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AUDIT: Functional Qualification
in Additive Manufacturing Via
Physical and Digital Twins
Additive manufacturing (AM) has revolutionized the way we design, prototype, and produce
complex parts with unprecedented geometries. However, the lack of understanding of the
functional properties of 3D-printed parts has hindered their adoption in critical applica-
tions where reliability and durability are paramount. This paper proposes a novel approach
to the functional qualification of 3D-printed parts via physical and digital twins. Physical
twins are parts that are printed under the same process conditions as the functional
parts and undergo a wide range of (destructive) tests to determine their mechanical,
thermal, and chemical properties. Digital twins are virtual replicas of the physical twins
that are generated using finite element analysis (FEA) simulations based on the 3D
shape of the part of interest. We propose a novel approach to transfer learning, specifically
designed for the fusion of diverse, unstructured 3D shape data and process inputs from mul-
tiple sources. The proposed approach has demonstrated remarkable results in predicting
the functional properties of 3D-printed lattice structures. From an engineering standpoint,
this paper introduces a comprehensive and innovative methodology for the functional qual-
ification of 3D-printed parts. By combining the strengths of physical and digital twins with
transfer learning, our approach opens up possibilities for the widespread adoption of 3D
printing in safety-critical applications. Methodologically, this work presents a significant
advancement in transfer learning techniques, specifically addressing the challenges of
multi-source (e.g., digital and physical twins) and multi-input (e.g., 3D shapes and
process variables) transfer learning. [DOI: 10.1115/1.4063655]

Keywords: functional qualification, additive manufacturing, transfer learning, data fusion,
computer-integrated manufacturing, inspection and quality control, modeling and
simulation, process engineering, production systems optimization

1 Introduction
Additive manufacturing (AM), commonly known as 3D print-

ing, has become a popular manufacturing technique due to its
ability to produce complex parts with unique geometries. The
versatility of 3D printing has made it a popular choice in various
industries, such as aerospace and healthcare. However, the lack of

understanding of the functional properties of 3D-printed parts has
hindered their adoption in critical applications where reliability
and durability are essential. Destructive testing is a common
method for assessing the functional properties of a part, but in
many cases, it may not be possible or practical to perform destruc-
tive testing on the part to be used. Destructive testing may damage
the part, rendering it unusable. In addition, destructive testing is
often time-consuming and expensive, which may not be feasible
for large-scale production. Furthermore, the material properties of
3D-printed parts can vary significantly depending on the printing
process, material type, and post-processing techniques used.
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Existing research on the functional qualification of 3D-printed
parts has mainly focused on the characterization of material proper-
ties or the development of predictive models. However, these
approaches are often limited in their ability to capture the
complex interactions between the as-printed 3D shape, material
properties, and the printing process variability.
We hypothesize that the only way to verify the functional prop-

erties of a part without destructive testing is through the use of phys-
ical and digital twins. Physical twins are printed under the same
process conditions as the functional parts and undergo a wide
range of tests to determine their mechanical, thermal, and chemical
properties. Digital twins are virtual replicas of physical counter-
parts, created through finite element analysis (FEA) simulations.
More formally, according to NIST [1], “A digital twin is the elec-
tronic representation—the digital representation—of a real-world
entity, concept, or notion, either physical or perceived.” In our
case, these replicas are generated from 3D scans of the object and
enable precise assessment of the impact of shape inaccuracies on
functional characteristics. Together, physical and digital twins
enable accurate predictions of the functional properties of the
parts, without the need for destructive testing on the part to be
used. Figure 1 illustrates the concept behind the AUDIT (e.g., Func-
tional Qualification in Additive Manufacturing via Physical and
Digital Twins) framework, which combines physical and digital
twins for functional qualification.
To accurately predict functional characteristics, this paper pro-

poses a novel transfer learning technique for data fusion between
heterogeneous process data and unstructured 3D shape data. By uti-
lizing the knowledge from digital and physical twins, as well as the
process conditions, this approach enables the accurate prediction of
functional characteristics.
Overall, this paper presents a comprehensive approach to the

functional qualification of 3D-printed parts. This approach has the
potential to significantly improve the adaptation of 3D-printed
parts in critical applications, where their functional properties
must be accurately verified.
The remainder of the article is organized as follows. Section 2

provides a brief literature review. Then the proposed AUDIT frame-
work for functional qualification in additive manufacturing via
physical and digital twins is introduced in Sec. 3. Section 4 validates
the proposed methodology by using a real-world case study of
3D-printed polylactic acid (PLA) lattice structures. Furthermore,
the performance of the proposed method is compared with existing
benchmark methods in terms of estimation accuracy. Finally, we
conclude the article with a short discussion and an outline of
future research topics in Sec. 5.

2 Literature Review
In recent years, 3D printing has emerged as a transformative

manufacturing technology with a wide range of applications
across industries. As the demand for functional qualification of
3D-printed parts in safety-critical applications continues to grow,
researchers and practitioners have explored various approaches to
address this critical aspect. This literature review examines the
existing methods and their limitations, highlighting the need for
further advancements in the field.

2.1 Destructive Testing for Functional Analysis in 3D
Printing. Destructive testing has long been a common practice
for assessing the mechanical properties and performance of manu-
factured products. Mishra and Senthil [2] investigated the relation-
ship between applied force and breaking strain of 3D-printed PLA
parts using destructive testing with a universal testing machine
(UTM). Zeng et al. [3] used destructive compression testing to
study the behavior of honeycomb structures, revealing the correla-
tion between material bonding and fracture location. Li et al. [4]
quantitatively measured the post-yield crushing stress of honey-
combs through destructive testing, enabling the evaluation of hier-
archical honeycombs. Han et al. [5] conducted destructive testing
on 3D-printed concrete walls to derive a calculation formula for pre-
dicting failure loads.
However, the applicability of the aforementioned methods to

3D-printed parts is limited due to the irreversible nature of the
destructive testing process. Once a product is subjected to destruc-
tive testing, it becomes unusable, rendering it impractical for func-
tional qualification. This limitation raises the need for alternative
methods that can provide functional assessment without compro-
mising the integrity of the part.

2.2 Finite Element Analysis for Functional Analysis in 3D
Printing. FEA has been widely utilized to simulate and predict
the behavior of structures, including 3D-printed components.
FEA offers valuable insights into the mechanical response of
parts under different loading conditions. Cao et al. [6] compared
experimental and simulation results for different lattice structures,
investigating the effect of lattice shape parameters on stress using
numerical simulations. Lesueur et al. [7] explored the effect of inter-
nal structure geometry on the yield of a structure using an FEA
model, validated with experimental results.
However, FEA has its limitations, particularly when it comes to

capturing the variability introduced by different process conditions
in additive manufacturing [8]. Factors such as temperature, layer
thickness, printing speed, and material properties can significantly
influence the functional properties of 3D-printed parts. Several
studies have investigated the accuracy of computer-aided design
(CAD)-based compression simulations. Belhabib and Guessasma
[9] found that filament-based computations closely matched the
experimental deformation trends in the compression of hollow
structures, but they overestimated the performance of hollow struc-
tures by an average of 43%. Abbot et al. [10] also observed signifi-
cant discrepancies between simulation and physical compression
test results. FEA models, with their inherent assumptions and sim-
plifications, may not fully account for the variations of process con-
ditions during 3D printing, limiting their accuracy in functional
qualification.

