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ABSTRACT

Unsupervised pixel-level defective region segmentation is an important task in image-based anomaly
detection for various industrial applications. The state-of-the-art methods have their own advantages
and limitations: matrix-decomposition-based methods are robust to noise, but lack complex back-
ground image modeling capability; representation-based methods are good at defective region local-
ization, but lack accuracy in defective region shape contour extraction; reconstruction-based methods
detected defective region match well with the ground truth defective region shape contour, but are
noisy. To combine the best of both worlds, we present an unsupervised Patch AutoEncoder-based
Deep Image Decomposition (PAEDID) method for defective region segmentation. In the training
stage, we learn the common background as a deep image prior by a patch autoencoder network. In
the inference stage, we formulate anomaly detection as an image decomposition problem with the
deep image prior and sparsity regularizations. By adopting the proposed approach, the defective
regions in the image can be accurately extracted in an unsupervised fashion. We demonstrate the
effectiveness of the PAEDID method in simulation studies and an industrial dataset in the case study.

ARTICLE HISTORY
Received 27 March 2022
Accepted 12 December 2022

KEYWORDS

Image-based anomaly
detection; pixel-level
defective region
segmentation; unsupervised
learning

1. Introduction
1.1. Motivation

Image-based anomaly detection is an important task in vari-
ous industrial and medical applications (Yan et al., 2017). It
can be subdivided into the following two categories: (i) from
a supervision point of view: supervised and unsupervised
anomaly detection. (Pang et al., 2021); (ii) from a task point
of view: instance-level (i.e., identify anomaly samples (Gong
et al, 2019)), localization-level (i.e., localize the defect
(Bergmann et al., 2020; Wang, Han, Ding and Huang, 2021;
Wang, Wu, Cui and Shen, 2021)), and pixel-level (ie.,
extract pixel-wise defect contour (Minaee et al., 2015; Yan
et al., 2017; Zhou and Paffenroth, 2017; Mou et al., 2021)).
Supervised anomaly detection methods require sufficient
labeled training samples, such as instance-level labels for
identifying anomaly samples, localization-level labels for
object detection (Liu et al., 2020), or pixel-level labeled
images for segmentation (Minaee et al, 2021), which are
expensive and time-consuming to collect in manufacturing
processes. Notice that, instance-level anomaly detection can
be seen as a binary classification task, where the class activa-
tion map from the classifier can provide a rough defective
region localization mask even without localization-level
labels (Minaee et al., 2021).

Unsupervised image-based anomaly detection has gained
popularity in various manufacturing processes, as it avoids

the labeling process (Yan et al, 2017). Among all those
tasks, unsupervised pixel-level defective region segmentation
can provide fine-scale defect information such as defect
shape contour, aspect ratio, and so on. That information is
important for reducing the false alarm rate for defect type
classification, accurate annotation, and so on. It is also one
of the most challenging tasks, as the defect detail needs to
be inferred from the image data in an unsupervised fashion.

1.2. Literature review

Multiple methods have been proposed for unsupervised
defective region segmentation, including matrix-decompos-
ition-based and deep-learning-based methods. Among them,
deep-learning-based methods can be further categorized as
deep-representation-based and deep-reconstruction-based
methods (Yu et al,, 2021). A detailed review of these meth-
ods is introduced as follows.

1.2.1. Matrix-decomposition-based methods

To achieve accurate unsupervised defective region segmenta-
tion, one feasible solution is to use matrix-decomposition-
based methods (Candes et al., 2011; Peng et al, 2012; Xu
et al., 2012; Mardani et al, 2013; Minaee et al., 2015; Yan
et al., 2017, 2018; Mou et al., 2021; Mou and Shi, 2022). In
these methods, statistical priors (i.e., smoothness, low-rank
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of the background, and sparsity, basis representation of the
anomalies) are incorporated as regularization terms in an
optimization problem to achieve the background restoration
and defective region segmentation. An advantage of the
matrix-decomposition-based method is its robustness, with
respect to an anomalous region, when restoring the back-
ground from the test image.

The commonly used matrix decomposition methods include:

1. Robust Principal Component Analysis (RPCA) type of
algorithms (Candes et al., 2011; Peng et al., 2012; Xu
et al., 2012; Mardani et al., 2013), which decompose a
data matrix into a low-rank matrix of backgrounds and
a sparse matrix of anomalies.

2. Smooth Sparse Decomposition (SSD) type of algorithms
(Minaee et al., 2015; Yan et al., 2017, 2018; Mou et al.,
2021; Mou and Shi, 2022), which decompose an image
into a smooth background and the sparse anomalies.

RPCA was first proposed by Candes et al. (2011) as a modi-
fication of PCA (Hastie et al., 2009) to enhance its robustness
for grossly corrupted observations. Since then, it has been
widely used in video surveillance applications, where the data
matrix is assembled from vectorized images with a stationary
(or slowly varying) background and a sparse foreground
(Bouwmans and Zahzah, 2014). Outlier Pursuit (Xu et al.,
2012) aims to decompose the data matrix into low-rank and
column-wise sparse components, which can be used for
image-level anomaly detection. The low-rank assumption
requires perfect alignment across multiple images, which is
seldom satisfied in real-world applications. To address the lin-
ear misalignment issue, Peng et al. (2012) generalized the
RPCA method to RASL by conducting linear alignment and
decomposition at the same time. SSD was first proposed for
anomaly detection in images with a smooth background and
sparse anomalies (Yan et al., 2017) and then generalized to
spatiotemporal data (Yan et al., 2018). Mou et al. (2021) gen-
eralized matrix decomposition methods to the Additive
Tensor Decomposition framework, which can deal with
images with smoothness, low-rank, or piecewise constancy
properties.

Matrix-decomposition-based methods have been successful
applied to areas such as indentation region extraction on a sili-
con surface (Yan et al., 2017), calcification region extraction
from medical images (Mou et al, 2021), defective region
extraction in misaligned images (Peng et al., 2012). However,
statistical priors are less capable of modeling complex back-
grounds that do not have smooth or low-rank properties,
which is common in manufacturing applications. For
example, Figure 1 shows the images of cross-sections of a
wood structure without defects. Inside the same image, it has
a unique structure that cannot be described with any domain
regularization type of priors. Across multiple images, there are
similar structures, but the matrix composed of vectorized
images is not low-rank, even after alignment. This special, but
common, structure in a manufacturing process raises chal-
lenges for state-of-the-art matrix-decomposition-based anom-
aly detection algorithms.
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Figure 1. Normal images with complex backgrounds from BTAD dataset
(Mishra et al., 2021).

