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SAGE: Stealthy Attack Generation in cyber-physical systems

Michael Biehler , Zhen Zhong , and Jianjun Shi

H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA

ABSTRACT
Cyber-physical systems (CPSs) have been increasingly attacked by hackers. CPSs are especially vul-
nerable to attackers that have full knowledge of the system’s configuration. Therefore, novel
anomaly detection algorithms in the presence of a knowledgeable adversary need to be devel-
oped. However, this research is still in its infancy, due to limited attack data availability and test
beds. By proposing a holistic attack modeling framework, we aim to show the vulnerability of
existing detection algorithms and provide a basis for novel sensor-based cyber-attack detection.
Stealthy Attack GEneration (SAGE) for CPSs serves as a tool for cyber-risk assessment of existing
systems and detection algorithms for practitioners and researchers alike. Stealthy attacks are char-
acterized by malicious injections into the CPS through input, output, or both, which produce
bounded changes in the detection residue. By using the SAGE framework, we generate stealthy
attacks to achieve three objectives: (i) Maximize damage, (ii) Avoid detection, and (iii) Minimize
the attack cost. Additionally, an attacker needs to adhere to the physical principles in a CPS
(objective (iv)). The goal of SAGE is to model worst-case attacks, where we assume limited infor-
mation asymmetries between attackers and defenders (e.g., insider knowledge of the attacker).
Those worst-case attacks are the hardest to detect, but common in practice and allow understand-
ing of the maximum conceivable damage. We propose an efficient solution procedure for the
novel SAGE optimization problem. The SAGE framework is illustrated in three case studies. Those
case studies serve as modeling guidelines for the development of novel attack detection algo-
rithms and comprehensive cyber-physical risk assessment of CPSs. The results show that SAGE
attacks can cause severe damage to a CPS, while only changing the input control signals minim-
ally. This avoids detection and keeps the cost of an attack low. This highlights the need for more
advanced detection algorithms and novel research in cyber-physical security.
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1. Introduction

Cyber-physical attacks are a category of cyber-attacks that
also adversely affect the physical space. Cyber-Physical
Systems (CPSs) are characterized by the interaction of phys-
ical assets and computational capabilities with information
transfer. The rapid digitalization and utilization of CPSs lead
to the widespread use of sensors, networked devices, and
data acquisition systems. Since CPSs are deployed for high-
value and safety-critical systems, the security of those
systems is essential. Any successful attack leads to severe
economic loss, equipment damage, or even loss of human
life. We find that the limited attack data availability in
cyber-physical systems hinders the research on cyber-
physical attack detection methods. To develop effective
cyber-physical attack detection methods, it is essential to
understand the attacker’s capabilities and methods. Existing
methods to generate an attack utilize random perturbations,
which do not integrate the system topology and objectives
of an attacker. We find that detection methods using exist-
ing types of attack data are not robust to stealthy attacks.
This motivates us to develop a general-purpose framework

for generating stealthy attacks. Stealthy attacks are character-
ized by malicious injections into the CPS through input,
output, or both, which produce bounded changes in the
detection residue.

Although stealthy, adversarial attacks have received some
attention in the computer vision community, we are the first
to holistically integrate the requirements and topology of
CPSs for the design of stealthy attacks. Attacks in the CPS
domain require stealthy attacks beyond image data and the
consideration of a wide range of system inputs, models, and
tasks (Li, Liu, Chen, Xiao, Li and Wang (2020)).

Therefore, the scope of this article is to propose a
general-purpose optimization framework to find the best
strategy to attack a CPS and show the implications of such
worst-case attacks on existing detection methods. Our
framework provides a steppingstone to develop more effect-
ive attack detection methods in the future, that are robust to
stealthy, worst-case attacks. Worst-case perturbations are
defined in terms of the limited information asymmetry
between attackers and defenders: Although the attacker
might not know the specific detection model and its associ-
ated parameters, all other data and system information is

CONTACT Jianjun Shi Jianjun.shi@isye.gatech.edu
Supplemental data for this article can be accessed online at https://doi.org/10.1080/24725854.2023.2184004

Copyright � 2023 “IISE”

IISE TRANSACTIONS
2024, VOL. 56, NO. 1, 54–68
https://doi.org/10.1080/24725854.2023.2184004

http://crossmark.crossref.org/dialog/?doi=10.1080/24725854.2023.2184004&domain=pdf&date_stamp=2023-10-14
http://orcid.org/0000-0001-6674-3606
http://orcid.org/0000-0002-0653-3890
http://orcid.org/0000-0002-3774-9176
https://doi.org/10.1080/24725854.2023.2184004
https://doi.org/10.1080/24725854.2023.2184004
http://www.tandfonline.com


assumed to be known to the attacker (i.e., insider attacker).
This allows us to understand the maximal conceivable dam-
age (i.e., worst-case detection performance) to a CPS for a
given system setup and detection strategy.

By formulating a novel optimization problem, the “Stealthy
Attack GEneration” (SAGE) framework considers the three
main objectives of an attacker (maximize damage, avoid detec-
tion, and minimize attack cost), as well as the physical laws in
CPSs. By applying small, worst-case perturbations to the sys-
tem input variables, the SAGE attack will lead to unexpected
and malicious misbehavior of the system output, while staying
undetected by the systems detection algorithms.

To show the generality of our approach, we generate stealthy
attacks and validate the SAGE framework on two data modal-
ities: functional curves and image data. For functional curves,
we utilize a hot rolling process simulated in MATLAB Simulink.
In this setting, we evaluate the performance of seven off-the-
shelf supervised machine learning models to detect SAGE
attacks. In the image case studies, we use the SAGE methods to
attack two state-of-the-art methods for image anomaly detection
by using a large steel surface defect dataset.

The results provide a case for the severe consequences of
stealthy attacks in CPSs. This research is intended to serve
as a cornerstone for the development of more robust and
effective detection algorithms for CPS attacks. Furthermore,
by evaluating existing systems and detection models, SAGE
can be utilized for the cyber-risk assessment of a CPS for
practitioners and researchers alike.

The contributions of our SAGE framework are as follows:

� We introduce a comprehensive and general-purpose frame-
work for reliability generating stealthy, worst-case attacks on
CPSs. Our model formulation is intuitive and easy to under-
stand, which allows the adaptation to a wide range ofCPSs.
We find that many detection methods are unable to detect
stealthy SAGE attacks, even when the attacker is oblivious to
the specific defense used.

� Our results highlight the need for more comprehensive
detection methods: our SAGE framework provides
researchers with a common baseline of attack generation,
a description of attack techniques, and common evalu-
ation pitfalls, so that future detection methods can avoid
falling vulnerable to these same attack procedures.

The remaining parts of this article are organized as fol-
lows: In Section 2, we provide a review of related literature
to highlight the necessity of this research. Section 3 presents
the mathematical descriptions of CPSs, formulates the opti-
mization problem, and proposes an algorithm for solving
this problem. In Section 4, we illustrate the methodology
with three case studies, which serve as guiding examples for
the modeling of stealthy attacks. Finally, Section 5 concludes
this article.

2. Literature review

Due to the rise of the Industrial Internet of Things (IIoT)
and smart manufacturing, CPSs have been increasingly

exploited by cyber-attacks (Ervural et al., 2018). A CPS has
grown from stand-alone systems with little security protec-
tion to a highly interconnected system that can be easily tar-
geted by attackers over the internet. Attacks, like the
computer worm “Stuxnet” attacking Siemens industrial soft-
ware in 2010, or the phishing attack on a German steel mill
leading to severe equipment damage in 2014, are some of
the most prominent examples of the vulnerability of a CPS
to cyber-physical attacks. Even though the field of informa-
tion technology is developing new methodologies for cyber
security, the unique characteristics of a CPS require specific
attention (Zhang et al., 2019).