2.3 Transfer Learning for Multi-Input, Multi-Source 3D
Transfer Learning. Transfer learning has emerged as a powerful
technique in machine learning, enabling knowledge transfer from
one domain to another. While transfer learning has shown promis-
ing results in various applications, its extension to the multi-input,
multi-source setting in additive manufacturing is still limited. The
lack of large-scale and diverse datasets, as well as the challenges

Fig. 1 Illustration of AUDIT functional qualification approach
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associated with obtaining samples representative of the entire
design space, pose obstacles to effectively applying transfer learn-
ing to functional qualification in 3D printing. Unlike structured
data types, 3D point cloud data introduce complexities stemming
from its inherent spatial and geometric attributes. The irregular
nature of point clouds, their varying densities, and the incorporation
of both structural and textural information necessitate specialized
methodologies that can effectively capture these features. The
focus on multi-source domain adaptation often revolves around
structured tabular or image data [11–13]. These challenges
demand a tailored approach that considers the unique characteristics
of 3D data. Consequently, current transfer learning methods are not
readily available to tackle the specific challenges posed by the func-
tional qualification of 3D-printed parts.

2.4 Digital Twins and Transfer Learning in Additive
Manufacturing. In the realm of additive manufacturing, both
digital twins and transfer learning have garnered attention. The lit-
erature spans diverse dimensions, ranging from initial conceptual
visions endorsing the integration of digital twins in metal additive
manufacturing for improved process models [14], to the explora-
tion of optimal process conditions [15], and their subsequent adap-
tation to novel shapes using transfer learning [16]. However, it is
important to note, that these methods do not predict shape varia-
tion or the functional attributes of individual products. Instead,
they focus on batch shape optimization by suggesting optimal set-
tings for specific shapes. Generative design has been explored to
generate intricate geometries via numerical simulations [17], but
it fails to account for quality and structural concerns arising
from process variation during printing. Additionally, a range of
work has tackled defect classification [18]. However, a classifica-
tion of defects may not offer the nuanced understanding needed for
certain situations, such as evaluating the significance of a keyhole
pore and whether it necessitates product rejection. Several compre-
hensive review articles [19,20] underscore the need for functional
qualification of 3D-printed parts that integrates both physical and
digital twins, capturing the information from complex and
diverse data sources.
The limitations discussed above highlight the challenges in func-

tional qualification for 3D-printed parts. Destructive testing is not
universally applicable due to the irreversible nature of the
process. FEA may not capture process variability, and transfer
learning methods lack applicability in the multi-input, multi-source
setting.
To overcome these limitations and address the research gaps

identified in the literature review, the AUDIT framework makes
several contributions. In particular, AUDIT includes:

• Integration of Physical and Digital Twins: introduces meth-
odology for functional qualification by combining physical
and digital twin concepts, bridging the gap between real-world
physical processes and their virtual representations through a
cohesive twin system.

• Consideration of Process Variability: Proposed a novel
methodology to model and account for inherent variations in
physical processes, enhancing the accuracy of predictions for
functional characteristics, and considering real-world manu-
facturing conditions and associated uncertainties.

• Incorporation of 3D Shape Data: Provided comprehensive
representation of physical objects by integrating 3D shape
data into the modeling process, enhancing the understanding
of complex relationships between 3D shape data, process set-
tings, and functional properties in additive manufacturing

• Multi-Source, Multi-Input Transfer Learning: Proposed a
transfer learning framework that can effectively leverage infor-
mation from diverse sources and inputs, including different
data types, for unsupervised transfer learning.

In conclusion, the AUDIT framework provides a comprehensive
solution that addresses the limitations of functional qualification in

the current literature. Its contributions pave the way for further
research and development, offering a pathway to overcome these
challenges and establish robust approaches for functional qualifica-
tion in the field of 3D printing.

3 AUDIT Methodology
This section presents the AUDIT framework as an approach to

functional qualification enabled by multi-source, multi-input trans-
fer learning via contrastive learning with augmentations. We con-
sider a specific data scenario, where we assume 3D measurements
of the 3D-printed part are available. However, in the context of
products and additive manufacturing processes, where obtaining
3D measurements can be challenging, it is possible to replace
the 3D point clouds by utilizing 2D imaging data from each
print layer, which can be represented as a 3D tensor or stack of
2D images. We would like to emphasize recent techniques
enabling the reconstruction of 3D point cloud data from 2D
image stacks through complementary data fusion with process fea-
tures [21]. This promising approach addresses the discretization
issue of 2D image stacks and holds potential for application in
our functional qualification work. Additionally, in the literature,
treating 3D point cloud data as a stack of 2D images is widely
adopted and effective [22]. Leveraging the well-established
image processing capabilities of convolutional neural networks
(CNNs) optimized for 2D data proves advantageous in various
applications involving 3D point cloud data [23]. While this repre-
sentation introduces further discretization, it offers valuable bene-
fits, such as compatibility with established data acquisition
methodologies in additive manufacturing and the effectiveness of
CNN methodologies, leading to promising results in practical sce-
narios [24]. Importantly, in certain applications, obtaining 3D
scans may not be feasible, especially for extremely complex
shapes. However, the shape features remain crucial for determin-
ing functional properties. In such cases, utilizing 2D image
stacks might be the best possible approach to extract valuable
insights and predict functional behavior effectively. Therefore,
without sacrificing generality, we assume that the 3D point
cloud measurements can be substituted with layer-wise 2D
imaging data.
From the object of interest, which is the functional part intended

for field use, a set of 3D point cloud measurements XOoI
S =

{XOoI
S,i }

NOoI

i=1 is available, where S is the subscript for a 3D shape, i
is the sample index, NOoI is the total number of samples, and the
sample XOoI

i consists of a set of nOoIi unstructured, varying-sized
3D measurement points (i.e., XOoI

i ∈ RnOoIi ×3). The object of interest
represents the target domain, for which we aim to enhance predic-
tion accuracy. Additionally, a set of process variables XP =
{XP,i}

NOoI

i=1 is available, which are the same for the object of interest
and the physical twin, since they are printed under the same process
conditions. Note that we do not assume the availability of the func-
tional property output variables YOoI (i.e., unlabeled dataset) in the
AUDIT framework, which enhances the practicality of this
approach by eliminating the need for an extensive dataset obtained
through destructive testing. The destructive testing labels of the
object of interest are solely utilized to verify the model’s
performance.
For the digital twin, a set of 3D measurement point cloudsXOoI

S =
{XOoI

S,i }
NOoI

i=1 of the 3D-printed part is available, which represents the
shape of the part. In addition, a set of material properties XDT

M =
{XDT

M,i}
NDT

i=1 of the part is available too, where the subscript M
denotes the material. Furthermore, functional property output vari-
ables YDT = {YDT}N