1.2.2. Deep-reconstruction-based methods

Recently, deep-learning-based methods have received more
and more attention in application to unsupervised anomaly
detection, due to their superior modeling capability in com-
plex images. Deep-reconstruction-based methods usually
reconstruct the normal background of an input anomalous
image from a learned subspace and assume such a subspace
does not generalize to anomalies to ensure its robustness.
Then the reconstruction residual is used for extracting a
defective region segmentation map. The commonly used
methods in learning the low-dimensional space and distribu-
tion of normal images are AutoEncoders (AEs) (Zhou and
Paffenroth, 2017; Bergmann et al., 2018; Gong et al., 2019)
and Generative Adversarial Networks (GANs) (Schlegl et al.,
2017; Zenati et al., 2018; Schlegl et al., 2019), respectively.
For example, Bergmann et al. (2018) trained a structural
similarity loss-based AE (SSIM-AE) for defective region seg-
mentation. Schlegl et al. (2017) trained a GAN on normal
images and used the pixel-wise reconstruction error for the
localization of anomalous regions. Such a learned subspace
can serve as a prior to model various backgrounds.
However, a common challenge of those methods lies in bal-
ancing the generalization capability and modeling capability:
a subspace that achieves a satisfactory reconstruction of nor-
mal regions of the input image also “generalizes” so well
that it can always reconstruct the abnormal inputs as well
(Gong et al., 2019). This usually leads to either a noisy
residual map (segmentation mask), due to the lack of back-
ground reconstruction capability, or missing detection of
anomalous pixels, due to the overfitting of the reconstructed
image towards the anomalous input. Several methods have
been proposed (Zhou and Paffenroth, 2017; Gong et al,
2019) to restrict such generalization capability.

Recently, methods based on AE variations are also used
for anomaly detection, including Variational AEs (VAEs)
(An and Cho, 2015) and AE trained with adversarial loss
(Akcay et al., 2018). VAE has a poor performance even in a
relatively unchallenging dataset (Akcay et al, 2018).
Moreover, the image reconstructed from a VAE tends to be
blurry (Zhao et al., 2017), which hinders its application in
pixel-wise anomaly detection, since any mismatch between



the restored image and the input image will be counted
towards the anomaly score. GANomaly (Akcay et al., 2018)
adopts an AE architecture comprising of a adversarial train-
ing module for anomaly detection. However, a pixel-wise
accurate background reconstruction, which is necessary for a
good performance in pixel-wise anomaly detection, is still
challenging for most of those methods.

Another closely related field is the open-set semantic seg-
mentation (Cen et al, 2021), which aims to identify out-of-
distribution pixels among all pixels in one image. It is an
important task in autonomous driving applications. When
there is only one class of in-distribution objects, i.e., the
normal background, open-set semantic segmentation is also
called anomaly segmentation. Therefore, it shares similar
approaches with pixel-wise anomaly detection methods
reviewed thereof, including AE-based methods (Creusot and
Munawar, 2015; Baur et al., 2018) and GAN-based methods
(Lis et al., 2019; Bevandi¢ et al., 2022).

1.2.3. Deep-representation-based methods

Deep representation-based methods learn the discriminate
embeddings of normal images from a clean training set and
achieve anomaly detection by comparing the embedding of a
test image and the distribution of the normal image embed-
ding (Defard et al., 2021; Roth et al., 2021; Wang, Han, Ding
and Huang, 2021; Gudovskiy et al., 2022). These methods usu-
ally use pre-trained feature extractors (Roth et al., 2021) on
large-scale natural image datasets (i.e., ImageNet (Deng et al.,
2009)) and have the advantage when the training samples are
limited. However, modern manufacturing processes usually
are data-rich environments (even though label-rare) where
collecting training samples is not difficult. Although pre-
trained feature extractors are good at localizing the defective
region, they lack the capacity to generate pixel-level accurate
masks or contours. For example, Roth et al. (2021) proposed
the PatchCore method to directly use the output of the first
several layers of the ImageNet pre-trained network on normal
images to extract features to form a memory bank. For any
test image, the anomaly score for localization of the defective
region can be calculated for each patch by comparing the fea-
tures with the features in the memory bank. In this method, a
patch refers to a set of nearby image pixels, which will be
explained in detail in Section 2.1.2. Despite the locally aware
property of the PatchCore approach, it loses resolution for
accurate defective region segmentation.

Figure 2 (a-c) shows the results of multiple state-of-the-
art representation-based methods in an example anomaly
image of the MVTec (Bergmann et al., 2019) dataset. Even
though all the methods can highlight pixels that are in the
general vicinity of the defective region, their outputs cannot
provide a precise contour around the defect. Therefore,
there is a research gap in generating pixel-accurate defective
region segmentation masks.

In summary, matrix-decomposition-based methods with
statistical priors admit robustness, but lack complex back-
ground image modeling capability. The learned subspace
from reconstruction-based methods can serve as a prior to
model various backgrounds, but can potentially overfit the
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defective regions. Representation-based methods are good at
defective region localization, but lack accuracy in extracting
the shape contour of the defective region. Therefore, a
method that combines the best of both worlds would be
ideal.

1.3. Proposed method and contributions

In this article, we propose a Patch Autoencoder-based Deep
Image Decomposition (PAEDID) framework (Figure 3) that
adapts to the data-rich, but label-rare, manufacturing environ-
ment. To fully utilize the information in the rich normal data
to enhance the background modeling capability, the normal
background is modeled as a deep prior learned from normal
images. Moreover, a local patch-based AE is proposed to
restrict the generalizability of the deep neural net and better
localize the defective region, while maintaining its capability
of modeling complex image distributions. Then, a penalized
optimization problem is solved to decompose the image into the
background and defective region. Intuitively, the proposed
PAEDID method inherits the robustness from matrix decompos-
ition methods, and the learned prior through deep-reconstruc-
tion-based methods enables handling complex backgrounds
beyond traditional statistical priors.
Our contributions can be summarized in three aspects:

1. We propose a novel deep image decomposition frame-
work for unsupervised pixel-level defective region seg-
mentation framework that outperforms existing methods
in terms of defective region segmentation. The frame-
work does not require pixel-wise labeled training samples,
which is suitable for defective region segmentation tasks
in data-rich, but label-rare. manufacturing processes.

2. The proposed method integrates the modeling capability
of reconstruction-based methods in complex back-
grounds and the robustness and data efficiency of matrix
decomposition in defective region modeling.

3. Our framework is general and extendable. The deep
image prior can be replaced with various generative
models (e.g., GANs and AE variants) depending on the
tasks and we leave that for future work.

The remainder of this article is organized as follows. The
PAEDID framework is presented in Section 2. Section 3
presents several simulation studies based on the PAEDID
framework. In Section 4, a case study on its application to
defective region segmentation in solar cells is utilized to dem-
onstrate the effectiveness of the proposed framework. Section
5 presents our conclusions.

2. PAEDID

In this section, we will introduce the proposed PAEDID
method. As shown in Figure 3, we propose a two-step method.
First, a patch-based AE is trained on a set of clean images to
construct a memory bank of latent representations of normal
images. Then, the abnormal patches with the top o percentage
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Image Ground Truth

(a) One sample image and the ground truth defective region mask

Predicted Heat Map Predicted Mask Predicted Heat Map Predicted Mask

(b) CFlow (Gudovskiy et al. 2022) (¢) PatchCore (Roth et al. 2021)

Predicted Heat Map Predicted Mask Predicted heatmap Predicted mask

(d) STFPM (Wang,Han,Ding and (e) SSIM AE (Bergmann et al., 2018)
Huang, 2021)

Figure 2. Sample defective region segmentation results: (a) one sample image and ground truth defective region mask; (b-d) results of three state-of-the-art meth-
ods (Akcay et al., 2022); (e) result of an SSIM AE (Bergmann et al., 2018).
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Figure 3. Overview of the proposed PAEDID framework.

anomaly score in the latent representation of a test image are
replaced by the corresponding normal patches in the memory
bank. Next, the updated latent representation is used to recon-
struct the deep image prior that describes the corresponding
normal background. Finally, an optimization problem with
the deep image prior and sparsity regularizations is formu-
lated to decompose the test image into the normal background
and defective region. The main assumption of the proposed
method is that we have a relatively large training set that

covers all possible variations of clean images. In the rest of this
section, we first discuss how to learn the distribution of nor-
mal images, and then introduce the way to extract anomalies
from a test image in the inference stage.