In general, an attack on a CPS is conducted via three
steps. The first step of an attacker is to gain knowledge of
the system by identifying the network topology, software,
critical targets, and monitoring schemes against cyber-
attacks (Han et al. 2014). Then, the attacker needs to bypass
the first line of defense consisting of the firewall and an
intrusion prevention system. After that, the attacker has full
access to the CPS to achieve the goal by perturbing the con-
trol systems and making as much damage as possible while
staying undetected. This article focuses on modeling the last
step of a CPS attack, which is how to perturb the system
inputs to make maximum damage to the system response
and stay undetected with minimum cost.

2.1. Attacks on CPSs

In the attack domain, attacks on CPSs can be classified into
three main methods: disclosure, disruption, and deception
attacks as visualized in Figure 1.

Disclosure attacks occur when sensitive or confidential
information is exposed to the attacker. Disruption attacks
aim at disrupting the physical processes in a CPS. Deception
attacks aim to deceive the defender of a system to accept a
specific incorrect version of reality (e.g., sensor measure-
ments), causing the defender to act in a way that benefits
the attacker (e.g., not raising an alarm). This article focuses
on deception attacks, which can be further classified into
five major subtypes of attacks:

� Replay attack: The attacker injects a sequence of normal
control input into the system using previously recorded
sensor data, while actually conducting malicious actions
(Murakami et al. 2017).

� False data injection attack: The attacker compromises
sensor readings in such a way that undetected errors are
introduced into the calculation of state variables and val-
ues (Ahmed et al., 2020).

� Zero dynamics attack: The attacker alters the control out-
put in a way that is consistent with the transmitted con-
trol input according to the dynamics of the system (Shim
et al., 2022).

� Covert attack: The attacker disguises the manipulation of
control actions by injecting expected sensor measure-
ments calculated based on the system knowledge Li,
Paynabar and Gebraeel (2020).
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� Stealthy/Adversarial attack: The attacker adds small per-
turbations to the normal data input. In this way, the
detection algorithm in the system will not detect the
added perturbation. However, the composed input (nor-
mal inputþ perturbation) will cause a malicious system
output and the system output can be precisely deter-
mined by the selection of appropriate perturbation by
the attacker (Li, Paynabar and Gebraeel (2020).

Some of those attack subtypes are highly related and not
mutually exclusive. However, stealthy attacks are the hardest ones
to detect. They do not solely alter or disguise sensor readings. On
the contrary, stealthy attacks add small perturbations to the sys-
tem control variables. Since those perturbations are so small that
there is no need to disguise them. They appear to be caused by
the system’s natural variability. On the other hand, they will have
a detrimental effect on the system outputs. However, the effect
on the system output could lead detection algorithms to raise an
alarm. Therefore, we will assume that they are disgusted by false
data injection or replay attacks or are not monitored.

We note that there are some existing tools for attack gen-
eration in CPSs (Jeon et al., 2019; Zhang et al., 2021). Those
methods carefully design attacks for certain subclasses of
cyber-physical systems. With our stealthy attack generation
framework, we extend this literature by providing a general-
purpose modeling framework, which intuitively integrates all
objectives and constraints of an attacker to a CPS and pro-
poses a comprehensive optimization framework to solve this
– in general – nonconvex problem to global optimality.

Furthermore, there exist several testbeds and datasets (Conti
et al., 2021) for security research in CPSs in various fields such
as electric grids (Hahn et al., 2013) or water treatment plants
(Goh et al., 2016). However, those testbeds and datasets might
not be well suited for a particular application scenario, such as
a particular manufacturing system. Therefore, we see the SAGE
framework as an extension to a much wider range of systems,
which allows vulnerability assessment and robust attack detec-
tion development based only on the historic data and the sys-
tem configuration of the CPS at hand.

2.2. Machine learning methods for CPS attack detection

In recent years, multiple detection algorithms have been
developed by utilizing machine learning classifiers for the

defense against cyber-attacks (Pasqualetti et al., 2013; Guan
and Ge, 2017; Wu et al., 2019; Yang et al., 2019; Li, Li,
Zhang, Kou, Ye, Song and Mantooth (2020). Those algo-
rithms have achieved state-of-the-art detection performance
on existing types of attack generation schemes such as false
data injection, replay, zero dynamics, and even covert
attacks. However, those supervised learning techniques
require strong assumptions and can be considered as the
best-case scenario for the defender of the system: historical
training data needs to be available with labels of in-control
(e.g., no attack) and attack conditions. Additionally, the cur-
rent attack needs to come from the same generative process
as the historical attacks.

2.3. Adversarial machine learning and cyber-physical
security

A large array of prior work has addressed the problem of
generating adversarial examples for neural network image
classifiers (Akhtar et al. 2018). However, the literature on
adversarial data has mainly focused on the image domain,
and limited efforts have been made to generalize the con-
cepts to a wide range of data modalities and system models
(Zizzo et al., 2019).

Existing works on cyber-physical adversarial attacks are
overly specific to one particular system setup or neglect if
those attacks are realizable according to the physical laws of
the system (Feng et al. 2017; Zizzo et al., 2020). Several
methods assume that only a subset of the sensors can be
compromised, which tremendously limits the action space
for the attacker Li, Lee, Yang, Sun and Tomsovic (2020).

Contrary to adversarial images, the attack generation
scheme in CPSs needs to consider all three objectives of an
attack (e.g., maximize damage, minimize detection, minim-
ize attack cost) and also consider the system model and the
physical laws of the system.

2.4. State-estimation-based attacks and defenses
for CPS

There is a large body of work in state-estimation techniques
for cyber-physical intrusion detection in various safety-crit-
ical CPSs, such as industrial control systems (Inayat et al.,
2022) or power grids (Ashok et al., 2016; Guo et al., 2018;

Figure 1. Attack strategies in CPSs.
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Jin et al., 2018). Mo and Sinopoli. (2012) introduced a
framework to generate integrity attacks by formalizing the
adversary’s strategy as a constrained control problem.
However, this method does not consider either the physical
laws of the system, or the attack cost. Furthermore, a wide
variety of methods have been proposed to attack a CPS by
perturbing the state estimation (Kosut et al., 2011; Kim
et al,. 2014). In a response to those types of threats, robust
state estimation techniques have become widespread in prac-
tice, nullifying this type of attack scheme (Ding et al., 2020).

In a nutshell, it is essential to investigate the modeling of
stealthy attacks for designing more resilient systems and
detection algorithms. We will demonstrate that if an attacker
knows the current configuration of a CPS, most existing
detection algorithms have vulnerabilities and can be
bypassed by attackers. Given this fact, the existing attack
and detection algorithms are based on too strong assump-
tions, which may not mimic the behavior of a knowledge-
able attacker. Therefore, an effective detection algorithm
requires the defenders to first change perspective and “think
like a hacker” to identify the weaknesses of a system. By
proposing the SAGE framework, we aim to provide a holis-
tic modeling framework that can serve as a stepping stone
for the development of more robust attack detection
algorithms.

3. SAGE methodology

This section first describes the system model used to model
the dynamics of a CPS. Afterward, the SAGE framework is
introduced, which considers the main objectives of an
attacker consisting of maximizing the damage to the system
while staying undetected and keeping the cost of an attack
low. Finally, an efficient solution procedure for the noncon-
vex SAGE formulation is derived.