DT

i=1 are obtained via computer simulation (e.g.,
finite element analysis), where YDT ∈ RdDTy , and dDTy denotes the
dimension of the (multivariate) functional property, or dimension
of the output variables. For the digital twin, the process variables
XP are not available because it did not undergo a physical printing
process.
The physical twin, which is manufactured under identical process

conditions as the object of interest, exhibits similar design features
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but utilizes less material to conserve resources. However, it still
allows for destructive testing to assess the impact of the process
conditions. For the physical twin, a set of 3D measurement point
clouds XPT

S = {XPT
S,i }

NPT

i=1 and a set of process variables XP =

{XP,i}
NOoI

i=1 for the 3D-printed part are available. Note that the
object of interest and the physical twin are printed at the same
time on one print bed, so they are printed under the same process
conditions. Additionally, functional property output variables
YPT = {YPT}N

PT

i=1 are obtained from physical testing procedures,

where YPT ∈ RdPTy . For the physical twin, we did not measure spe-
cific material properties for each sample, and hence no material
properties XM are available.
Based on this dataset, we study the problem of unsupervised

domain adaptation for 3D point cloud models by adapting a 3D
model fθ parametrized by θ, where θ is obtained from multiple
labeled sources, multi-input domains (i.e., {XOoI

S , XDT
M , YDT},

{XPT
S , XP, YPT}) to an unlabeled target domain XOoI

S (i.e., object
of interest). The main objective of the AUDIT framework is to
improve the performance of the model fθ on the unseen test set of
the target domain, which requires careful consideration of the archi-
tecture and loss function to enable the learning of transferable
features.

3.1 Architecture Design and Big Picture. To accomplish this
objective, we employ multi-input encoders for both the target
(object of interest) and source domains (physical and digital
twins), allowing us to learn domain-specific features. These features
are then used in the discriminative head of the model, which bene-
fits from a shared encoder structure that learns transferable features.
The proposed framework is presented in Fig. 2, offers a high-level
overview.
Our architectural design hypothesis is based on the notion that 3D

networks progressively process domain-specific nontransferable
features while acquiring domain-invariant features. To capture
these distinctions, we utilize domain-specific encoders to learn low-
level features that are unique to each data domain. Subsequently, we
concatenate the features from the low-dimensional feature space
and perform contrastive alignment to achieve instance-level

feature alignment. Finally, we incorporate a discriminative head
that provides a supervision signal for both the physical and digital
twin domains. A discriminative head refers to the final layers of a
deep learning model that is responsible for making regression pre-
dictions or classifying inputs based on the learned features extracted
by the preceding layers. This head also predicts pseudo-labels for
the target domain, which represents the object of interest. These
pseudo-labels are continuously updated during the joint optimiza-
tion process.
Transfer learning for 3D objects is challenging due to significant

geometry shifts, such as variations in density and occlusion ratios
caused by diverse physical environments and sensor configurations.
Unlike 2D domain models trained on the backbone ImageNet, 3D
point cloud modeling lacks a well-trained, transferable backbone.
One of the reasons is the difficulty in reducing domain shifts for
low-level geometric representations in the 3D model architecture.
Our architecture addresses this challenge by leveraging domain-

specific 3D encoders that learn distinct mapping functions to
convert unstructured 3D point clouds into a low-dimensional
feature space. In our method, “domain-specific encoders” refer to
separate neural network encoders designed to extract distinctive fea-
tures from different source domains (i.e., digital twin, physical twin,
and object of interest domain). The encoders are domain-specific
since they do not share model parameters with other domains to
capture unique features present within each domain. The use of
domain-specific encoders offers several advantages:

– Separation of Domain-Specific Features: Domain-specific
encoders facilitate the disentanglement of domain-specific fea-
tures from shared features. By forcing the encoders to focus on
capturing domain-specific characteristics, we enable the model
to differentiate between features that are intrinsic to each
domain and those that are shared across domains.

– Enhanced Feature Discriminability: When the encoders are
tailored to their respective domains, the learned features
become more discriminative. This discriminability improves
the model’s ability to capture subtle differences and adapt to
variations. Domain-specific encoders prevent the model from
merging domain-specific attributes into a single, less informa-
tive representation.

Fig. 2 Overview of the proposed AUDIT framework for functional qualification
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– Robustness to Domain Shift: Domain-specific encoders con-
tribute to the model’s robustness against domain shift. As
each encoder specializes in learning domain-specific repre-
sentations, the model becomes more adaptable to variations
between sources and target domains. This adaptability is
crucial for effective alignment in scenarios where domains
exhibit dissimilarities due to changes in data collection con-
ditions or sensing mechanisms.

In summary, domain-specific encoders in our method play a
crucial role in enhancing the effectiveness of the contrastive
instance alignment. This enables domain adaptation on the target
domain while maintaining performance on the source domain, facil-
itating bidirectional knowledge sharing. Shared 3D encoders
co-train with data samples from both domains, compressing the
outputs of domain-specific encoders.

3.2 Selection of Physical Twin. The design of the physical
twin should be tailored to the specific attributes of the object of inter-
est and the goals of the functional qualification. For example, in our
case study, we were particularly concerned with the compressive
force behavior of lattice structures. Hence, through preliminary
experiments and FEA simulations, we identified high-stress
regions that occur for certain printing parameters/settings under spe-
cific forces and orientations. Based on those results, we can choose a
design that preserves the high-stress regions while conserving mate-
rials and reducing printing time. A practical approach to constructing
the physical twins is to utilize parametric models accessible through
CAD tools. These models allow us to extract and incorporate signif-
icant design characteristics, which have been identified through prior
experimentation and FEA analysis. The connection between the
physical twin and the object of interest stems fromourmachine learn-
ing model. This is in contrast to the current industrial practice of
printing two identical parts, subsequently subjecting one to destruc-
tive testing. This existing approach lacks a definitive link or model to
establish the equivalence and relationship between the two parts and
leads to high material usage and scrap rates. Our method effectively
remedies this shortcoming. Simultaneously printing a physical twin
alongside the object of interest enables us to evaluate how variations
in the printing parameters influence the functionality and specifica-
tions of the object of interest. In the case study, while we have
selected a quarter section of the lattice as the physical twin, the
impact of the excluded links is contained within our training
dataset. Through the integration of digital and physical twins into a
comprehensive machine learning model, we can significantly
enhance the precision of predictions for functional characteristics.
This enhancement is achieved by considering process variability
through the physical twin and process variables, alongside factoring
in the effects of 3D shapes andmaterials via the digital twin. The effi-
cacy of this approach has been demonstrated in our case study.While
we acknowledge that further exploration is needed to apply these
concepts to more intricate component shapes and diverse functional
qualification objectives, our intention is to introduce a novel concept
through our paper. We aim to address a critical problem—functional
qualification in AM—which will undoubtedly require further inves-
tigation for the development of appropriate physical twin designs tai-
lored to new objectives and components. A promising direction for
the design of physical twins is to draw inspiration from accelerated
testing techniques in reliability theory. For instance, one potential
strategy involves proportionally reducing the wall thickness of the
part and simplifying its structures in the physical twin. However, it
is crucial to incorporate uncertainty quantification methodologies
to establish confidence levels for the relationships established by
our model. The robustness and generalizability of our approach
depend on the careful selection of physical twin (source domain)
shapes that share large similarities with the object of interest. By
choosing a large overlap of geometric attributes and design complex-
ities between physical twin and object of interest, it is possible to
improve the method’s ability to effectively adapt to the target
domain.