2.1. Learning normal image distribution using AEs

This section corresponds to the training stage in Figure 3.
The training stage includes the training of an AE network



and the building of a memory bank consisting of latent rep-
resentations of training images.

2.1.1. A brief introduction to AEs

AEs are widely used as an unsupervised nonlinear dimen-
sional reduction tool in the context of deep learning
(Hinton and Salakhutdinov, 2006). An AE consists of two
components, an encoder network E,, (-), and a decoder net-
work D, (-), where w; and w, are the parameters of the
encoder (w;) and decoder (w,). The encoder learns a map-
ping from the high-dimensional input space to a low-dimen-
sional latent space; the decoder learns to reconstruct the
input from its latent representation. Given d; X d, normal
images with d; channels, ie., X = {X;,...,X,} where X; €
Réxd:xds  the AE learns the parameters w; and w, simultan-
eously by solving the following optimization problem:

miny,, w, 2?21 ”VeC(Xi — Dy, (EW1 (Xl))) H; 1)

where vec(-) is vectorization.

2.1.2. Patch-based AEs

As mentioned in Section 1, sometimes the trained AEs gen-
eralize so well such that they can reconstruct the defective
regions well, which significantly restricts their application in
accurate defective region segmentation applications. To
model such a complex background in a manufacturing pro-
cess (e.g., Figure 1), the latent space of an AE has to be
large. In this case, inevitable generalization to the defective
region could occur. For example, Figure 4 compares two
AEs with different capability and their generalization behav-
iors on the same set of images. Figure 4(a) shows an AE
with a small latent space, which does not generalize to
defective regions, but cannot model image detail. On the
contrary, an AE with a large latent space (Figure 4(b)) will
perform better in the detailed modeling while generalizing
well to defective regions. Therefore, it is essential to restrict
the generalization capability of AE while at the same time
maintaining sufficient modeling capacity. To achieve this
goal, we adopt a patch-based AE which consists of three
components: encoder, decoder, and a patch-based memory
bank. Notice that the patch-based method has been utilized
in various representation-based methods, such as PatchCore
(Roth et al.,, 2021). However, those methods mainly focus

(a)8x8x128 (b)32x32x128

Figure 4. Modeling and generalization performance of AEs with different latent
space sizes.
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on anomaly detection in a patch-based latent space, where
the memory bank is used as a standard normal set for com-
parison. Even though similar concepts are utilized, we aim
for a totally different goal that leads to different design char-
acteristics. The patch-based AE is used to produce a deep
image prior for the background, with great detail. Therefore,
we prefer an AE model with a relatively large latent space
that tends to overfit a normal image, and the memory bank
here is utilized to restrict its generalization capability to
unseen defects. The detail of the patch-based AE will be
introduced in the following discussion.

Encoder and decoder. The convolutional encoder and
decoder are used to capture local information inside each
image. Different from a vanilla AE, a relatively large latent
space is adopted purposely to ensure its detailed modeling
capability.

Let M; = E(X;) be the feature map of input image X;.
Notice that M; € RP*>*P*P i an order-3 tensor of height
Py, width P,, and depth P;. M;(p1,ps, :) is a P3-dimen-
sional vector representing the local feature at spatial location
p1 €{1,..., P} and p, € {1,...,P,}, which is a feature map
corresponding to a specific patch of the original image, as
shown in the following Figure 5. Since each encoded latent
vector corresponds to an image patch, the latent space
thereof is named as a patch-based latent space, and the
memory bank containing the encoded latent vector is named
as the patch-based memory bank.

The receptive field size of the convolutional filter deter-
mines the local feature’s representation area. It should be
determined according to the local variation size of specific
applications. Ideally, a balance between the receptive field
size and the network depth should be considered, such that
the receptive field is large enough to account for local varia-
tions in the image while maintaining the modeling power.

The decoder has a similar structure to that of the encoder
network, but with reverse-ordered layers to reconstruct the
input image. The encoder and decoder network are trained on
a set of clean training images with the same loss function (1).

2.1.3. Memory bank of patch features

After the encoder and decoder networks are trained, two
memory banks are constructed:

1. The raw memory bank, M,,,, € RP>*PF2xPs “ywhich con-
sist of the latent representations of each patch from all I
training images, ie., M, = {Mi, ..., M;} where M; is
the latent representation of the ith training image.

..................... =
""" _<l°>
Image 8 __________
patch e
,,,,,,,,,,,,,,,,,,,,,,,, i

Figure 5. Definition of image patches.
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2. The aggregated memory bank of aggregation length I,
Moge1 € RIXP1xPyxPs (2 |1]+1)° i

aggregated latent representations of each patch from all

which consists of the

training images (Roth et al, 2021), Mg =
Mgge 1 -sMyge 1 p- The aggregation process is as fol-

lows: For the (pi,p,)th patch inside the ith training
image, we collect the neighboring |I/2] latent represen-
tations centered at the (P1>p2) th location, i.e.,

VPR o A P
ST R

Intuitively, aggregating neighboring latent representations
enlarges the reception field size and will improve the robust-
ness for addressing the memory. We will discuss the usage
of the aggregated memory bank in the following section.

We further metricize the raw memory bank (and the aggre-
gated memory bank)

Mmut c RIP[PZ XP3

raw

and
Mt ¢ R (1)),

such that each row corresponds to one patch latent repre-
sentation (one aggregated patch latent representation).

To further reduce the size of the memory bank, a coreset
subsampling (Roth et al, 2021) step can be adopted. The
algorithm can be found in Appendix C. Notice that the
memory bank can be updated in an online fashion along
with the manufacturing process.

2.2. Deep image decomposition

This section corresponds to the testing stage in Figure 3. The test-
ing stage includes memory addressing and image decomposition.

2.2.1. Memory addressing

For any test image X, a query feature map M = E(X) and the
aggregated feature map M age,1 18 generated. Notice that E(-) is
a pre-trained Encoder on a training set of normal images and
M agg, 1 is generated through the pre-trained Encoder. Then, for
the (p1,p2) th patch latent representation, M(pl,pz, ), a
search for the closest patch latent representation in the mem-
ory bank is performed. Motivated by Roth et al. (2021), we
compared the neighborhood aggregated latent representation

Magg,l(pl, P2, @), with the aggregated latent representations in
the aggregated memory bank ./\/lZ’g‘g ;» using the following dis-
tance measure:

<M 1> M2>

dM;, M) = ——— =
(M M) = LTl

where M; and M, are two latent representations to be compared.
The neighborhood aggregated representation incorporates latent

patches around the target patch, which can increase the reception
field. By searching for the closest patches in the memory bank,
we not only require the addressed patch to be close to the target
patch, but also require them to share a similar environment, i.e.,
similar surrounding patches. This will increase the robustness of
memory addressing, even when the query patch is corrupted by
the defects. However, if the reception field is too large, the local
information of the target patch will be diluted. Therefore, the
aggregation length [ is a parameter to be tuned according to spe-
cific applications.
Denote the distance set to be

D(Maggl(plaPZa : > an‘;tl) {d( ugglpl:pb :)>

Miee (s ) 1 j € {L,... IP1P2}}.
Denote the kth smallest element in
D(Mggg,l(pl)pz, s Z’g“g’,) to be di. Denote the index set of

the k-nearest aggregated latent representations to be

Crazt 1 (Mage (P15 P25 7)) = {f | d(Magg.1(P1> P2> 3>
Mige 10 )< di}

mat

Then, the patches from the raw memory bank M7,
corresponding to the k-nearest aggregated latent representa-
tions in Mg, are averaged to form a retrieved patch

latent representation M,(pl, D2 2) ie.,

. 1
M (prps 1) =7 > MGy ).
JECugpat i (Mags1(P1>P257))

Adopting the k-nearest aggregated latent representations
also increases the robustness of the memory address process.
However, if k is too large, the accuracy of the memory address
will decrease. Therefore, k also needs to be tuned according to
specific applications.