3.1. System modeling

This section describes the model used to characterize the
system dynamics of a CPS. For a general CPS, the process
outputs Y t at time t can be in a format of multiple func-
tional curves, images, structured point clouds, or categorical
variables. We assume that the effect of the inputs on the
outputs can have a hybrid or nonlinear relationship, which
allows more realistic modeling of a complex CPS. The sys-
tem model can be obtained with the best fit to the historical
data from a variety of potential models, such as linear
regression, Gaussian process model, or neural networks, and
is represented as

Y t ¼ g1 ut , h1ð Þ þ g2 xt , h2ð Þ þ e (1)

where gið�, hiÞ, i ¼ 1, 2 are some general functions (e.g.,
linear, nonlinear, varying with time) with parameter vector
hi, representing the effect of the control variables ut and
the process variables xt (not controllable but observable) on
the system output Y t , respectively. e is the matrix contain-
ing the modeling error where every entry is a zero mean
additive Gaussian noise with variance r2: The increasing

integration of deep learning approaches into CPS, then
model (1) aims to unify a wide variety of models to model
stealthy attacks in nonlinear settings. This general formula-
tion also allows for the hybrid settings of linearized and
nonlinear perception pipelines that are fused in a determin-
istic or stochastic manner.

3.2. Stealthy Attack GEneration (SAGE) formulation

This subsection will first discuss the threat model, which is
a structured representation of all the information and
assumptions that affect the security of a CPS. Afterward, the
SAGE attack formulation and solution procedures are
presented.

3.2.1. Threat model
To model the worst-case scenario for a defender, we assume
that the attacker knows the system configuration in a gray
box setting. In particular, it is assumed that the attacker has
bypassed the first line of defense (i.e., the firewall) and has
full access to the system. Thus, the attacker can inject con-
trol actions at any point and time. It is assumed that an
attacker has an intention to negatively affect the system out-
put. Examples of such damage to the system include a
reduction in the production rate, production quality, system
efficiency, equipment degradation, or failure. We assume
that the attacker has full knowledge of the system model. In
the white box setting, the attacker directly knows the model
gi and its parameters hi: In the gray box setting, the attacker
estimates a surrogate model for gi based on historical data.
For the detection algorithm used in the CPS system, we
assume a black-box or gray-box setting:

1. If the attacker does not know the systems detection
algorithm (black box), they can generically minimize
the difference in distribution between normal and attack
data as illustrated in the steel rolling case study in
Section 4.1.

2. (ii) In the gray box setting, we assume that the attacker
knows the detection algorithm, but not the specific
detection model parameters. In this setting, an attacker
can only estimate the detection model parameters based
on historical data. The attacker does not know the spe-
cific out-of-control or attack data utilized during model
training by the defender. We assume that all the sys-
tems control and process variables are being monitored.
The system output measurements are either (i) dis-
guised through false data injection or covert attacks, (ii)
not monitored, or (iii) monitored far downstream in a
multi-stage (manufacturing) system, which already
would have caused severe upstream damage until its
detection.

We note that this threat model restricts the attackers’
capabilities as little as possible. Therefore, it is extremely
stealthy and hard to detect.
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3.2.2. Attackers optimization problem – “Think like a
hacker”

Based on the threat model, which summarizes the attackers’
capabilities, we will “think like a hacker” (Esteves et al.,
2017) and define three key attacker’s objectives when gener-
ating stealthy attacks on a CPS:

1. Maximize damage: The goal of an attacker is to cause
damage to physical components such as machines,
equipment, parts, assemblies, and products in a CPS.
Thus, the cyber attacker can cause severe damage to the
CPS by increasing the wear, breakage, scrap, or any
other changes to the original design.

2. Avoid detection: An attacker aims to manipulate a CPS
in such a way that the altered control actions stay
undetected. Most equipment has some hard-wired safety
modes that will shut down the machines once they
reach a safety-relevant operating condition. Therefore,
staying undetected will directly contribute to the first
objective to maximize damage.

3. Minimize attackcost: Attacking all control actions might
be costly or complicated, because different sensing data
are saved in different databases or governed by different
operating systems or security protocols. Therefore, the
attacker will want to keep the cost of an attack low by
identifying very few control actions that have the big-
gest impact on the system outputs.

4. Physical limits: Any changes to the system need to
adhere to the physical limits of the CPS.

Consequently, the attacker’s optimization problem is for-
mulated as Equation (2), which exploits the CPS system
model and the weaknesses of the detection algorithm while
considering the physical constraints of the system:

min
uAt

�
����d g1 uAt , h1

� �þ g2 xICt , h2
� �� �

� d g1 uICt , h1
� �þ g2 xICt , h2

� �� �����
p

(2a)

s:t:

kf uICt
� �� f uAt

� �kp � e1 (2b)

CðuAt Þ � e2, (2c)

kphðuAt Þkp � e3, (2d)

where dð�Þ denotes a damage function corresponding to
some undesirable outputs of a system given the in-control
and attack-control actions, respectively. Furthermore, uAt are
the perturbed control inputs by the attacker, which should
be close to the normal or in-control control inputs uICt : The
process variables, which are not controllable, are denoted by
xICt : The distances are denoted in terms of the ‘p-norm to
allow for flexible modeling requirements. e1 denotes the
maximal allowable distance (i.e., decision boundary) between
some general detection or monitoring function f �ð Þ applied
to uAt and uICt ; e2 denotes the maximal allowable cost of an
attack strategy uAt , and e3 denotes the maximal allowable

range from the physical laws modeled by a general function
ph �ð Þ of the attack.

The detailed explanation of each term in Equation (2) is
as follows:

1. The objective function (2a) incorporates the first object-
ive of the attacker, which is to maximize the damage to
the system. This is equivalent to minimizing the nega-
tive difference between the damage function dð�Þ for the
in-control and the attacker’s control actions respectively.
If only the system output deviation is of concern, d �ð Þ
reduces to the identity function. In cases where the state
space has significant asymmetries, the dð�Þ functions
can be defined as a (binary) mapping to a dangerous
state. Note, that the process variables will cancel in this
formulation since those are not controllable and there-
fore should be kept at their in-control values during the
attack.

2. The first constraint (2b) term corresponds to the second
objective of the attacker, which is to avoid detection. A
detection algorithm is represented by a general function
(�). By ensuring the ‘p-norm distance between the out-
put of the detection function (�) applied to both attack-
ers and in-control control actions falls below the
detection threshold e1, the attacker can avoid detection.

3. The second constraint (2c) term corresponds to the last
objective of an attacker, which is to minimize the attack
cost. This term considers how costly it is to attack a
particular control action. The executed changes to the
control variables should be within the attacker’s (com-
putational) budget e2: Examples of increased attack
costs could be cases in which different control subsys-
tems are secured by different mechanisms (e.g., fire-
walls) with different levels of security or the
computational effort to execute changes to control vari-
ables is high.

4. The last constraint (2d) term ensures that the physical
limits of the CPS are met via a physics function phð�).
The function phð�) maps the attacker’s actions to the
physical constraints. Control actions can only change
within physical limits e3 (e.g., the magnitude of change
in consecutive time steps should be small). This term
requires physical knowledge of the process, which can
be obtained from domain experts or prior research
findings.

The system model in Equation (1) is known in advance
or at least the predictions are accessible in a black box man-
ner. The functions (�) and phð�) are also known in advance.
In Table 1, several common monitoring statistics and phys-
ical constraints are introduced as guiding examples for the
choice of (�) and phð�). If the monitoring scheme or physical
constraints are not known, the functions can be chosen as
the identity and variance function by default as introduced
in the steel rolling case study in Section 4.1. To further
enhance this strategy, a distributional distance such as the
Kullback–Leibler or Wasserstein could be selected as the
monitoring function (�). Without knowing any particular
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details about the applied detection model, this approach is
still able to fool common machine learning classifiers as
illustrated in the case study.

