathcal{K}_{n}^{(r)} \subseteq \mathrm{COP}_{n}$ for any $r \geq 0$. Here, $x^{\circ 2}=\left(x_{1}^{2}, x_{2}^{2}, \ldots, x_{n}^{2}\right)$ De Klerk and Pasechnik [2] used these cones to define the following parameters:

$\vartheta^{(r)}(G)=\min \left\{t: t\left(I+A_{G}\right)-J \in \mathcal{K}_{n}^{(r)}\right\}$,

Some known results about this hierarchy are the following:

- $\alpha(G) \leq \vartheta^{(r+1)}(G) \leq \vartheta^{(r)}(G)$.
- $\vartheta^{(r)}(G) \rightarrow \alpha(G)$ as $r \rightarrow \infty$.
- $\vartheta^{(0)}=\vartheta^{\prime}(G)$. Here, $\vartheta^{\prime}(G)$ is the stengthening of the Lovász theta number (with nonnegativity).
- $\vartheta^{(r)}(G)<\alpha(G)+1$ for $r \geq \alpha(G)^{2}$ (see [2]).
- $\vartheta^{(\alpha(G)-1)}(G)=\alpha(G)$ for every graph with $\alpha(G) \leq 8$ (see [3]).

$$
\begin{equation*}
\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{r}\left(x^{\circ 2}\right)^{T}\left(\alpha(G)\left(A_{G}+I\right)-J\right) x^{\circ 2} \tag{1}
\end{equation*}
$$

is a sum of squares for some $r \in \mathbb{N}$, while Conjecture 1 is claiming the same result for $r=\alpha(G)-1$. Define the $\vartheta-\operatorname{rank}(G)$ as the smallest r for which the polynomial (1) is sum of squares or, equivalently, the smallest r for which $\vartheta^{(r)}(G)=\alpha(G)$.

Example 1

If $\bar{\chi}(G)=\alpha(G)$ (that is, V is covered by $\alpha(G)$ cliques), then $\vartheta-\operatorname{rank}(G)=0$.

Example 2

Let $G=C_{5}$ be the 5 -cycle and let $M=2\left(A_{G}+I\right)-J$. then

$$
\begin{aligned}
& \left(\sum_{i=1}^{5} x_{i}^{2}\right)^{o c^{o 2^{T}} M x^{o 2}}=\sum_{\text {dro }} x_{1}^{2}\left(x_{5}^{2}+x_{1}^{2}+x_{2}^{2}-x_{3}^{2}-x_{i}^{2}\right)^{2} \\
& \begin{array}{l}
+4\left(x_{1}^{2} x_{2}^{2} x_{1}^{2}+x_{2}^{2} x_{2}^{2} x_{5}^{2}+x_{3}^{2} x_{4}^{2} x_{1}^{2}\right) \\
+4\left(x_{1}^{2} x x_{5}^{2} x_{2}^{2}+x_{5}^{2} x_{1}^{2} x_{3}^{2}\right) .
\end{array}
\end{aligned}
$$

Hence, it is a sum of squares. It shows that $\vartheta-\operatorname{rank}\left(C_{5}\right) \leq 1$.

Monique Laurent
CWI, Amsterdam, and Tilburg University

monique.laurent@cwi.nl

Role of Critical Edges

An edge e of a graph G is critical if $\alpha(G \backslash e)=\alpha(G)+1$. We say that G is critical if all its edges are critical and acritical if it does not have critical edges.

Figure 4: The Petersen graph
is acritical

Every odd cycle is critical while every even cycle is acritical.

- It suffices to prove Conjectures 1 and 2 for critical graphs.

- For any acritical graph with $\alpha \leq 8$ we have $\vartheta^{(\alpha-2)}(G)=\alpha(G)$.
- The problem of deciding whether $\vartheta^{(0)}(G)=\alpha(G)$ can be reduced in polynomial time to the same problem for acritical graphs (for fixed $\alpha(G)$).
- We can characterize the set of critical graphs with ϑ-rank $=0$:

Theorem 1. Let G be a critical graph. Then $\vartheta-\operatorname{rank}(G)=0$ (i.e,

 $\vartheta^{(0)}(G)=\alpha(G)$) if and only if G is the disjoint union of cliques.
Minimizers of (M-S)

Critical edges also play a crucial role in the analysis of the minimizers of (M-S)

Theorem 2. Let x be feasible for ($M-S$) with support $S:=\left\{i: x_{i}>\right.$ $0\}$, and $C_{1}, C_{2}, \ldots, C_{k}$ the connected components of the graph $G[S]$. Then x is an optimal solution of $(M-S)$ if and only if the following holds:

- $k=\alpha(G)$,
- C_{i} is a clique of critical edges of G for all $i \in[k]$,
- $\sum_{j \in C_{i}} x_{j}=\frac{1}{\alpha(G)}$ for all $i \in[k]$.