Meanwhile, the corresponding anomaly score s(p1,ps)
can be calculated by averaging the distances between the
neighborhood aggregated latent representation of the query
patch and the k-nearest aggregated latent representation
(Roth et al., 2021), i.e.,

> d
de D(M, M
€ age.1(P1 P25 1), Mgy
d < dy

s(prop2) = ¢

The anomaly score s(p;,p,) will have a large value if

M (P1> 2> @) cannot be approximated by any one of the feature
maps in the memory bank of the same spatial location. In
other words, s indicates the defective region, and thus, can be
used for defective region localization.

However, the anomaly score s has the same width and
height as the latent representation, which is not suitable for
accurate defective region segmentation, due to the low reso-
lution. Therefore, a reconstruction step is needed. According
to the assumption, the defective regions are sparse local
regions. Therefore, in the reconstruction step, we only
replace patches of the feature map with the top o anomalies
scores, i.e.,
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Y o M,(pl,pz, Y V(1) € A, and' Sy i's the o percentile value ‘of s. o is detgrmined by
(P1:P2> 1) = i (1P 2), otherwise engineering knowledge of the specific manufacturing process
where bE2 P ’ according to the size of the defective region.

~ 1

The reconstructed image D(#") will serve as the deep
A= {(pvp2)s(Prsp2) > sa}> image prior for the background. The algorithm of the deep
image prior retrieval is listed in Algorithm 1.

Algorithm 1 Algorithm for deep image prior retrieval

Training set X = {Xj,..., X1} of clean images; test image X and parameter o.

(1) AE network training:
Train the encoder and the decoder simultaneously by solving the following optimization problem

I
min 37 lvec(X; — Dy, (B, (X)) 3

(2) Memory bank construction
a. Construct M,,,

Mraw = {Mb --~)MI} S RIXPIXPZXPS)
where

M; = E, (X)), Vie {1,..,I}.

b. Construct Mg,

1
> Mugg,l

Mggg)l = {Ml

agg, > "

sl [ e oo 3

2
c. Matricize the raw memory bank (and the aggregated memory bank), M”% ¢ RF1F2%Ps (and M?g?l c RIPPxPs (2[1]+1) ).

raw

PE—

where

(3) Memory addressing:
For any test image X, generate a query feature map by M = E(X) as well as the aggregated feature map M aga,l-
for p, € {1,..., P} do
for p, € {1,...,P,} do

a. Calculate the distance set:

D(Magg,l(P1>P2> :)> anzo

_ {d(Magg,l(pl,pz, ), M, :)) |je {1,...,IP1P2}}

b. Find the index set of the k-nearest aggregated latent representations: C M k (Mage,1(P1 P25 2))
c. Calculate the retrieved patch latent representation for each patch of the encoded test image M = E,,, (X) :

L 1
M (p1p2> 1) =

mat /. )
JEC pmat ,k(Magg,l(PlvPZ’:>) raw > 12
agg, !
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d. Calculate the anomaly score for each patch of the encoded test image M = E,,, (X).

1
N > = - ma d.
(P15p2) kZd c D(Magg,l(pl’pZ’ :),/\/laggfl)
d < dy
end
end
(4) Feature map update and image reconstruction
for p; € {1,..., P1} do
for p, € {1,...,P,} do
~ |
~ 11 M (P1,P2) 1), V(PbPz) €A,
M ) > )= >
(P1:p2 3) { M(p1,p2, :), otherwise,

where

A = {(p1,p2)Is(p1>P2) > 54}

and s, is the o percentile value of s.
end
end

The reconstructed image can be calculated as X = p(ar").

Notice that when images are aligned, which is also com-
mon in manufacturing inspection applications, the memory
addressing algorithm can be further simplified by searching
solely for the closest patch in the memory bank of the same
spatial location.

In summary, the memory bank and memory addressing
step restrict Patch-based AE (PAE)’s generalization capabil-
ity while maintaining its modeling capability, which differ-
entiates PAE from AE.

2.2.2. Deep image decomposition

In this section, we introduce the decomposition framework.
We assume that any test image is a superimposition of: (i)
normal image (background L) from the distribution learned
by the AE; and (ii) sparse defective regions (S),i.e, X =L+ S.
Then, the defective region segmentation can be formulated as
a matrix decomposition problem with a combination of a
deep image prior for the background and sparsity regulariza-
tion for the defective regions. Given a test image X, we aim to
extract the defective regions by solving the following penalized
optimization problem:

miny, s lssim(L) + /lllspar(s) (2)
s.t.
X=L+S

where 4; is the tuning parameter encouraging the sparsity
of extracted defective regions S, i.e., a large 4; will lead to a
sparse solution of S; lg,(L) is the similarity loss, which
evaluates the closeness of decomposed background L and
the reconstructed background X by the PAE:

lssim(L) = HL - X”SSIM’

where SSIM indicates the structural similarity loss (Wang
et al., 2004); a detailed introduction of the SSIM loss can be
found in Appendix A; i, (S) denotes the sparsity penalty, i.e.,

lspur(s) = HS”]

The optimization problem (2) can be converted to an
unconstrained optimization problem

ming, ||L_X||SSIM+;”1”X_LH1’ 3)

and solved using an existing optimization solver, such as
Adam (Kingma and Ba, 2014) and its variants.

The proposed PAEDID method can be easily generalized
to a noisy setting. We incorporate the problem formulation
that explicitly considers measurement noise in Appendix B.

2.3. Performance evaluation metric

Multiple metrics in evaluating the defective region segmen-
tation performance have been used in the existing literature,
including the pixel-wise Area Under the Receiver Operator
Curve (pixel-wise AUROC score), Per-Region-Overlap
(PRO) (Bergmann et al., 2020), and the dice coefficient (Zou
et al, 2004). The authors noticed that the pixel-wise
AUROC (or PRO) may give misleading results in defective
region segmentation tasks, since those metrics are sensitive
to class imbalance, i.e., the defective region only covers a
small portion of pixels in the whole image. In this case,
even a high pixel-wise AUROC score cannot guarantee a
good pixel-level defective region segmentation performance.
Various image-based anomaly detection algorithms
(Bergmann et al., 2020; Defard et al., 2021; Roth et al., 2021;
Wang, Han, Ding and Huang, 2021; Wang, Wu, Cui and
Shen, 2021; Yu et al., 2021) have demonstrated satisfactory



performance in terms of pixel-wise AUROC score or PRO.
Figure 2 (a-c) shows the results of multiple state-of-the-art
methods on an example image of the leather defect category
of the MVTec (Bergmann et al., 2019) dataset. Those meth-
ods showed unsatisfactory defective region segmentation
results even with high pixel-wise AUROC scores. For
example, the state-of-the-art PatchCore (Roth et al., 2021)
method achieves an average pixel-wise AUROC score of
99.3% on the leather defect category of the MVTec
(Bergmann et al., 2019) dataset, but the average best dice
coefficient is 46.9%. Compared to the pixel-wise AUROC
score and PRO, the dice coefficient is commonly used in
semantic segmentation tasks, which is more reliable in eval-
uating the defective region segmentation performance.
Therefore, we use the dice coefficient which defined as

2|ANB|

Dice(A,B) = m >

where A is the predicted segmentation mask for the defective
region and B is the true segmentation mask. The dice coeffi-
cient evaluates the spatial overlap of the true segmentation
mask and the predicted mask, and a larger dice coefficient
indicates better performance of the detection algorithm.