3.3 Contrastive Instance Alignment. In this section, we
describe the contrastive instance alignment procedure using
pseudo-labels. The core idea behind the contrastive alignment is
to minimize the feature distance between similar samples from dif-
ferent domains. To encourage the learning of domain-invariant fea-
tures, we incorporate ideas from contrastive alignment learning in
2D vision. This encourages the development of deeper features
that resemble grid-based feature maps in 2D image tasks, making
them more transferable. During training, the discriminative head
minimizes MSE for the regression task using labeled samples
from both source domains (i.e., physical and digital twins).

Ldiscr =
1

NPT

∑NPT

i=1
‖YPT

i − fθ(X
PT
i )‖22

+
1

NDT

∑NDT

i=1
‖YDT

i − fθ(X
DT
i )‖22 (1)

To achieve domain adaptation, we utilize pseudo-labels, which
enhance the discriminative power of the network and ensure the
alignment of similar samples in the low-dimensional feature
space. This approach significantly improves the model’s generaliza-
tion capability and its ability to address domain shift issues. Speci-
fically, we choose the feature instance pair (FS

i , F
T
j ) based on a

similarity criterion as follows. In our setting, there are two
sources S, the physical twin PT, and the digital twin DT. The
target domain T is the object of interest OoI. For each source
feature instance FS

i , we aim to find a feature instance FT
j∗ from

the target domain that maximizes the cosine similarity.

j∗ = max
1≤j≤NT

{Φ(FS
i , F

T
j )}, 1 ≤ i ≤ NS (2)

where Φ(FS
i , F

T
j ) =

FS
i · FT

j

‖FS
i ‖ · ‖FT

j ‖
calculates the cosine similarity

between features of a source sample FS
i and a target candidate

FT
j . The decision to utilize cosine similarity was made after

careful consideration of the unique characteristics of our problem
domain and the intended goals of our approach:

– Scale Invariance for Varying Point Density: 3D point clouds
are inherently sparse and exhibit varying point densities
across domains due to different sensor configurations. By
choosing the cosine similarity, we leverage its scale-invariant
nature to ensure that our instance alignment method is not
affected by the overall density or magnitude of points in
each point cloud.

– Directional Information for Spatial Relationships: In the realm
of 3D point clouds, capturing spatial relationships is very
important. Cosine similarity considers the direction of the
vectors in the high-dimensional space, allowing us to capture
the alignment based on the orientations of the vectors rather
than just their magnitudes. This feature becomes valuable
when aligning instances to preserve spatial structures and geo-
metric arrangements, crucial for 3D point cloud tasks like
shape matching and object recognition across domains.

– Sparse Data Handling in High Dimensions: Cosine similarity
is effective when dealing with high-dimensional and sparse
point cloud data. In some point cloud representations like
voxels, the majority of elements in point cloud vectors might
be zero, rendering traditional distance metrics less effective.

In addition to minimizing the inter-class distance between
domains, we also constrain the intra-class distance between differ-
ent samples within the same domain. Hence, we get the following
loss functions for the contrastive alignment:

Linter(S, T) = −
∑

i∈NS

log
exp(FS

i · FT
j∗/τ)

exp (FS
i · FT

j∗/τ) +
∑

j∈NT exp (FS
i · FT

j )

(3)
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Lintra (D) = −
∑

i∈ND,j∈ND

log
exp (FD

i · FD
j∗/τ)

exp (FD
i · FD

j∗/τ) +
∑

j∈ND exp (FD
i · FD

j )
,

D = {PT, DT, OoI} (4)

Lcontr,align = Linter(PT, OoI) + Linter(DT, OoI) + Lintra(PT)

+ Lintra(DT) + Lintra(OoI) (5)

where τ denotes a tuning parameter for the strength of domain adap-
tion. The contrastive alignment loss Lcontr,align considers the pair-
wise relations of samples between and within domains (source
and target) to enable inter-domain transfer learning and improved
discriminative performance on intra-domain tasks. Finally, by com-
bining the loss terms in Eqs. (1) and (5), we optimize the model fθ(·)
by minimizing the following loss:

min
θ

Ldiscr + λ · Lcontr,align (6)

where λ is a tuning parameter to balance domain adaptation (i.e.,
contrastive alignment) and the learning of the discriminative task.
Due to the sparse distribution of features in point clouds, achieving
effective alignment between domains through global distribution
alignment is challenging. In our experiments, we observed that
using contrastive alignment alone introduces a mismatch in point
density and occlusion ratio between the sample distributions of
pseudo-labels and ground truths in the target domain. To address
this issue, we incorporate effective augmentation through hard
sample mining to further enhance domain adaptation.

3.4 Hard Sample Mining. In the context of 3D measurements
in manufacturing, variability arises from factors such as variations
in point cloud density and the presence of occlusions. These
factors have a significant impact on the effectiveness of contrastive
instance alignment. Point cloud density can vary between the object
of interest and the physical twin, with some measurement tech-
niques producing sparse point clouds while others generate denser
ones. This discrepancy poses a challenge when aligning sample dis-
tributions, as the contrastive instance alignment approach may favor
densely populated areas, potentially neglecting patterns with sparse
point clouds. Moreover, additive manufacturing often involves
complex geometries and occlusions, making it challenging to
capture complete object geometry. Consequently, pseudo-labels
used for alignment may not accurately represent patterns with
severe occlusions. Acknowledging and addressing these factors is
essential for accurate and comprehensive 3D transfer learning in
additive manufacturing and other manufacturing domains.
To address these limitations, we leverage hard sample mining as

a transformation technique for point clouds that specifically consid-
ers geometry mismatches. This approach, introduced by Biehler
et al. [25] for single-source transfer learning, aims to maximize
network learning by generating augmented samples, denoted as
XOoI
i,hsm, that meet two requirements. First, XOoI

i,hsm should be more
challenging than the original sample XOoI

i , ensuring a larger

discriminative loss (Ldiscr(XOoI
i,hsm) ≥ Ldiscr(XOoI

i )). Second, XOoI
i,hsm

should not lose its 3D shape features and should describe a shape
that is not too different from XOoI

i . To control the augmentation
magnitude, the difference in discriminative losses Ldiscr(XT

i,hsm) −Ldiscr(XT
i ) is upper bounded by a dynamic parameter δ (i.e.,

Ldiscr(XT
i,hsm)− Ldiscr(XT

i ) ≤ δ · Ldiscr(XT
i )). The underlying intuition

is as follows: During the initial stages of training, when the model is
fragile, it is preferable to have a smaller δ. This choice ensures that
the generated hard samples are not excessively challenging for the
model to predict. As the model’s discriminative ability improves
over time, δ gradually increases, allowing for the generation of
more challenging hard samples. Hence, the dynamic parameter δ
is inversely proportional to the discriminative loss (i.e.,