It should be pointed out that the SAGE attack is designed
for patient adversaries, who have collected historic data
about the process, or insider attackers. Therefore, the SAGE
attacker is an expert of the CPS to be attacked. Thus, it is
reasonable to assume that the system model g1ð�Þ and g2ð�Þ,
the monitoring function f (�), and physical limits phð�) are
known in advance before conducting the optimization for
stealthy attack control actions. This assumption is reasonable
since CPSs use industry-wide standards in terms of control
systems and even detection algorithms. This assumption
does not artificially limit the capabilities of an attacker. It
rather leads to extremely stealthy attacks, which may be con-
sidered the worst-case scenario for the defender. However, if
a defender constantly changes the monitoring algorithm or
even the system setup, SAGE attacks may not be able to
simultaneously fulfill their four objectives. Also, in cases
when the detection model that monitors the system is not
fully characterized, this attack framework might not lead to
stealthy attacks. Another limitation is the possibly noncon-
vex formulation, which has an optimality guarantee only
under certain conditions as discussed in the next section.

Using the Karush–Kuhn–Tucker (KKT) conditions, we
can reformulate Equation (2) to alleviate the burden of
explicitly computing inequality constraints as follows:

min
uAt

�kd g1 uAt , h1
� �þ g2 xICt , h2

� �� �
� d g1 uICt , h1

� �þ g2 xICt , h2
� �� �kp

þ k1kf uICt
� �� f uAt

� �kp þ k2CðuAt Þ þ k3kpðuAt Þkp (3)

where k1, k2 and k3 denote the Lagrange multipliers that
correspond to the constraints 2bð Þ, ð2cÞ and ð2dÞ,
respectively.

The global minimum of the original constrained opti-
mization problem (Equation (2)) corresponds to a saddle
point in the Lagrangian function (Equation (3)), provided
that the necessary regularity conditions of stationarity, pri-
mal feasibility, dual feasibility, and complementary slackness
are satisfied. For a more detailed explanation of this widely
used approach, interested readers are referred to Ben-Tal
and Nemirovski (2001). We note that for nonconvex opti-
mization problems, the Lagrange multipliers k1, k2 and k3
may not be unique. Therefore, we resort simultaneously
solving for the optimal solution and the appropriate
Lagrange multipliers by utilizing the Branch-and-Reduce
framework introduced in Subsection 3.2.3.

3.2.3. Solution procedure
The SAGE problem formulation is an inherently nonconvex
and NP-hard problem. To make the SAGE framework
applicable to a wide range of general nonconvex functions,
the Branch-And-Reduce Optimization Navigator (BARON)
algorithm is utilized to solve the nonconvex formulation to
global optimum (Liu et al., 2019).

The output dimension of the nonconvex constraint func-
tions is denoted by m1, m2 and m3, respectively, and X
denotes a set of constraints for the search space. For
example, X could denote the 6r limits of the attacked con-
trol variables, because any attack outside of those limits can
very easily be detected. The standard Lagrangian subproblem
of Equation (2) is given in Equation 3. However, for the
dual approach to yield any computational advantage, the so-
called Lagrangian subproblem must be much easier to solve
than the primal problem.

For simplicity of the problem presented in the remainder
of this article, we use the following notations to replace the
related terms in Equation (2):

x ¼ uAt 2 R
n,

o1ðxÞ ¼ �
����dðg1ðuAt , h1Þ þ g2ðxICt , h2ÞÞ � dðg1ðuICt , h1Þ þ g2ðxICt , h2ÞÞ

����
p

: Rn ! R,

o2 xð Þ ¼ kf uICt
� �� f uAt

� �kp � e1 : R
n ! R

m1 ,

o3 xð Þ ¼ C uAt
� � � e2 : R

n ! R
m2 ,

o4 xð Þ ¼ kphðuAt Þkp � e3 : R
n ! R

m3

Then, Equation (2) can be defined as the Lagrangian sub-
problem:

inf
x2X

l0 x, ðk0, k1, k2, k3Þð Þ ¼ inf
x2X

f�k0o1 xð Þ � k1o2ðxÞ � k2o3 xð Þ
� k3o4ðxÞg, (4)

where ðk0, k1, k2, k3Þ � 0: The additional dual variable k0
homogenizes the problem and allows us to reformulate the
SAGE attack into a unified BARON range-reduction prob-
lem. The constraints e1, e2 and e3 enter the Lagrangian sub-
problem as k1e1, k2e2, and k3e3, respectively. Therefore,
they are constants that do not alter the optimal solution and
only need to be considered in the Lagrangian master prob-
lem (Equation (3)). Assume that b0 is an upper bound on

Table 1. Modeling examples for monitoring function (�) and physical constraint phð�).
Monitoring Scheme f (�) Physical Constraint phð�)
X-bar & S Charts Identityþ Variance Smooth changes over time uAij, t � uAij, t�1

Hotelling T2 Control Chart T2 statistic Sparse changes over time kuAij, t � uAij, t�1k1
Kernel Methods (e.g., SVM or PCA) Corresponding Kernel function Limited variation patterns kuAij, t � uAij, t�1k�

k � k� denotes the nuclear norm
Gradient Boosting Weighted sum of weak learners Piecewise constant changes Fused lasso penalty (Tibshirani et al.

2005)
Neural Network Architectures Inverse network function via back-

propagation
Variables within physically possible

limits
kuAij, tk22 with appropriate Lagrange

multiplier k2
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the optimal objective function value of Equation (2) and
consider the following range-reduction problem:

h� ¼ inf
x, u0, u1, u2, u3

fh uo, u1, u2, u3ð Þjo1 xð Þ � u0 � b0,

o2 xð Þ � u1 � e1, o3 xð Þ � u2 � e2, o4 xð Þ � u3 � e3, x 2 Xg,
(5)

where h is assumed to be some semi-continuous functions.
Then, Equation (5) can be restated as

h� ¼ inf
x, u0, u1, u2, u3

hðu0, u1, u2, u3Þ

s:t:

�k0 o1 xð Þ � u0ð Þ � k1 o2 xð Þ � u1ð Þ � k2 o3 xð Þ � u2ð Þ � k3 o4 xð Þ � u3ð Þ � 0
ðk0, k1, k2, k3Þ � 0

u0, u1, u2, u3ð Þ � b0, e1, e2, e3ð Þ
x 2 X (6)

However, the computational complexity of Equation (6)
is the same as Equation (4). Therefore, we lower bound h�

with the optimal value of the following problem:

hL ¼ inf
x, u0, u1, u2, u3

hðu0, u1, u2, u3Þ

s:t:

k0u0 þ k1u1 þ k2u2 þ k3u3
þ inf

x2X
f�k0o1 xð Þ� k1o2 xð Þ � k2o3 xð Þ� k3o4 xð Þg � 0

ðk0, k1, k2, k3Þ � 0
u0, u1, u2, u3ð Þ � b0, e1, e2, e3ð Þ (7)

This domain reduction problem can be leveraged for effi-
ciently solving the SAGE attack by restricting hðu0, u1, u2, u3Þ
to a0u0 þ a1u1 þ a2u2 þ a3u3, where ða0, a1, a2, a3Þ � 0 and
ða0, a1, a2, a3Þ 6¼ 0: Using Fenchel–Rockafellar duality, the
BARON algorithm derived in (Tawarmalani, 2001) can be
applied to iteratively obtain lower and upper bounds on the
range-reduction problem of the SAGE attack formulation.