2.4. Tuning parameter selection

In this section, we discuss the tuning parameter selection of
the proposed method.

In general, there are two sets of hyper-parameters: (i)
hyper-parameters related to AE network structure; (ii)
hyper-parameters for the memory bank, including the aggre-
gation length [ and nearest neighbor number k, and hyper-
parameters for inference o and ;. Here, we refer to Lk, o
and 4, as the tuning parameters of the proposed method.

The training of the AE network is independent of the
deep image decomposition step, where the hyper-parameters
are tuned on a training set of clean images, which follows
the standard hyper-parameter tuning procedure of AE net-
works (Bergmann et al., 2018).

Once the AE is trained, the memory bank can be estab-
lished. Then, a deep image prior X for any input image X can
be retrieved following steps (3) and (4) in Algorithm 1. The
retrieved deep image prior X is then incorporated in (3) for
image decomposition. In this procedure, tuning parameters
Ik, o, and 4; need to be specified. We present the following
parameter tuning procedure that is similar to that of Mou
et al. (2021): In phase 1, if there is validation data {X;, ..., X, }
with pixel-wise annotated anomaly {Si,...,S,} available, the
optimal tuning parameters can be determined by solving:

Lk, y,a = argming Zil I1X; — Li(Lk 2, ) — il

where L;(Lk A o) is the estimated background by solving
(3). If there is no such annotation available, Lk, . and o
should be selected empirically according to visual inspection
of the decomposition quality.
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2.5. Discussion

The proposed PAEDID method is novel and outperforms
the state-of-the-art methods, which can be justified with
the following discussions:

1. Compared with traditional matrix-decomposition-based
methods, the proposed PAEDID method can handle
images with arbitrary backgrounds, in addition to those
images following strict statistical priors. The background L
in the proposed method is not assumed to be low-rank or
smooth, but rather learned from training samples instead,
which gives more flexibility in background modeling.

2. Compared with reconstruction-based methods, the pro-
posed PAEDID method will give a cleaner detected
defective region. Instead of directly using the recon-
struction residual as a defective region indicator, which
will lead to a noisy segmentation mask, we use the
reconstructed background as a deep image prior for
image decomposition, the decomposed anomaly which
admits the sparsity property is much cleaner. We utilize
the memory bank constructed from patches of normal
images to restrict the AE’s generalization capability
while maintaining its modeling capability.

3. Compared with representation-based methods, segmenta-
tion masks obtained from the proposed PAEDID method
have a higher resolution. Instead of localizing the defective
region in the latent embedding space which will lose seg-
mentation resolution, the anomaly score is utilized to iden-
tify anomalous patches. After replacing patches with a high
anomaly score by corresponding normal ones from the
memory bank, the re-assembled latent representation is
decoded to serve as a deep image prior for the proposed
pixel-wise image decomposition algorithm. Therefore, the
detected defective region has a higher resolution.

The superior performance of the proposed PAEDID
method will be shown in the next section.

The proposed PAEDID method is
extendable.

The major contribution of the proposed method is to use
a learned prior to replace the highly restrictive statistical pri-
ors for background modeling in traditional matrix-decom-
position methods, which makes it possible for pixel-wise
sparse defective region detection in images with arbitrary
backgrounds. Notice that in the current work, the deep
image prior comes from a pre-trained AE as well as a mem-
ory bank of latent representations of normal images. Such a
deep image prior can be replaced with various generative
models. For example, the generator from a pre-trained GAN
can also serve as such prior. We leave this for future work.

general and

3. Simulation studies for performance evaluation

In this section, we use inspection images of two products of
BTAD (Mishra et al., 2021) dataset to illustrate the PAEDID
framework and demonstrate its effectiveness in defective region
segmentation. Notice that the training set size in MVTec
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(Bergmann et al., 2019) is too small and thus does not satisfy
the assumption of the proposed method. For comparison, we
also apply four representative state-of-the-art methods includ-
ing SSIM AE (Bergmann et al, 2018), MemAE (Gong et al,
2019), PatchCore (Roth et al., 2021), and Robust Alignment by
Sparse and Low-rank decomposition (RASL) (Peng et al.,
2012). Among them, SSIM AE is the state-of-the-art vanilla
AE-based benchmark method with the SSIM loss as the recon-
struction loss; MemAE restricts the generalization capability of
AE by an additional memory bank which demonstrated per-
formance improvement in anomaly detection applications.
PatchCore is the state-of-the-art representation-based anomaly
detection method, which achieves superior performance in
anomalous region localization; RASL is the state-of-the-art
matrix decomposition-based method, which can detect anoma-
lies from slightly linear misaligned backgrounds. We assume
that all input images are pre-identified defective images and
evaluate the pixel-wise anomaly detection performance of the
proposed method. The average dice coefficient (and standard
deviation) of the proposed PAEDID method over all the test
images on the test set is reported in Table 1.

3.1. Simulation study for product 1

For product 1, there are 1000 normal images of dimension
800 x 600 and we resize them into 128 x 128. A total of 900
images are randomly selected as the training dataset, in which
800 images are used as training and 100 images as the valid-
ation set to train the AE. The remaining 100 images are used
to generate images with defects. The defects are simulated as
cracks on top of the normal background, which are common
in wood products. For example, Figure 6(a) shows a simulated
anomaly image with a corresponding normal background and
generated defective region.

The encoder has a similar structure as the first several
layers of the VGG net (Simonyan and Zisserman, 2014):
Conv2D(128, 128, 64) - MaxPooling (2, 2) - ConvD2(64, 64,
128) - MaxPooling (2, 2). The decoder has the same structure,
but in reverse order. The latent space shape is 32 x 32 x 128.

After training, the memory bank is constructed by encod-
ing the training dataset, where [ =7, k =13. During test-
ing, o = 0.3.

Next, the reconstructed image is used as a deep image prior
for decomposition. In this simulation study, the tuning par-
ameter 4 = 0.00001 is chosen by cross-validation, which mini-
mizes the dice coefficient. The detected defective regions are
scaled to the range [0, 1] and then a postprocessing step of glo-
bal thresholding is applied to generate a binary defective
region mask. The same postprocessing steps are applied for all
methods to be compared. The threshold value is also chosen
by cross-validation. Figures 6 (b)-(e) shows the qualitative
result of extracted defective regions of different methods.

The reconstructed background and detected defective
region by SSIM AE (Bergmann et al, 2018) are shown in
Figure 6(b), which indicates that the extracted defective
region is not satisfactory. This is because the generalization
capability of the AE network is not restricted and will lead
to a bad performance of defective extraction (Figure 6(b)).