δ = 1 +
1

Ldiscr
, ensuring δ≥ 1). Consequently, hard sample mining

loss, denoted as Lhsm, is computed as

Lhsm = −(Ldiscr(X
T
i,hsm) − δ · Ldiscr(X

T
i )) (7)

To efficiently obtain hard samples, Ref. [25] proposed a novel
algorithm that optimizes Lhsm without directly conducting gradient-
based optimization. This algorithm combines two components: sim-
ulating object occlusions by altering the geometry of easy samples
and discarding critical points along the gradient direction from
existing dense point clouds. The attribution score, indicating the
contribution of each point to the discriminative loss, plays a
crucial role in hard sample mining. Aggregating highly scored
points identifies important segments/subsets in a point cloud. By
discarding points with high attribution scores, a “hard sample” is
created for the model to predict. The transformed point clouds
achieved through hard sample mining contribute to effective con-
trastive instance alignment by reducing the distribution mismatch
induced by pseudo-labels in the target domain. Figure 3 illustrates
the hard sample mining algorithm, involving random viewpoint
selection, calculation of point attributions, and deletion of points
with large attribution scores until the termination criterion is met
Ldiscr(XT

i,hsm) − Ldiscr(XT
i ) > δ · Ldiscr(XT

i ).
The transformed point clouds focus on effective contrastive

instance alignment by reducing the distribution mismatch of the
target (object of interest) domain induced by pseudo-labels.
Figure 4 illustrates the AUDIT procedure specifically designed

for multi-source constructive alignment. In the context of functional
qualification in additive manufacturing, the conventional use of
contrastive loss tends to effectively align easily recognizable 3D
objects, such as parts with consistent point density and minimal
occlusions. However, this approach often neglects the challenging
samples encountered in additive manufacturing, where different
parts may exhibit variations in point density and severe occlusions
due to complex geometries or intricate designs. Consequently,
using the conventional contrastive loss may lead to a mismatch in
point density and occlusion ratio between the sample distribution
of pseudo-labels and the ground truths in the object of interest
(target) domain. To overcome this issue, we leverage the hard
sample mining algorithm [25] in the additive manufacturing
context. This algorithm transforms point clouds by considering

Fig. 3 Illustration of hard sample mining algorithm [25]
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specific geometry mismatches across the object of interest and phys-
ical twin. By addressing these challenges, the hard sample mining
algorithm significantly improves the domain alignment, enabling
more effective transfer learning and alignment among the objects
of interest, the physical and digital twins.

3.5 Unified AUDIT Framework. We propose a stepwise
training procedure with a warm-up process to train the AUDIT
framework as shown in Algorithm 1. Specifically, we first pre-train
the source models of the physical and digital twins on the labeled
source domain and use them to generate pseudo-labels on the
target set of the object of interest. We then conduct hard sample
mining [25] and augment the target set. Next, we warm up the
model following Eq. (6), which allows a more stable convergence
in the early stages of training. For the remaining epochs, we
update the pseudo-labels using stepwise co-training. During this
process fθ( · ) gradually adapts to the object of interest (target)
domain while maintaining the in-domain performance.
The model architecture details are available from the source

code of the AUDIT method, which will be open source upon
paper publication. The hyperparameters are tuned using Bayesian
optimization.

Algorithm 1 AUDIT algorithm for functional qualification via
multi-source, multi-input transfer learning between digital and
physical twins and the object of interest

Inputs:

• Digital twin (Source 1): Labeled point cloud dataset from source domain
DDT = {(XDT

i , YDT
i )}NDT

i=1
• Physical twin (Source 2): Labeled point cloud dataset from source domain

DPT = {(XPT
i , YPT

i )}NPT
i=1

• Material properties for digital twin simulation: XDT
M

• Process measurements (identical for object of interest and physical twin):
XP

• Object of interest (target): Unlabeled input point cloud from target
domain XOoI

S
• Algorithm parameters: Network architecture and termination tolerance ε

Output:

• Learned network weights θ of model f (·)

Algorithm:

(1) Pre-train base model
f init= fit(DDT, DPT)

(2) Generate pseudo-labels for target domain samples
{�YOoI

i }NOoI
i=1 = predict( f init , {XOoI

i }NOoI
i=1 )

(3) Mine hard samples to augment the target set
DOoI

hsm0
= {(XOoI

i,hsm0
, �YOoI

i,hsm0
)}

NOoI,hsm0
i=1 = hsm({(XOoI

i , �YOoI
i )}NOoI

i=1 )
(4) Initialize the model with 3D base model

fθ = f init

(5) Warm start of AUDIT model
f 0θ = fit(DDT, DPT, DOoI

hsm0
)

(6) AUDIT iteration: Iteration index k
While not converged:

6.1 Update pseudo-labels:

{�YOoI
i,hsmk

}NOoI ,hsmk
i=1 = predict( f 0θ , {X

OoI
i }NOoI

i=1 )
6.2 Add new hard samples to the target dataset [25]

DOoI
hsmk

= {(XOoI
i,hsmk

, �YOoI
i,hsmk

)}
NOoI,hsmk
i=1

= hsm({(XOoI
i,hsmk−1

, �YOoI
i,hsmk−1

)}
NOoI,hsmk−1
i=1 )

6.3 Model update f kθ = fit(DDT, DPT, DOoI
aug,k)

Termination check: | f k−1θ − f kθ | ≤ ε

3.6 Discussion of Properties and Limitations. The effective-
ness of transfer learning is not always guaranteed, unless its basic
assumptions are satisfied: (1) the learning tasks of the domains
are related/similar; (2) the source domain and target domain data

distributions are not too different; and (3) a suitable model can be
applied to both domains. Violations of these assumptions may
lead to negative transfer (NT), i.e., introducing source domain
data/knowledge undesirably decreases the learning performance
in the target domain. We would like to highlight two key properties
of our approach in handling this issue: contrastive instance align-
ment using cosine similarity and the incorporation of hard sample
mining:

– Contrastive Instance Alignment Using Cosine Similarity: Our
method employs contrastive instance alignment as a core com-
ponent. By utilizing cosine similarity, we focus on aligning
instances while considering their relative positions in the
feature space. This approach helps mitigate negative transfer
by promoting the alignment of instances that share semantic
similarities from both the source and target domains. This
alignment encourages these instances to group together in
the feature space, effectively preserving domain-specific char-
acteristics. The use of cosine similarity as a distance metric
promotes the alignment of semantically similar instances,
even in scenarios where other distance measures might not
be as effective.

– Hard Sample Mining: Negative transfer can stem from includ-
ing irrelevant or conflicting source domain instances. To mit-
igate this, our method employs hard sample mining during
the instance alignment process. Hard sample mining involves
identifying challenging samples from the source domain that
are difficult to align with the target domain. By focusing on
these challenging instances, our approach reduces the likeli-
hood of introducing undesirable knowledge from the source
domain into the target domain. This strategy enhances the
model’s adaptability by prioritizing instances that contribute
positively to the alignment process.