Example 3

Every optimal solution of problem (M-S) associated to C_{5} has the following form (up to symmetry)

$$
x_{1}=\frac{1}{2}, x_{3}+x_{4}=\frac{1}{2} \text { and } x_{2}=x_{5}=0 .
$$

Example 4
The only two optimal solutions of problem
 (M-S) associated to C_{6} are

$$
\begin{gathered}
x_{1}=x_{3}=x_{5}=\frac{1}{3}, x_{2}=x_{4}=x_{6}=0 \text { and } \\
x_{1}=x_{3}=x_{5}=0, x_{2}=x_{4}=x_{6}=\frac{1}{3}
\end{gathered}
$$

Corollary 2.1. Problem (M-S) has finitely many optimal solutions if and only if G has no critical edges.

- The property of having finitely many minimizers is very helpful in the convergence analysis.
- We can perturb the Motzkin Strauss formulation such that it has finitely many minimizers:

$$
\frac{1}{\alpha(G)}=\min \left\{x^{T}\left(A_{c}+A_{G}+I\right) x: x \in \Delta_{n}\right\}, \quad(\text { M-S-perturbed })
$$

where A_{c} is the adjacency matrix by just considering the critical edges.

[^0]
Main Result

If G is acritical then we can prove Conjecture 2
Theorem 4. Let G be an acritical graph, then there exists $r \in \mathbb{N}$ such that $\vartheta^{(r)}(G)=\alpha(G)$.

Sketch of the Proof

We consider the Lasserre sum of squares hierarchy applied to problem $(\mathrm{M}-\mathrm{S})$. Let $f_{G}(x)=x^{T}\left(A_{G}+I\right) x$ and

$$
f_{G}^{(r)}=\sup \lambda \text { s.t } f_{G}-\lambda=\sigma_{0}+\sum_{i=1}^{n} x_{i} \sigma_{i}+\left(\sum_{i=1}^{n} x_{i}-1\right) q(x),
$$

where σ_{0}, σ_{i} are sum of squares, $\operatorname{deg}\left(\sigma_{0}\right) \leq 2 r, \operatorname{deg}\left(\sigma_{i}\right) \leq 2 r-1$.

Then $f_{G}^{(r)} \leq f_{G}^{(r+1)} \leq \frac{1}{\alpha(G)}$ and $f_{G}^{(r)} \rightarrow \frac{1}{\alpha(G)}$ as $r \rightarrow \infty$.
We can link the bounds $\vartheta^{(r)}(G)$ and $f_{G}^{(r)}$:

$$
\text { For any integer } r \geq 0 \text { we have }
$$

$$
\alpha(G) \leq \vartheta^{(2 r)}(G) \leq \frac{1}{f_{G}^{(r)}}
$$

1) Proving finite convergence of the bounds $f_{G}^{(r)}$ implies finite convergence for the bounds $\vartheta^{(r)}$.
2) The classical sufficient optimality condition for nonlinear programming are satisfied at every global minimizer of (M-S) when G is acritical.
3) Using a real algebraic result of Marshall and Nie we conclude finite convergence of both hierarchies for the class of acritical graphs.

Comments and Open Questions

- The fact of having finitely many minimizers is necessary for satisfying the optimality conditions in 2).
- We can consider the hierarchy $\tilde{\vartheta}^{(r)}(G)$ derived by starting with the formulation (M-S-perturbed) instead of (M-S). The difference is that now we always have finitely many minimizers.

Theorem 5. For any graph G there exists $r \in \mathbb{N}$ such that $\tilde{\vartheta}^{(r)}(G)=\alpha(G)$.

Question 1. Is it true that $\tilde{\vartheta}^{(r)}(G)=\vartheta^{(r)}(G)$ for all $r \in \mathbb{N}$?
So far we know that it is true for $r=0$.

References

[1] P.A. Parrilo. Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization. PhD thesis, California Institute of Technology, 2000.
[2] E. de Klerk and D. Pasechnik. Approximation of the stability number of a graph via copositive programming. SIAM Journal on Optimization, 12:875-892, 2002.
[3] N. Gvozdenović and M. Laurent. Semidefinite bounds for the stability number of a graph via sums of squares of polynomials. Mathematical Programming, 110:145-173, 2007.
[4] M. Laurent and L.F. Vargas. Finite convergence of sum-of-squares hierarchies for the stability number of a graph. https://arxiv.org/abs/2103.01574.

[^0]: Theorem 3. If there is a polynomial-time algorithm for deciding whether a standard quadratic program has finitely global minimizers, then $P=N P$.