The performance is also evaluated quantitatively in Table 1,
where the dice coefficient is 83.9%.

The reconstructed background by MemAE (Gong et al,
2019) is shown in Figure 6(c) where the extracted defective
region is not clear. This is because MemAE restricted the gener-
alization capability of the AE network by assigning a dictionary
in the latent space, which deteriorates the modeling capability of
AE. Therefore, the normal background cannot be reconstructed
with high accuracy, and this will lead to a bad performance of
defective region extraction (Figure 6(c)). The performance is
also evaluated quantitatively in Table 1, where the dice coeffi-
cient is 66.1%. We also notice that the training process of the
MemAE is highly unstable, which may be due to training the
additional dictionary in the latent space at the same time.

The PatchCore (Roth et al, 2021) anomaly map and
detected defective region after thresholding are shown in Figure
6(d). The Patchcore method can achieve successful defective
region localization. However, it cannot capture the detailed
shape contour of the defective region. Therefore, its pixel-level
defective region segmentation performance is not satisfactory.

The extracted background by RASL (Peng et al., 2012) is
shown in Figure 6(e). Since it can only deal with single
channel image, we first convert the original images into
grayscale. The image alignment of RASL requires an inset of
the original images and we adopt the default setting where a
5-pixel inset is adopted. Therefore, the output decomposed
anomaly image is 118 x 118. The tuning parameters are
chosen by cross-validation. The extracted defective region is
shown in Figure 6(e). It fails to capture a large portion of
the real defective region, but instead brings in some noise
from the background. This is because the low-rank (or low-
rank after alignment) assumption does not apply to the
background in this application. A relatively low dice coefti-
cient of 59.1% is not surprising.

The reconstructed background by the proposed PAEDID
method is shown in Figure 6(f) which is close to the real
background. This demonstrates that the patch-based
approach can restrict the generalization capability of the AE
while maintaining its modeling capability. The defective
region extracted by the decomposition algorithm is shown
in Figure 6(f), which is close to the true defective region
mask shown in Figure 6(a). The dice coefficient of the pro-
posed PAEDID method is 98.9%.

3.2. Simulation study for product 2

We also conduct a simulation study on product 2, of which
the normal backgrounds are shown in Figure 1(b). There are
400 normal images of dimension 600 x 600 and we resize
them into 128 x 128. A total of 350 images are randomly

Table 1. Average dice coefficient (and standard deviation) for different meth-
ods in simulation studies.

Product 1 Product 2
SSIM AE 83.9% (5.1%) 81.8% (5.5%)
MemAE 66.1% (7.7%) 73.8% (11.8%)
PatchCore 22.5% (4.1%) 21.1% (3.5%)
RASL 59.1% (10.1%) 69.4% (11.2%)
PAEDID 98.9% (1.5%) 95.2% (2.8%)
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Figure 6. Comparison between the performance of SSIM AE, RASL PatchCore,
and PAEDID (a) image with defect, true background, and simulated defective
region; (b) image with defect, SSIM AE reconstructed background and detected
defective region; (c) image with defect, MemAE reconstructed background and
detected defective region; (d) image with defect, PatchCore anomaly score map
and detected defective region; (e) image with defect in grayscale, RASL recon-
structed background and detected defective region and (f) image with defect,
PAEDID reconstructed background and detected defective region.
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Figure 7. Comparison between the performance of SSIM AE, RASL PatchCore,
and PAEDID: (a) image with defect, true background, and simulated defective
region; (b) image with defect, SSIM AE reconstructed background and detected
defective region; (c) image with defect, MemAE reconstructed background and
detected defective region; (d) image with defect, PatchCore anomaly score map
and detected defective region; (e) image with defect in grayscale, RASL recon-
structed background and detected defective region and (f) image with defect,
PAEDID reconstructed background and detected defective region.
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selected as training datasets, in which 300 images are used as
training and 50 images as the validation set to train the AE.
The remaining 50 images are used to generate images with
defects. Samples of the generated anomaly images with corre-
sponding normal backgrounds and generated defective
regions are shown in Figure 7(a).

The encoder and encoder network share the same structure
as the previous simulation study. Since the images are aligned,
we simplify the memory addressing algorithm by only search-
ing for the closest patch in the memory bank of the same spa-
tial location.

We also compare the PAEDID method with SSIM AE
(Bergmann et al., 2018), MemAE (Gong et al., 2019), PatchCore
(Roth et al,, 2021) and RASL (Peng et al., 2012). The qualitative
result and quantitative results are shown in Figure 7 and Table 1,
respectively. The proposed PAEDID outperforms all algorithms.

4, Case study

In this section, we apply the proposed PAEDID method on the
ELPV dataset (Deitsch et al., 2021) containing (2624) grayscale
images of normal (1508) and defective (1116) solar cells with
varying degrees of degradation from different modules.
Samples of normal and defective images are shown in Figure 8.
It is easy to see that there are different types of normal
images. It is hard to describe the normal image by either
using the domain regularization type of statistical priors or
an SSIM AE without a memory bank. The aim is to detect
the crack type of the defect. To demonstrate the defective
region segmentation capability, we apply the PAEDID
method on manually pixel-wise annotated 50 test images.
We first resize all images from dimension 300 x 300 into
128 x 128. In the proposed PAEDID method, there are 1508
images in the training dataset, in which 1000 images are ran-
domly chosen as training and 508 images are used as the valid-
ation set to train the AE. The encoder has four convolutional
layers, each of which is followed by a MaxPooling layer of
pool size 2 x 2: Conv2D (128, 128, 3) - MaxPooling -
Conv2D(64, 64, 9) - MaxPooling - Conv2D(32, 32, 27) -
MaxPooling - Conv2D (16,16, 81) - MaxPooling. The decoder
also has four convolutional layers, each of which is followed
by an UpSampling layer. The latent space is of shape 8 x 8 x
81. Since the images are aligned, we simplify the memory

‘

Figure 8. Samples of different types of (a) normal and (b) defective solar cell
images.
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Figure 9. Comparison between the performance of SSIM AE, RASL, PatchCore,
PAE, and PAEDID: (a) image with defect, label for defective region; (b) image
with defect, SSIM AE reconstructed background and detected defective region;
(c) image with defect, MemAE reconstructed background and detected defect-
ive region; (d) image with defect, PatchCore anomaly score map, and detected
defective region; (e) Image with defect, RASL reconstructed background and
detected defective region; (f) image with defect, PAE reconstructed background
and detected defective region and (g) Image with defect, PAEDID decomposed
background, and detected defective region.



Table 2. Average dice coefficient (and standard deviation) for different meth-
ods in the case study.

Manually annotated defect (Dice coefficient)

SSIM AE 14.2% (13.0%)
MemAE 8.3% (4.4%)
PatchCore 25.2% (8.7%)
RASL

PAE 17.1% (12.1%)

(
(
26.7% (9.2%)
(
PAEDID (

62.2% (14.9%)

addressing algorithm by solely searching for the closest patch
in the memory bank of the same spatial location.

For comparison, we also applied the other four state-of-
the-art methods including SSIM AE (Bergmann et al., 2018),
MemAE (Gong et al., 2019), PatchCore (Roth et al., 2021)
and RASL (Peng et al, 2012). We assume that all input
images are pre-identified defective images and evaluate the
pixel-wise anomaly detection performance of the proposed
method. Extracted defective region and reconstructed (or
decomposed) background of one sample image by different
methods are shown in Figure 9. The average dice coefficient
(and standard deviation) of the proposed PAEDID method
on the test set is reported in Table 2.