Through the synergistic application of contrastive instance align-
ment with cosine similarity and the incorporation of hard sample
mining, our approach actively addresses the negative transfer
challenge.
Acknowledging the potential scarcity of physical twins in com-

parison to digital twins, which may lead to imbalanced data, we
emphasize the adaptability of our method with slight adjustments.
These adaptations are outlined as follows:

– Parallel Feature Learning With Imbalanced Data: Within the
framework of co-training, the imbalanced domain can be con-
sidered as one view while the balanced (or artificially
balanced) domain serves as the other. This preserves the orig-
inal co-training mechanism while mitigating the imbalance
challenge.

– Data-Specific Sampling: When imbalances are present in
source and target domains, distinct sampling strategies can
be employed for each dataset. Strategies such as oversampling,
undersampling, or adaptive sampling can be applied to address
the imbalance in the imbalanced domain, while the balanced
(or artificially balanced) domain adheres to regular co-training
principles without extensive alterations.

However, we acknowledge that data imbalances can introduce
biases in the alignment process. Our method is designed with a
certain level of flexibility to accommodate such concerns via
more advanced strategies as follows:

– Loss Re-Weighting: Implementing loss re-weighting mecha-
nisms assigns higher weights to instances from the minority
domain. This corrective measure counteracts the impact of
imbalanced data by directing the model’s focus toward under-
represented instances, thus fostering a more balanced
alignment.

– Transfer Learning Techniques: The use of transfer learning
techniques enables the utilization of pre-trained models or fea-
tures from the imbalanced domain to initiate the alignment
process. This leverages knowledge transfer from both the
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digital and physical twins, even when the latter’s data are
limited.

In conclusion, our model offers a robust approach for functional
qualification, employing both physical and digital twins within the
framework of multi-source, multi-input unsupervised transfer learn-
ing. Nonetheless, we recognize certain limitations that present excit-
ing opportunities for future research endeavors.

4 AUDIT Case Study—3D-Printed Lattice Structures
We conducted a real-world case study to demonstrate the poten-

tial of the AUDIT framework for functional qualification in additive
manufacturing via physical and digital twins. Our experiments use
fused filament fabrication (FFF) to print PLA specimens. The
printed object of interest is a body-centered cubic (BCC) lattice sit-
uated within a cubic-primitive (CP) (Fig. 5(a)). The dimensions of
the lattice unit cube are 5 cm×5 cm× 5 cm. To create a physical
twin, we extracted a one-fourth portion of the BCC-CP lattice struc-
ture. This approach allowed us to produce a physical twin that
required less material compared to the object of interest, while
still retaining similar design features (Fig. 5(b)). The physical
twin and the object of interest were printed using identical
process conditions. This enables us to understand how the printing
conditions of both parts impact their functional properties.

4.1 Experimental Setup. The specimens for the experiments
have been printed using a Prusa MK3S FFF printer developed by
Prusa Research, Prague, Czech Republic. The measurement setup
is complemented by a FLIR T360 thermal imaging infrared
camera with 1.3 MP resolution and a FARO Quantum ScanArm
with laser line probe. A microcomputer is used to log the nozzle
and print bed temperature. A noise detector is installed to collect

acoustic emission signals of the process. The experimental setup
is visualized in Fig. 5(c).
To capture the influence of process parameters on the FFF print-

ing process, a space-filling Latin hypercube design with N= 60
samples is utilized. The corresponding process parameter ranges
are reported in Table 1.
When conducting the experiments, 12 experiments failed due to

improper process parameter combinations, resulting in 48 samples
in total. For each of those experiments, 3D measurement point
cloud data from the FARO Scanner are available for both the
object of interest as well as the physical twin. Additionally, we
recorded in situ sensing data from six heterogeneous data sources
ranging from three data types tabular, functional curve, and image
data. The process data sources XP along with their typical dimen-
sions are listed in Table 2, where L= 250 denotes the number of
printing layers.
In terms of data preprocessing, the functional curves of the nozzle

and bed temperature are fixed to a length of 1000 using dynamic
time warping. The point clouds of the object of interest XOoI

S and
the physical twin XPT

S are up- or down-sampled to a fixed-point
number of Np= 60,000 resulting in a data dimension ℝ60,000×3 for
each sample. Note that these measurement points are unstructured
and can exhibit irregular spatial arrangements and varying densities.
In contrast to structured point clouds, these measurement locations
are not consistent across different samples.
To model the heterogeneous input data, we use the following

data-type-specific feature extractors: for the tabular data, employ
a fully-connect multi-layer perceptron (MLP) to extract features
from XP,1, XP,2, and XP,3. For the two functional curves (i.e.,
X (t)

h,4, X (t)
h,5), we utilize the deep CNN architecture proposed by

Yang et al. [26] in an autoencoder setting. As the feature extractor
for the infrared images X (t)

h,6, we utilize a convolutional autoencoder
structure proposed by Ref. [27]. Here we elaborate further on our
rationale for choosing specific neural network architectures tailored
to distinct dataset types:

Fig. 5 (a) Object of interest and (b) physical twin in the case study, and (c) experimental setup of the case study

Fig. 4 AUDIT procedure for multi-source (digital twin, physical twin, and object of interest) contrastive alignment
with hard sample augmentation
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– Fully-Connected MLP: For tabular datasets, we opted for a
fully-connected MLP due to its effectiveness in handling struc-
tured data. Tabular data typically consist of features organized
in rows and columns, making them well-suited for MLPs. The
architecture’s ability to learn complex relationships among
features enables accurate predictions in such scenarios.

– Deep CNN Architecture: A deep CNN architecture was
selected for functional curve datasets as it excels in processing
sequential data. Functional curves represent time-series or
sequential data, where the order of the data points is crucial.
The hierarchical nature of CNNs allows them to capture both
local and global patterns in the functional curves, making
them a powerful choice for this dataset.

– Convolutional Autoencoder Structure: For infrared image
datasets, we employed a convolutional autoencoder structure.
Autoencoders are particularly suitable for learning efficient
representations from high-dimensional data like images. The
convolutional autoencoder’s ability to encode essential fea-
tures and reconstruct the images with high fidelity is essential
for achieving accurate predictions with infrared images.