In step 2 of the algorithm, ðk0, k1, k2, k3Þ � 0 implies that
uK0 ¼ f xKð Þ, uK1 ¼ g1 xKð Þ, uK2 ¼ g2 xKð Þ, and uK3 ¼ g3ðxKÞ:
Furthermore, the relaxations of the BARON framework
enjoy quadratic convergence properties and are an efficient
procedure for obtaining global optima to nonlinear pro-
grams (Tawarmalani and Sahinidis 2004). In particular, the
theorem for optimality-based range reduction (Tawarmalani,
2001) applies to the derived BARON algorithm for solving
the SAGE attack:

Theorem 1 (Tawarmalani, 2001). Suppose the Lagrangian
subproblem in Equation (5) is solved for certain dual multi-
pliers ðk0, k1, k2, k3Þ � 0: Then, for each i such that
ðki0, ki1, ki2, ki3Þ 6¼ 0, the cuts gipðxÞ � ðb0 � infx lðx, k0, k1,
k2, k3Þ=kip, p ¼ 0, 1, 2, 3Þ do not chop off any optimal solu-
tion of the initial Equation (4).

This theorem implies that the solution will eventually
converge to a global optimum, due to the quadratic conver-
gence of the BARON algorithm. For a detailed discussion,
related proofs, and generalizations we refer interested read-
ers to Tawarmalani (2001).

The BARON algorithm to solve the SAGE formulation is
also available as commercial software (Sahinidis, 1996). For
readers interested in generating a SAGE attack with no in-
depth optimization knowledge or no commercial nonlinear
solver licenses, we recommend solving the SAGE formulation
using efficient and widely used algorithms, such as Stochastic
Gradient Descent (SGD). In the literature, several convergence
guarantees are provided for SGD algorithms in the nonconvex
setting (Nguyen et al., 2018). When using SGD on common
software platforms, a few best practices should be considered.
The attacks should be initialized with historic, in-control data.
This will lead to much faster convergence. Furthermore,
choosing upper and lower bounds within the physical limits
of the data (e.g., image pixel values from 0 to 255, control var-
iables within 6r limits) will reduce the probability of detection
and drastically reduce the solution space of the problem.

Branch- and Reduce (BARON) algorithm to solve the SAGE attack

While not converged:
(0) Initialize: Set K ¼ 0, u00 ¼ a0, u01 ¼ e1, u02 ¼ e2, u03 ¼ e3
(1) Solve the relaxed dual of Equation (5):

hKU ¼ max
u0, u1 , u2, u3

ðk0 þ a0Þb0 þ k1 þ a1ð Þe1 þ k2 þ a2ð Þe2 þ k3 þ a3ð Þe3 � z

s:t: z � k0uk0 þ k1uk1 þ k2uk2 þ k2uk2, k ¼ 0, :::, K � 1
ðk0, k1, k2, k3Þ � �ða0, a1, a2, a3Þ

Let the solution be ðkK0 , kK1 , kK2 , kK3Þ
(2) Solve the Lagrangian subproblem:

inf
x, u0 , u1, u2, u3

l0 x, ðkK0 , kK1 , kK2 , kK3
� �

Þ ¼ �max
x, u0, u1, u2, u3

kK0u0 þ kK1u1 þ kK2u2 þ kK3u3

s:t: o1 xð Þ � u0
o2 xð Þ � u1
o3 xð Þ � u2
o4 xð Þ � u3

x 2 X
Let the solution be ðxK , uK0 , uK1 , uK2 , uK3Þ:

(3) Augment and solve the relaxed primal problem:
hKL ¼ min

u0, u1, u2 , u3
a0u0 þ a1u1 þ a2u2 þ a3u3

s:t: kk0u0 þ kk1u1 þ kk2u2 þ kk3u3

þ inf
x2X

l0 x, ðkk0, kk1 , kk2, k
k
3Þ

� �
� 0, k ¼ 1, :::, K

u0, u1, u2, u3ð Þ � b0, e1, e2, e3ð Þ
4) Termination check:

If hKU � hKL � tolerance
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The choice of Lagrange multipliers of the SAGE formulation
is crucial to the efficacy of the attack. Binary search can be
adapted to find the optimal set of parameters for any arbitrary
choice of algorithm. The binary search should consider the
three main objectives of the attacker and tune the hyperpara-
meters kl, l ¼ 1, 2, 3 until the Attack Effectivity (AE), Average
Perturbation (AP), and Attack Cost (AC) are within pre-
scribed limits. The attack effectivity can either be computed
by the first SAGE term or by an attack-specific metric consid-
ering the attacked system model. Similarly, the average per-
turbation can be derived from terms (2b) and (2d) or the
defender’s monitoring algorithm. The attack cost is directly
calculated from the third SAGE term.

4. Case studies

In this section, we use three case studies to illustrate and
validate the SAGE methodology proposed in Section 3.
Those case studies are intended as modeling guidelines for
the application to other CPSs. We will demonstrate how to
use the proposed framework for two data modalities: func-
tional curve and image data. All the case studies follow the
same SAGE framework proposed in Equation (2).
However, the formulations need to be adapted to the spe-
cific case. To summarize the procedure, we provide a
pseudo-code with the respective inputs and outputs of each
case study. The case studies are intended to serve as guid-
ing examples for the generation of stealthy attacks in a
wide range of systems.

4.1. Case study with functional curve data – Hot steel
rolling process

To show the vulnerability of common CPSs to stealthy
attacks, a MATLAB Simulink testbed (MathWorks, 2022)
for one-stage plate rolling is used to illustrate the devasting

effect of small, but worst-case, perturbations on functional
curves in a CPS. The testbed models a two-axis rolling mill.
In a rolling process, steel rollers are used to press sheet
metal to a specific thickness and add strength via strain
hardening to improve surface finish. The four control inputs
to this system are the roller gap and roller force in the
x-direction and the y-direction, respectively. The testbed
uses a Multiple Input Multiple Output (MIMO) LQG regu-
lator to control the horizontal and vertical thickness of a
steel plate in a hot steel rolling mill. For further details on
the testbed setup, interested readers are referred to the cor-
responding Simulink documentation (MathWorks, 2022).
The only modification to the testbed is the addition of four
“import” blocks to link the attacker’s control signals gener-
ated from the SAGE formulation to the simulated CPS as
shown in Figure 2. The import blocks allow us to verify the
accuracy of the system model. We will report the actual out-
put signal obtained from the simulation after injecting the
attackers’ control actions. This is more accurate and realistic
than simply plugging the attacker’s control actions back into
a data-driven system model, which is only an approximation
of the true system dynamics.

The monitoring of multivariate signals via multivariate con-
trol charts is a standard practice in the industry and also in
some recent research papers. Therefore, we use the first case
study to illustrate the potential of SAGE to deceive a very popu-
lar detection model based on a multivariate- Exponentially
Weighted Moving Average (EWMA) control chart.