Among those methods, the PAEDID method outperforms
the other methods (SSIM AE (Bergmann et al, 2018),
MemAE (Gong et al, 2019), PatchCore (Roth et al., 2021)
and RASL (Peng et al., 2012)). The shape contour is almost
perfectly extracted, except for the region where the crack
intersects the dark line in the background. This is an inher-
ent problem of all decomposition-based image processing
algorithms without the additional assumption of the defect-
ive region, i.e. continuity, etc. For example, even if the
background is reconstructed perfectly, the defective region
cannot be extracted by subtracting the reconstructed back-
ground from the raw image. In this case, more advanced
measurement technologies need to be adopted that can dis-
tinguish the defect and background.

In the PAEDID method, the tuning parameter A=
0.0006 is chosen by cross-validation. The reconstructed
background by PAE is used as an image prior which guides
the PAEDID algorithm to decompose the raw image into
the corresponding background and defects. It can capture a
clear background and a high-quality defective region image
as shown in Figure 9(g). The improvement over the PAE
method indicates that the deep image decomposition step is
necessary, which can further improve defective region seg-
mentation performance.

Ablation study of deep image decomposition step

To demonstrate the necessity of the deep image decom-
position step, we also report the performance of using PAE
without the decomposition step, where a residual between
the test image and its deep image prior is used for defective
region segmentation. However, it can be seen from Figure
9(b) to (f) that both the reconstructed backgrounds by SSIM
AE and PAE are blurry. Subsequently, sharp background
features will also appear in the detected defects if directly
subtracting the blurry reconstructed backgrounds from the
raw image, which leads to the unsatisfactory performance of
PAE and AE, with the average dice coefficients as PAE
17.1% and AE 14.2% respectively.
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5. Conclusion

In this article, we propose a novel unsupervised method for
pixel-level defective region segmentation which combines
the advantages of both deep-learning-based methods and
matrix-decomposition-based methods. It is suitable for
pixel-level defective region segmentation in complex images
when there are limited defective samples and pixel-level
labeling. The simulation and case studies demonstrate its
superiority in challenging pixel-level defective region seg-
mentation problems. One possible future direction is to
adopt other types of generative models as deep prior for the
normal images, which we leave for future work.
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github.com/zae-bayern/elpv-dataset.

References

Akcay, S., Ameln, D., Vaidya, A., Lakshmanan, B., Ahuja, N. and
Genc, U. (2022) Anomalib: A deep learning library for anomaly
detection. arXiv preprint arXiv:2202.08341.

An, J. and Cho, S. (2015) Variational autoencoder based anomaly
detection using reconstruction probability. Special Lecture on IE,
2(1), 1-18.

Baur, C., Wiestler, B., Albarqouni, S. and Navab, N. (2018) Deep
autoencoding models for unsupervised anomaly segmentation in
brain MR images, in International MICCAI Brainlesion Workshop
(BrainLes 2018), Springer, Granada, Spain, pp. 161-169.

Bergmann, P., Fauser, M., Sattlegger, D. and Steger, C. (2019) MVTec
AD-A comprehensive real-world dataset for unsupervised anomaly
detection, in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR 2019), IEEE Press,
Piscataway, NJ, pp. 9592-9600.

Bergmann, P., Fauser, M., Sattlegger, D. and Steger, C. (2020)
Uninformed students: Student-teacher anomaly detection with dis-
criminative latent embeddings, in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR
2020), IEEE Press, Piscataway, NJ, pp. 4183-4192.

Bergmann, P., Lowe, S., Fauser, M., Sattlegger, D. and Steger, C. (2018)
Improving unsupervised defect segmentation by applying structural
similarity to autoencoders. arXiv preprint arXiv:1807.02011.

Bevandié, P., Kreso, 1., Orsié, M. and Segvié, S. (2022) Dense open-set
recognition based on training with noisy negative images. Image
and Vision Computing, 124, 104490.

Bouwmans, T. and Zahzah, E.H. (2014) Robust PCA via principal com-
ponent pursuit: A review for a comparative evaluation in video sur-
veillance. Computer Vision and Image Understanding, 122, 22-34.

Candes, EJ., Li, X,, Ma, Y. and Wright, J. (2011) Robust principal
component analysis? Journal of the ACM (JACM), 58(3), 1-37.

Cen, J., Yun, P, Cai, J., Wang, M.Y. and Liu, M. (2021) Deep metric
learning for open world semantic segmentation, in Proceedings of
the IEEE/CVF International Conference on Computer Vision (CVPR
2021), IEEE Press, Piscataway, NJ, pp. 15333-15342.

Creusot, C. and Munawar, A. (2015) Real-time small obstacle detection
on highways using compressive RBM road reconstruction, in 2015
IEEE Intelligent Vehicles Symposium (IV 2015), IEEE Press,
Piscataway, NJ, pp. 162-167.

Defard, T., Setkov, A., Loesch, A. and Audigier, R. (2021) Padim: A
patch distribution modeling framework for anomaly detection and
localization, in International Conference on Pattern Recognition
(ICPR 2021), Virtual, Springer, pp. 475-489.

Deitsch, S., Buerhop-Lutz, C., Sovetkin, E., Steland, A., Maier, A.,
Gallwitz, F. and Riess, C. (2021) Segmentation of photovoltaic mod-
ule cells in uncalibrated electroluminescence images. Machine Vision
and Applications, 32(4), 1-23.

Deng, J., Dong, W., Socher, R, Li, L.-J., Li, K. and Fei-Fei, L. (2009)
Imagenet: A large-scale hierarchical image database, in 2009 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR
2009), IEEE Press, Piscataway, NJ, pp. 248-255.

Gong, D., Liu, L, Le, V., Saha, B., Mansour, M.R., Venkatesh, S. and
van der Hengel, A. (2019) Memorizing normality to detect anomaly:
Memory-augmented deep autoencoder for unsupervised anomaly
detection, in Proceedings of the IEEE/CVF International Conference
on Computer Vision (CVPR 2019), IEEE Press, Piscataway, NJ, pp.
1705-1714.

Gudovskiy, D., Ishizaka, S. and Kozuka, K. (2022) Cflow-ad: Real-time
unsupervised anomaly detection with localization via conditional

normalizing flows, in Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision (CVPR 2022), IEEE
Press, Piscataway, NJ, pp. 98-107.

Hastie, T., Tibshirani, R. and Friedman, J.H. (2009) The Elements of
Statistical Learning: Data Mining, Inference, and Prediction,
Springer, New York, NY.

Hinton, G.E. and Salakhutdinov, R.R. (2006) Reducing the dimension-
ality of data with neural networks. Science, 313(5786), 504-507.

Kingma, D.P. and Ba, J. (2014) Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980.

Lis, K., Nakka, K., Fua, P. and Salzmann, M. (2019) Detecting the
unexpected via image resynthesis, in Proceedings of the IEEE/CVF
International Conference on Computer Vision (CVPR 2019), 1IEEE
Press, Piscataway, NJ, pp. 2152-2161.

Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X. and
Pietikdinen, M. (2020) Deep learning for generic object detection: A
survey. International Journal of Computer Vision, 128(2), 261-318.