Each chosen architecture was carefully tailored to the specific
attributes and intricacies of its respective dataset. This approach
aimed to maximize performance and ensure robust predictions.
The neural network designs were aligned with the inherent nature
of the data types, striving for optimal outcomes in each case. It is
worth noting that these selections are widely acknowledged in liter-
ature. However, we acknowledge the potential necessity of fine-

tuning architectures for particular applications to further elevate
performance and address unique challenges inherent to different
scenarios.
Furthermore, we conducted individual quasi-static compression

tests on the object of interest and physical twin samples using a
Shimadzu AG-IC 20 kN UTM. To carry out the compression
test, we positioned the lattice specimens on a rigid plate, with an
upper rigid plate descending to apply compression at an engineer-
ing strain rate of 0.001 s−1. Since the layer-wise fabrication
process introduces anisotropy in material properties, all lattices
in this study were compressed along the rise (printing) direction
for consistency. The displacement recorded by the UTM and the
contact force measured by the load cell attached to the upper
plate were converted into engineering stress–strain curves. Addi-
tionally, we utilized a digital camera to capture optical images of
the entire crushing process, enabling future analysis of the defor-
mation mechanism. Figure 6 presents a visual representation of
the destructive testing performed on one object of interest for dif-
ferent contact forces. The experiment began with Fig. 6(a) where
no displacement was initially applied. As the experiment pro-
gressed, a gradual displacement was exerted on the top surface
in a top-down direction to compress the part. In Fig. 6(b), the
force reached a magnitude of 103.1 N. Continuing the experiment,
both the displacement and force continued to increase. However,
as the structure started to crack, the two left front struts of the
CP became detached and flew away, and the front right strut
also developed a crack. Consequently, the force decreased to
86.2 N, as depicted in Fig. 6(c). Subsequently, the force was
absorbed by the inner lattice structure (BCC). As the back right
top strut of the BCC structure also cracked, the force further
dropped to 43.7 N, as illustrated in Fig. 6(d ).
The primary aim of this case study is to accurately predict the

maximum compressive strength of the object of interest YOoI, as
it serves as a crucial indicator for assessing the functional qualifica-
tion of lattice structures. The histograms and the fitted PDF shown
in Fig. 7 provide evidence of substantial variation in functional per-
formance due to different printing process conditions. Each of the
48 maximum compressive force results in Fig. 7 corresponds to a
distinct set of process settings, as a space-filling design of experi-
ments was employed. Additionally, a moderate correlation of
53.43% (Pearson) is observed between the maximum compressive
force of the object of interest YOoI and its physical twin YPT, as
they were printed under identical process conditions. This correla-
tion further shows the connection between the functional properties
of the object of interest and its physical twin, which is induced by
the identical printing process conditions.
In our case study, our focus was on predicting the maximum

compressive strength of the object of interest—a pivotal parameter
for numerous applications. However, we recognize the significance
of extending our predictions to encompass other functional proper-
ties relevant in diverse applications. To enable predictions for these
additional functional properties, a series of carefully designed
experiments is essential. These experiments should encompass
various materials, geometries, and process conditions to establish

Table 1 Parameter settings for design of experiments

Process setting Range

Printing speed 35–100 mm/s
Fan speed 0–100%
Nozzle temperature 190–240 °C
Print bed temperature 40–75 °C
Extrusion width 0.35–0.55 mm

Table 2 Process data description

Process data XP Data type Data dimension

Process settings (no in situ monitoring):
• Fan speed: XP,1

• Extrusion width: XP,2

• Printing speed: XP,3

• Extrusion width: XP,4

Tabular ℝ3

Nozzle temperature: X(t)
P,5

Functional curve ℝ1000×L

Print bed temperature: X (t)
P,6

Functional curve ℝ1000×L

Infrared image: X (t)
P,7

Image 320× 240× L

Fig. 6 Destructive testing of one object of interest on UTM at different levels of compressive force: (a) 0 N, (b) 103.1 N,
(c) 86.2 N, and (d ) 43.7 N
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comprehensive datasets. These datasets will then serve as the foun-
dation for training our model to make precise predictions across a
range of functional properties. The accuracy of these predictions
depends on the correlation among the 3D shape, digital twin, and
measured process conditions with functional properties.

4.2 Finite Element Analysis Simulations for the Digital
Twin. To create a digital twin of the object, a 3D scan was per-
formed of the object of interest. Finite element simulations were
then conducted using the 3D scan data to analyze the compressive
behavior. The ANSYS

TM software, specifically the static structural
module, was utilized. The boundary condition involved fixing the
bottom surfaces of the lattice structure while applying uniform
stress on the top surfaces. Table 3 presents the input parameters
XDT

M used in the simulations, which were obtained from the litera-
ture on bulk PLA filament [28].
The output of the simulation is the breaking displacement value

YDT at the ultimate tensile strength of PLA (42MPa) with a preci-
sion of two decimal microns. Figure 8 depicts the lattice structure of
the digital twin at various times throughout the simulation.
We find that the small shape discrepancies from the ideal design

have only a moderate impact on the functional properties, as

indicated by a Pearson correlation of 22.31% between the breaking
displacement YDT and the maximum compressive force of the
object of interest YOoI.
A far more crucial factor influencing the functional characteris-

tics is the 3D printing process conditions. Optimizing printing
process conditions enables enhanced control over the functional
properties of printed objects. By emphasizing the relationship
between process conditions and functional properties, it paves the
way for continuous improvement and design optimization in
future research.

4.3 Benchmark Methods. We evaluated the AUDIT frame-
work against various benchmarks such as linear regression, multi-
layer perceptron, supervised transfer learning (pre-training), and a
data augmentation scheme called PointAugment. In the following,
we give a brief overview of those benchmark methods.
Two supervised regression models, namely linear regression and

MLP, are used as benchmarks. Linear regression is chosen for its
simplicity, while MLP can capture nonlinear relationships. These
models use a combination of features related to the 3D printing
process conditions XP and functional property outcome variables
from digital and physical twins to predict the maximum compres-
sive force of the object of interest. Various combinations of input
features are explored for both models to identify the optimal
setup. Table 4 displays the different input feature settings for each
model configuration.
Furthermore, we utilize a widely used supervised transfer learn-

ing technique called pre-training [29]. Initially, the model is pre-
trained on the source dataset (digital and physical twins) and then

Fig. 7 Histograms of the distribution of maximumcompressive force values for both the (a) objects of interest and (b) physical
twins

Table 3 Material input parameters XDT
M of the PLA filament

Density (kg/m3) Elastic modulus Poisson’s ratio

ρ= 1240 E= 3500 MPa ν= 0.35

Fig. 8 Digital twin during compression simulation in ANSYS at different stress values: (a) 9.23 MPa, (b) 18.46 MPa, (c) 27.73 MPa,
and (d ) 36.93 MPa
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fine-tuned on the target dataset of interest. This transfer learning
approach mitigates overfitting caused by PointNet’s neural
network structure when dealing with smaller datasets. During pre-
training, a certain percentage of the initial layers are frozen, allow-
ing the model to leverage generalized information. The optimal
number of frozen layers is determined through iterative exploration.
Subsequently, the model is fitted to the object of interest (target)
dataset.
Finally, we compare AUDIT with PointAugment, an advanced

augmentation algorithm for 3D point cloud data [30]. PointAug-
ment generates new samples by augmenting existing ones, enrich-
ing data diversity. Unlike fixed strategies, PointAugment trains an
augmentor alongside the model, using sample-aware augmentation
based on geometric structure. It optimizes performance through
adversarial learning and automates the augmentation process,
improving dataset enrichment.
Although these benchmarks have the advantage of accessing

target labels, we include them to evaluate AUDIT’s unsupervised
domain adaptation performance.