4.1.1. Attack on multivariate-EWMA chart
A Multivariate Exponentially Weighted Moving Average
(MEWMA) control chart is commonly used to monitor CPSs.
We first calculate Zi ¼ KXi þ 1�Kð ÞZi�1, where Zt is the i
th observation vector, Z0 is the vector of variable values from
historic data, K is the diagðk1, k2, :::kpÞ, which is a diagonal
matrix with k1, k2, :::kp 2 ð0, 1� on the main diagonal, and p
is the number of control variables. Then the test statistics of

the MEWMA is given by T2
i ¼ ZT

i

P�1
Zi

Zi: The alarm will be

triggered whenever T2
i is above the 1-a¼95% quantile of its

empirical distribution under normal conditions, and a is the
desired Type-I error rate. We incorporate this test statics dir-
ectly into the framework by minimizing the monitoring static
on the attacker’s control to avoid detection:

min
uAt

�
����Yref

t � B0 �
X4
j¼1

bju
A
j, t

����
2

2

þ k1kT2
t ðuAt Þk22 þ k2kuAt

� uAt�1k þ k3CðuAt Þ, (8)

where Yref
t ¼ ½Yx,Yy� denotes the engineering specification

of quality response and is a constant value in this case. The
four control variables are denoted by u ¼ xforce, xgap,½
yforce, ygap�: In this setting, d g1 utð Þ þ g2 xtð Þð Þ ¼ d g1 utð Þþð
B0Þ¼ Yref

t and d �ð Þ reduces to the identity function
(i.e., d �ð Þ ¼ Id �ð Þ). Since the system response, in this case, is
measured in terms of x- and y-axis thickness variation, the

Pseudo-Code SAGE Attack procedure

Inputs:
� Historic data of normal (in-control) control actions: Section 4.1: uICt ;

Section 4.2: yoriginalt , Section 4.3: horiginalt , noriginal

� System model (g1 and g2 with parameters h1 and h2 in Eq. 2): Section
4.1: B0, bj; Section 4.2: hSSDa ; Section 4.3: hCNN , nLIME

� Detection function or statistic (f in Eq. 2): Section 4.1: Multivariate EWMA
statistic, Section 4.2 and 4.3: Identity function

� Cost function: C in Eq. 2 and Section 4.1-4.3
� Damage function (d in Eq. 2): Sections 4.1-4.3: Identity function
� Physical constraint function (ph in Eq. 2): Section 4.1: Temporal

consistency uAt � uAt�1; Section 4.2: Temporal consistency yAt�1 � yAt ;
Section 4.3: Spatial-temporal

consistency vec yoriginali � yAi

� �
� D � vec yoriginali � yAi

� �T

� Reference value or historic data of system output (: Section 4.1: Yreft ;

Section 4.2: ha; Section 4.3: yoriginalt
� Threshold values: Detection threshold e1, Attack cost limit e2, Physical

limit e3
Outputs: Attackers control actions (uAt in Eq. 2): Section 4.1: uAt ; Section 4.2:
yAt ; Section 4.3: yAt
SAGE Attack procedure:
1. Specify the objective function in the format of Eq. 2
2. Solve for the attacker’s control action utilizing the Branch-and-Reduce

framework introduced in Section 3.2.3
3. Deploy the attacker’s control actions to the cyber-physical system
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goal would be to have no variation so Yref
t ¼ 0

!
: In this

case, uICt is chosen as historic data of the same length as the
attack to mimic a replay attack. Furthermore, the cost func-
tion is chosen as

CðuAj, t)¼
0, for j ¼ 1, 3
2, for j ¼ 2, 4

:

�

This represents the fact that the roll gap (j ¼ 1, 3) is easy
to attack while the roller force (j ¼ 2, 4) requires more effort
because they are protected through different security proto-
cols. The monitoring statistic f �ð Þ is set to the MEWMA
monitoring statistic T2

t :
The optimization problem was solved using the proposed

BARON algorithm for the SAGE formulation in Section
3.3.2. For better visualization, only 150-time steps of the
attack are visualized in the following figures. The attack
avoids detection by the MEWMA chart as visualized in
Figure 3.

On the other hand, the attack leads to maximal damage
to the system response, which is far away from the normal
system response (Figure 4).

4.1.2. SAGE attack performance evaluation and compari-
son with other methods

To show that small perturbations of the control variables
can lead to a large change in the system response, the
Attack Effectivity (AE) and Average Perturbation (AP) are
computed as follows:

� Attack effectivity AE ¼
P4

j¼1

Pn

t¼1
|uICj, t�uAj, t |=n

� �
P4

j¼1
ruIC

j

� �

� Average Perturbation AP ¼
Pn

t¼1
|Yref

t �YA
t |=n

rY
,

where n denotes the length of the attack, ruICj is the in-con-
trol standard deviation of control variable j,

rY is the in-control standard deviation of the system
responses, and YA

t is the resulting system response to the
attack. Those metrics essentially measure the absolute dis-
tance between in-control and attack in terms of the number
of in-control standard deviations. The results are summar-
ized in Table 2 showing the small perturbation levels of the
attacks while achieving very effective attacks.

To further evaluate the effectiveness of the proposed SAGE
attack, seven machine learning techniques commonly used in
the literature for cyber-attack detection algorithms in CPS are
evaluated for their effectiveness to detect stealthy attacks (see
Table 5, which is presented later in the article). The hyper-
parameters of the respective methods were tuned via grid
search to achieve the best possible detection results. In par-
ticular, a Support Vector Machine (SVM), k Nearest Neighbor
(kNN), Random Forest (RF), Bagging, Gradient Boosting
Machine (GBM), Decision Tree (DT), and a Deep Neural
Network (DNN) were used to classify the presence of an
attack. The labels for those supervised machine learning meth-
ods are obtained as follows: The normal operating conditions

are labeled as no attack, and the generated attack signals
obtained via our SAGE framework are labeled as an attack.
This shows the potential of our method: using our stealthy
attack framework, sophisticated attacks can be generated,
which can be utilized for supervised learning approaches.

We note that the proposed SAGE attacks were not aware
of those detection algorithms when we formalized the SAGE
optimization problem. In particular, those detection func-
tions were not considered as a detection function f ð�Þ during
the optimization of the attack. We simply enforce the
MEWMA, which will incapacitate most of the detection
methods. Note that not even distributional distances such as
Kullback–Leibler or Wasserstein distances had to be utilized
to fool those detection methods.

The results in Table 3 show that if the SAGE attack consid-
ers the MEWMA statistic, which ensures that the attack and
in-control data are similar in terms of their first two distribu-
tion moments (mean and (co)variance), none of those six
methods can achieve satisfactory detection performance.
While the DNN performs the best, its detection accuracy of
54.79% is not sufficient for reliable and fast attack detection.
Note that a random coin flip (i.e., attack, no attack) at each
time point would result in a 50% accuracy.

This example shows how flexible the SAGE formulation
can be adjusted to make the existing detection algorithms
ineffective even if the detection algorithm such as the
machine learning classifiers are not known a priori.

4.2. Case study with image data

In this subsection, we will provide a generalization of the
SAGE attack to learning-enabled CPSs utilizing two state-of-
the-art anomaly detection algorithms. Another goal of this
case study is to illustrate the potential of the SAGE frame-
work on other data formats, in particular image data. We
provide a case for the severe consequences of small, but
intentional, perturbations to control variables on image
responses in CPSs. Therefore, we will attack both the
Smooth Spare Decomposition (SSD) method (Yan et al.,
2017), which is a benchmark image denoising and anomaly
detection algorithm in the field of manufacturing, and a
Convolutional Neural Network in combination with Local
Interpretable Model-Agnostic Explanations (Ribeiro et al.,
2016), which is a state-of-the-art method in the field of clas-
sification and object detection.

The dataset used for both attacks is the Northeastern
University (NEU) surface defect database (Song and Yan
2013), which contains six typical surface defects of hot-
rolled steel strips. The dataset includes 1800 grayscale
images, with 300 samples of each of the six different surface
defects (i.e., rolled-in scale (RS), patches (Pa), crazing (Cr),
pitted surface (PS), inclusion (In) and scratches (Sc)).