Mardani, M., Mateos, G. and Giannakis, G.B. (2013) Recovery of low-
rank plus compressed sparse matrices with application to unveiling
traffic anomalies. IEEE Transactions on Information Theory, 59(8),
5186-5205.

Minaee, S., Abdolrashidi, A. and Wang, Y. (2015) Screen content image
segmentation using sparse-smooth decomposition, in 2015 49th
Asilomar Conference on Signals, Systems and Computers, IEEE Press,
Piscataway, NJ, pp. 1202-1206.

Minaee, S., Boykov, Y.Y., Porikli, F., Plaza, A.J., Kehtarnavaz, N. and
Terzopoulos, D. (2021) Image segmentation using deep learning: A
survey. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44(7), 3523-3542.

Mishra, P., Verk, R., Fornasier, D., Piciarelli C. and Foresti, G.L.
(2021) VT-ADL: A vision transformer network for image anomaly
detection and localization. arXiv preprint arXiv:2104.10036.

Mou, S. and Shi, J. (2022) Compressed smooth sparse decomposition.
INFORMS Journal on Data Science, Early Access. https://doi.org/10.

1287/ijds.2022.0023
Mou, S., Wang, A., Zhang, C. and Shi, J. (2021) Additive tensor
decomposition considering structural data information. IEEE

Transactions on Automation Science and Engineering, 19(4), 2904-
2917.

Pang, G., Shen, C., Cao, L. and Hengel, A.V.D. (2021) Deep learning
for anomaly detection: A review. ACM Computing Surveys (CSUR),
54(2), 1-38.

Peng, Y., Ganesh, A., Wright, J., Xu, W. and Ma, Y. (2012) RASL:
Robust alignment by sparse and low-rank decomposition for linearly
correlated images. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 34(11), 2233-2246.

Roth, K., Pemula, L., Zepeda, J., Scholkopf, B., Brox, T. and Gehler, P.
(2021) Towards total recall in industrial anomaly detection, in
Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision (CVPR 2022), IEEE Press, Piscataway, NJ, pp.
14318-14328.

Schlegl, T., Seebock, P., Waldstein, S.M., Langs, G. and Schmidt-
Erfurth, U. (2019) f-AnoGAN: Fast unsupervised anomaly detection
with generative adversarial networks. Medical Image Analysis, 54,
30-44.

Schlegl, T., Seebock, P., Waldstein, S.M., Schmidt-Erfurth, U. and
Langs, G. (2017) Unsupervised anomaly detection with generative
adversarial networks to guide marker discovery, International
Conference on Information Processing in Medical Imaging, Springer,
Boone, NC, USA, pp. 146-157.

Simonyan, K. and Zisserman, A. (2014) Very deep convolutional net-
works for large-scale image recognition. arXiv preprint arXiv:
1409.1556.

Wang, G., Han, S., Ding, E. and Huang, D. (2021) Student-teacher fea-
ture pyramid matching for unsupervised anomaly detection. arXiv
preprint arXiv:2103.04257.

Wang, S., Wu, L., Cui, L. and Shen, Y. (2021) Glancing at the patch:
Anomaly localization with global and local feature comparison, in
Proceedings of the IEEE/CVF Conference on Computer Vision and


https://doi.org/10.1287/ijds.2022.0023
https://doi.org/10.1287/ijds.2022.0023

Pattern Recognition(CVPR 2021), IEEE, Press, Piscataway, NJ, pp.
254-263.

Wang, Z., Bovik, A.C., Sheikh, H.R. and Simoncelli, E.P. (2004) Image
quality assessment: From error visibility to structural similarity.
IEEE Transactions on Image Processing, 13(4), 600-612.

Xu, H., Caramanis, C. and Sanghavi, S. (2012) Robust PCA via outlier
pursuit. IEEE Transactions on Information Theory, 58(5), 3047-3064.

Yan, H., Paynabar, K. and Shi, J. (2017) Anomaly detection in images
with smooth background via smooth-sparse decomposition.
Technometrics, 59(1), 102-114.

Yan, H., Paynabar, K. and Shi, J. (2018) Real-time monitoring of high-
dimensional functional data streams via spatio-temporal smooth
sparse decomposition. Technometrics, 60(2), 181-197.

Yu, J., Zheng, Y., Wang, X,, Li, W., Wu, Y., Zhao, R. and Wu, L.
(2021) FastFlow: Unsupervised anomaly detection and localization
via 2D normalizing flows. arXiv preprint arXiv:2111.07677.

Zenati, H., Foo, C.S., Lecouat, B. Manek, G. and Chandrasekhar, V.R.
(2018) Efficient gan-based anomaly detection. arXiv preprint arXiv:
1802.06222.

Zhao, S., Song, J. and Ermon, S. (2017) Towards deeper understanding
of variational autoencoding models. arXiv preprint arXiv:1702.08658.

Zhou, C. and Paffenroth, R.C. (2017) Anomaly detection with robust
deep autoencoders, in Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining
(KDD’17), Association for Computing Machinery, New York, NY,
USA, pp. 665-674.

Zou, K.H., Warfield, S.K., Bharatha, A., Tempany, C.M., Kaus, M.R,,
Haker, S., Wells III, W.M., Jolesz, F.A. and Kikinis, R. (2004)
Statistical validation of image segmentation quality based on a spa-
tial overlap indexl: Scientific reports. Academic Radiology, 11(2),
178-189.

Appendices

Appendix A

In this section, we introduce the SSIM loss function. SSIM loss refers
to structural similarity loss (Wang et al, 2004), which is a perceptual
metric to measure the similarity of two images. It is defined as

(Z,ux,uy + cl) 20y + 2)

e+ 3+ Cl) (6,% + 03 + Cz)

llx = yllssia = (

where p, and y, indicate the pixel sample mean of x and y; 62 and o?
indicates the variance of x and y; gy, indicates the correlation between
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x and y; ¢; and ¢, are constants whose value can be found in Wang
et al. (2004). Using SSIM loss has demonstrated superior performance
in AE-based anomaly detection tasks (Bergmann et al., 2018).

Appendix B

In this section, we introduce the decomposition framework consider-
ing measurement noise. We assume that any test image is a superim-
position of: (i) normal image (background L) from the distribution
learned by the AE; (ii) sparse defective regions (S); and (iii) element-
wise independent Gaussian measurement noise e, ie, X =L+ S+e.
Then, the defective region segmentation can be formulated as a matrix
decomposition problem with a combination of a deep image prior for
the background and sparsity regularization for the defective regions.
Given a test image X, we aim to extract the defective regions by solv-
ing the following penalized optimization problem:

ming, s [|X — L = S|f3 + ZalISll, + 22 1L — Xllssim )

where /; and 4, are tuning parameters.

Appendix C
In some applications, the memory bank size can be large. The following
algorithm can be used for reducing the memory bank size (Roth et al., 2021).

Algorithm 2. Algorithm for greedy coreset selection

Input MU, coreset size ..
Initialize ;"gg‘lc ={}.
For i € [0,...,n. — 1] do:

mi=arg  max - min [|Y(m)—y(n),

c c
MEMage,\M e NEMge

mat, C mat, C
Mgt — Mg Umi

End

mat mat, C
agg, | - Magg,l

where /(+) is a random linear projection that projects the input feature
to a lower dimensional space. We set it as 128 for all simulation studies
and case studies.
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