4.2.1. SAGE attack on smooth-sparse-decomposition
Firstly, we attack the SSD method (Yan et al., 2017), which
decomposes an image into three components: A smooth
image background, sparse anomalous regions, and random
noise, as illustrated in Figure 5.
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The goal of the attack is to add small perturbations to
the image, which are indistinguishable from the original
image for the human eye. To make this perceived image loss

more objective, we measure the distance between normal
and attacked images in terms of a L2-norm perturbation,
which is a standard procedure in computer vision.

However, those perturbed attack images should lead to
a bad system response. In this case, the system response is
the anomaly region. We want to change the anomaly
region as much as possible. When decomposing the image
into background, anomaly, and noise via SSD, we want to

Figure 2. SAGE attack to a hot rolling process.

Figure 3. Attackers’ control actions (red) and in-control data (black) are both within the control limits of the MEWMA chart.

Figure 4. System response after an attack (red) and in-control system response (black).

Table 2. AE and AP of SAGE attacks.

AE AP

MEWMA Attack 11.024 0.123

IISE TRANSACTIONS 63



detect the anomalies in different regions than where they
actually do exist. This means, when the operators try to fix
the problem, they will draw a wrong conclusion regarding
the root cause of the anomalies and make the damage
even worse by taking the wrong actions. In this circum-
stance, the SAGE attack formulation reduces to the follow-
ing optimization problem:

min
yAt

�kha � hSSDa yAt
� �k2F

þ k1kyoriginalt � yAt k2 þk2kyoriginalt � yAt k1þk3kyAt�1 � yAt k22
(9)

where yAt denotes the image that the attacker will inject into
the system at time t, ha denotes the fixed and known anomaly
region of the normal image, hSSDa is a function of yAt and
denotes the extracted anomaly region from the attacker’s image

via the SSD method. The goal of the attacker is to maximize
the damage by letting hSSDa be as far away as possible from the
ground truth anomaly ha: Furthermore, to avoid being
detected, the attackers’ image yAt should be close to the original

image before the attack yoriginalt in terms of a L2-norm perturb-
ation. The computational cost increases with the number of
pixels attacked in an image. Therefore, the cost function is
chosen as the l1-norm to induce sparsity and attack as few pix-
els as possible. Since the monitoring of a process usually con-
sists of streaming data from each time step t, the added
perturbations in consecutive time steps should not be too differ-
ent since this might be physically impossible. Furthermore,
extreme changes over time might alert appropriate detection
algorithms and lead to detection. This behavior is enforced by
the third and the last terms in the formulation (Equation (9)).

The SAGE attack on SSD (Equation (9)) was solved using
the BARON framework introduced in Section 3.2.3. As
shown in Figure 6, the image before and after the attack is
almost indistinguishable to the human eye.

On the other hand, the outputs of the SSD algorithm
before and after the attack are significantly different
(Figure 7). After the attack, the false alarm rate has
increased significantly, due to many regions now being iden-
tified incorrectly as surface defects. This effect cannot be
achieved by simply adding random noise to the images since
the SSD method inherently decomposes the pictures in a
smooth, sparse, and noise component.

Table 3. Detection results of different machine learning methods (bold marks
best-performing).

Method

MEWMA Attack

Accuracy (%) Precision (%) Recall (%) F1-Score (%)

SVM 48.28 50.50 47.64 49.03
kNN 47.89 49.75 46.89 48.28
RF 48.58 49.53 48.61 49.07
Bagging 48.49 51.04 46.89 48.88
GBM 51.84 52.11 51.83 51.97
DT 52.08 52.36 51.81 52.08
DNN 54.79 54.05 55.56 54.79

Figure 5. Decomposition of the image into the background, anomaly, and noise (Yan et al., 2017).

Figure 6. Images before and after the attack of exemplary steel surface defect.
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To show the generality of the SAGE formulation in
attacking multiple classes of anomalies, the entire data set of
1800 images is selected and the following metrics are
defined corresponding to the objectives of the attacker:

� Attack effectivity: AE ¼
P

1>0 h
original
a �hAaj j� �

1>0ðhAa Þ

� Average Pixel Perturbation: APP ¼
Pn

k¼1

Pm

l¼1
Yoriginal
kl �YA

klj j
n�m�255 ,

where n and m denote the height and width of the image,
respectively. In this case study, the images have the size n ¼
m ¼ 200: The larger the AE value, the more damage the
attacker can do to the anomaly region; and the smaller the
APP value, the closer the attacked image will be to the ori-
ginal image. Note that the APP is scaled by 255 to account
for the range of the pixel intensity values from 0 to 255.
The averaged results of those metrics for the 1800 images
are shown in Table 4.

As we can see from the results of the surface defects,
after applying small, but intentional, perturbations via the
SAGE framework, the SSD algorithm can be fooled by
falsely adding and/or deleting anomaly regions, while gener-
ating an attack image that is virtually indistinguishable to
the human eye. This case study shows the generality of the
SAGE framework when applied to image data, even for
sophisticated anomaly detection algorithms such as SSD,
which utilizes advanced optimization techniques. Therefore,
our proposed framework can easily be adapted for other
image anomaly detection methods, as long as the parameters
of the detection algorithms are explicitly known or at least
predictions from the detection algorithm can be accessed in
a black box manner.

4.2.2. SAGE attack on CNN-LIME
This case study will use the SAGE strategy to attack a
CNN-LIME (Ribeiro et al., 2016). A Local Interpretable

Model-Agnostic Explanation (LIME) explains the prediction
of any classifier by treating it as a black box model and
learning an interpretable model locally around the predic-
tion. A LIME finds the region of an image that leads to the
classification of that image to a particular class. Given this
fact, it is related to object detection algorithms that locate
objects of interest in an image by predicting a boundary
around the object. Based on previous research, object detec-
tion algorithms are much more difficult to attack (Xie et al.,
2017). Therefore, attacking CNN-LIME will demonstrate the
immense capabilities of the proposed SAGE formulation in
attacking a wide range of algorithms.

Development of a CNN-LIME model based on the NEU
surface detection datasets:

In the modeling efforts, transfer learning with weights
from the MobileNet is utilized to obtain a good classification
model. A 99.9% model accuracy is achieved by initializing
the CNN architecture with those weights and fine-tuning it
on the NEU surface detection dataset. These accuracy results
utilizing transfer learning outperform recently published
results from He et al. (2019) on a ResNet50 trained from
scratch on the dataset (99.67% accuracy). Therefore, the
results can be considered state-of-the-art performance on
the NEU dataset. Afterward, the LIME algorithm is utilized
to explain the predictions of the CNN model and identify
the anomaly regions in the images. Let the CNN model be
denoted by f : R

d ! R, where f ðyÞ is the probability that
an image y belongs to a certain class. Furthermore, PyðzÞ
denotes the proximity measure or locality between an image
z to y: Lastly, Lðf , g,Py) measures how unfaithful g is in
approximating f in the locality defined by Py: To ensure
both interpretability and local fidelity, the explanation pro-
duced by LIME is obtained by balancing Lðf , g,Py) and
XðgÞ, which is a measure of complexity (as opposed to

Table 4. AE and APP of SAGE attack applied to SSD.

AEE (%) APP

SAGE Attack 40.534 0.0482

Figure 7. Exemplary recovered anomaly using SSD from the original and the attacked images.

Table 5. Exemplary classification results before and after the attack (highest-
class probability bold).

Class Label RS PS Cr Pa In Sc

Before Attack 0.001 0.000 0.002 0.996 0.001 0.001
After Attack 0.041 0.107 0.021 0.0836 0.6954 0.052
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interpretability) of the explanation g via the following opti-
mization problem:

n yð Þ ¼ argmingL f , g,Py
� �þ XðgÞ (10)

LIME has achieved state-of-the-art explanatory perform-
ance of CNN classification results on critical applications
such as tumor classification. Interested readers are referred
to the results in Ribeiro et al. (2016) for further details and
links to the corresponding code repository.

SAGE attack on the CNN-LIME: The SAGE attack for
the CNN-LIME is formalized as the following:

min
yAt

�khoriginalt � hCNN yAt
� �k2F�k0knoriginal � nLIME yAt

� �k2F
þ k1, 1kyoriginalt � yAt k2 þ k1, 2kvec yoriginali � yAi

� �
� D

� vec yoriginali � yAi

� �T

k2Fþk2kyoriginalt � yAt k1 (11)

where h denotes the predicted class probabilities and n is
the explanation produced by LIME for the class predictions.
“Maximizing damage” in this setting consists of two parts:
first, the attacker aims to misclassify the anomaly images,
and second, the attacker aims to change the explanatory
region away from the original one to make the attacker’s

malicious class prediction seems legitimate. To avoid detec-
tion, we minimize the L2-norm perturbation between the
original and the attacker’s image yAt : Furthermore, the
changes in the image should be smooth to preserve the spa-
tial dependencies to avoid detection. Therefore, the smooth-

ness penalty k1, 2kvec yoriginalt � yAt

� �
�D � vec yoriginalt �

�
yAt ÞTk2F is applied, where D is the second-order smoother
that applies to the vectorized difference between the original
and the attacker’s image. Additionally, the increase in com-
putational cost with each attacked pixel is penalized via a
L1-norm sparsity constraint. Similar to the image attack on
the SSD algorithm, the attacker’s image can hardly be distin-
guished from the original one as shown in Figure 8.

In this attack formulation, the goal is to misclassify a
given true process anomaly class as any of the remaining
five class labels. From the results in Table 5, we can see that
the correct class patches (Pa) are identified with very high
confidence (99.6%) before the attack. After the attack, the
probability of the correct class reduces to 0.8%, and the class
inclusion (In) was chosen with the highest confidence
(69.5%). It can also be observed that the exemplary classifi-
cation result changes significantly among different faulty
patterns in the NEU data sets as shown in Table 5.

Any other process anomaly class can be attacked similarly
as summarized for the 1800 images in the dataset in Table 6.
If the attacker not only wants to misclassify the anomalies,
but also assigns the picture to a specific prescribed class, the
first penalty term in Equation (10) can be adjusted
accordingly.

The second term of the first objective of the attack (i.e.,
maximize damage) was to change the explanatory region
derived via LIME as far as possible from the original one to
avoid any suspicion and justify the differently classified
anomaly after the SAGE attack on the image. Figure 9 shows
an example of the severe change in the explanatory region
after the attack.

The small pixels around the identified regions after the
attack coincided with the inclusion anomaly, which has the
highest-class probability after the attack. This will avoid
detection by the defender while leading to wrong conclu-
sions about the underlying process anomaly.

The SAGE attack on CNN-LIME was applied to the
entire dataset of 1800 images. The evaluation metrics for
those attacks are as follows:

Figure 8. Original image (left), added perturbations (middle), and attackers’ image (right) of exemplary surface defect.

Table 6. Average attack metrics of the SAGE attack applied to CNN-LIME.

RACA for CNN (%) AE for LIME (%) APP

SAGE Attack 22.495 69.534 0.0716

Figure 9. Original explanatory region computed via LIME (left) and attacked
explanatory region (right) of exemplary surface defect.
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� The change of classification is denoted as the Ratio of
Attacked to Clean correct class Accuracy (RACA) as fol-
lows:

RACA ¼ 1
n

P
i2Attack LðyAi jY iÞP

i2Original Lðyoriginali Y iÞ,j
� where LðÞ denotes the accuracy loss of a single picture yi

with true class Y i and n is the number of image samples.
Note, a smaller score (RACA) indicates a better attack.

� The change in the LIME explanatory region is denoted
by the AE as defined earlier.

� The attacker’s perturbation to the input image is denoted
by the APP as defined earlier.

The averaged results for the entire dataset are reported in
Table 6.

The results show the significant effectiveness of the gen-
eral SAGE attack on a large number of image classification
results computed via CNN-LIME. We note that the SSD
algorithm is much more vulnerable to perturbations than
CNN-LIME. The SSD attacks exploit very few weak spots in
the image and change the pixel value significantly to destroy
the smoothness of the background. The CNN-LIME attack
has a slightly higher APP of 0.0716. To both change, the
classification result and explanatory region, a much larger
number of pixels need to be attacked. However, the SAGE
formulation can exploit the weaknesses of both SSD and
CNN-LIME very effectively. Due to this fact, the SAGE
attack provides an effective generalization for existing adver-
sarial example generation schemes in the setting of a black-
box attack.

Even in the case of black-box attacks, where the detection
algorithm is not known to the attacker, the proposed SAGE
framework can cause severe damage to a system while stay-
ing undetected by commonly used machine-learning classi-
fiers. This provides a strong case for the generality and
effectiveness of the proposed framework. SAGE can not only
exploit weaknesses of particular algorithms through its flex-
ible formulation but also make replay non-essential for
effective attacks by mimicking normal operating conditions.

5. Conclusion

We have introduced SAGE as a holistic framework for
attack generation in a CPS, which incorporates the three
main objectives of an attacker (maximize damage, avoid
detection, and minimize the attack cost) and the physical
constraints of the CPS. This research is intended as a step-
ping stone for researchers to develop new research method-
ologies for cyber-physical attack detection.

The results of this study make a case that by solving the
proposed optimization problem then SAGE attacks can have
devastating effects on CPS while staying undetected by the
system’s monitoring algorithms. This directly highlights the
urgent need for further research in the detection method-
ology that studies the stealthy and adversarial behavior of
cyber-physical attacks. By proposing an efficient algorithm
with convergence guarantees for solving this nonconvex

optimization problem, we provide a comprehensive model-
ing platform for stealthy attacks on a CPS. We compare our
SAGE framework with several mainstream attack detection
techniques, which did not utilize stealthy attacks as their
input data. We show that the performance deteriorates sig-
nificantly under worst-case, stealthy attacks.

The SAGE framework can also be used to evaluate newly
developed detection algorithms: By plugging the detection
function back into the second objective of the attacker
(avoid detection), the robustness of cyber-physical attack
detection algorithms can be evaluated: If the detection per-
formance degrades below a certain threshold (e.g., 50% cor-
responding to a random guess), it is an indication that the
proposed algorithm is not robust towards stealthy attacks.
As an intermediate sanity check, we suggest black-box
attacks for a given system as illustrated in the hot-steel roll-
ing case study: In this setting, we did not directly specify the
detection algorithm during the SAGE attack generation. The
attack data was just regularized to mimic the normal operat-
ing conditions in terms of the EWMA statistic. Newly devel-
oped detection schemes should have state-of-the-art
performance on such types of benchmark attacks.

The limitations of the proposed framework are settings,
in which a large number of detection methods are used to
monitor the systems: In this setting, it becomes hard to find
a globally optimal solution, that maximizes damage, avoids
detection, keeps the attack cost low and stays within the
physical limits of the system. However, in this setting, the
false-alarm rate also might be inflated under normal operat-
ing conditions. Furthermore, SAGE currently is not able to
dynamically adjust to changes in the detection method. Our
future work will address those two limitations.
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