4.4 Case Study Prediction Results. In this section, we
compare the AUDIT framework with the benchmarks using normal-
ized root mean squared error (NRMSE) for future dataset compar-
isons. Table 5 presents the average NRMSE from ten-fold
cross-validation (CV). In particular, we used a nested cross-
validation setup, where the outer loop performs ten-fold cross-
validation for model evaluation (43 samples (90%) for training
and 5 samples (10%) for testing), while the inner loop splits the
training data further to tune hyperparameters on a smaller training
set (34 samples, 80%) and a validation set (9 samples, 20%) to
tune the hyperparameters. It is important to note that the object
of interest labels used for performance evaluation in AUDIT
are only employed during training in the benchmark methods.
Additionally, we provide the un-normalized root mean squared

error (RMSE) to scale back to the dataset being analyzed
(RMSE = NRMSE ∗ (Ymax

OoI − Ymin
OoI )).

AUDIT demonstrates superior performance compared to all other
models in Table 5, showcasing its potential for functional qualifica-
tion in additive manufacturing. AUDIT achieves a small RMSE of
the maximum compressive force of approximately 3 N, demonstrat-
ing the accurate prediction of functional properties.
Although the benchmark methods (e.g., linear regression, MLP,

pre-training, and PointAugment) have access to target labels, they
still fall short in achieving satisfactory performance due to limited
sample size, high-dimensional data complexity, and the inability
to consider all relevant data sources. In contrast, AUDIT surpasses
them by effectively co-training with labeled source data and aug-
mented hard samples, while also incorporating heterogeneous
process conditions and material properties with its multi-input
architecture.
Our framework incorporates hard sample mining as an augmen-

tation strategy. During each training epoch, this technique generates
a set of challenging “hard” samples for augmentation, enhancing the
model’s generalizability and preventing overfitting. Furthermore, to
assess the model’s ability to generalize to unseen data, we employed
a nested ten-fold cross-validation methodology. We closely moni-
tored the model’s performance on a validation set during training
and applied early stopping. If we detected signs of overfitting,
such as a decrease in validation performance while training perfor-
mance continued to improve, we stopped training to mitigate
overfitting.
However, it is essential to acknowledge the limitations of this

study. The current application of this novel machine learning
approach is limited to a small dataset and simple geometries.
More R&D efforts are needed for further exploration to assess its
generalizability to larger datasets and more complex geometries.

5 Conclusion
In conclusion, this paper introduces the AUDIT framework—a

novel approach to the functional qualification of 3D-printed parts
using physical and digital twins. By combining the strengths of
physical and digital twins with transfer learning techniques, the
AUDIT framework enables accurate predictions of the functional
properties of 3D-printed parts without the need for destructive
testing. The case studies on 3D-printed lattice structures highlight
the potential of this approach in enhancing the functional qualifica-
tion of critical 3D-printed parts. By considering real-world manu-
facturing process conditions and incorporating the FEA analysis
of the 3D shape (digital twin), AUDIT provides a more holistic
evaluation of 3D-printed functional properties. Additionally, the
framework introduces transfer learning techniques for additive
manufacturing processes, enabling the fusion of heterogeneous
3D shape data from multiple sources to enhance understanding of
the relationships between 3D shapes, process conditions, and func-
tional properties.
Although the framework has undergone evaluation using a

dataset of 3D-printed lattice structures, there is a need for future

Table 4 Input features for the supervised regression models across different settings

Setting 1 Setting 2 Setting 3 Setting 4

Input features Process setting values:
Fan speed: XP,1

Extrusion width: XP,2

Printing speed: XP,3

Printing speed: XP,3

Extrusion width: XP,4

Nozzle temperature: XP,5

Bed temperature: XP,6

Setting 1 + YPT:
destructive testing result of
physical twin

Setting 1 + YDT:
simulated result of digital twin

Setting 1 + YPT +YDT

Output YOoI YOoI YOoI YOoI

Table 5 Case study prediction results on the object of interest
(bold: best performing model)

Method NRMSE RMSE

Linear regression—Setting 1 6.066 (3.214) 1319.420 (699.081)
Linear regression—Setting 2 5.940 (2.668) 1291.975 (580.329)
Linear regression—Setting 3 6.065 (2.745) 1319.205 (597.204)
Linear regression—Setting 4 5.952 (2.242) 1294.718 (487.785)
MLP—Setting 1 7.407 (4.363) 1611.130 (949.229)
MLP—Setting 2 6.961 (3.018) 1514.087 (654.766)
MLP—Setting 3 7.446 (2.542) 1619.608 (552.954)
MLP—Setting 4 2.781 (1.303) 604.947 (283.484)
Pre-training (PointNet) 20.973 (13.269) 4561.662 (2884.613)
PointAugment 0.280 (0.076) 61.067 (16.628)
AUDIT (ours) 0.014 (0.001) 3.002 (0.337)

Note: Average results and standard deviation in brackets from ten-fold CV.
Bold signifies best performing model.
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work to expand and validate its applicability across a broader range
of 3D-printed parts. This verification should encompass different
printing processes and materials to ensure the framework’s effec-
tiveness in diverse scenarios. Additionally, future research should
focus on improving the efficiency and sampling procedures of 3D
data acquisition with intricate designs or internal structures (e.g.,
computed tomography scanning) to generate digital twins in those
challenging applications.
Furthermore, this work has the potential to enable the develop-

ment of control and compensation schemes based on the functional
properties of the products. The AUDIT model establishes a link
between heterogeneous process variables and functional properties,
enabling inverse optimization and control of 3D printing
parameters.
Overall, the AUDIT framework offers a comprehensive solution

for functional qualification in 3D printing. Progress in this field
holds the potential to facilitate the widespread adoption of 3D print-
ing in safety-critical applications.
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Nomenclature
i = sample index
E = elastic modulus
L = number of printing layers
S = shape
T = target domain (object of interest)
fθ = neural network model

NOoI = number of samples from the object of interest
NPT = number of samples from the physical twin
dDTy = dimension of the (multivariate) functional property

output variables
nOoIi = number of measurement points in object of interest

point cloud of sample i
FS
i = feature instance from the source domain

FT
j = feature instance from the target domain

XOoI
i,hsm = hard sample point cloud of the object of interest

Ymax
OoI = maximal value of the functional property output

variable of the object of interest in the dataset
Ymin
OoI = minimal value of the functional property output

variable of the object of interest in the dataset
Ldiscr = discriminative loss
Linter = inter-class loss

Lintra = intra-class loss
Lcontr,align = contrastive alignment loss

Lhsm = hard sample loss
XP = process variables

YOoI = functional property output variables of the object of
interest

YDT = functional property output variables of the digital twin
YPT = functional property output variables of the physical

twin
XOoI

S = 3D measurement point cloud of the object of interest

XDT
M = material properties for the digital twin

XPT
S = 3D measurement point cloud of the physical twin
δ = dynamic upper bounding parameter for hard sample

mining
θ = parameters of the neural network model
λ = tuning parameter balance domain adaptation and

learning of the discriminative task
ρ = density
τ = tuning parameter for the strength of domain

adaptation
ν = Poisson’s ratio

3D = three-dimensional
AM = additive manufacturing

AUDIT = functional qualification in additive manufacturing via
physical and digital twins

BCC = body-centered cubic
CAD = computer-aided design
CP = cubic-primitive
CV = cross-validation
DT = digital twin

FEA = finite element analysis
FFF = fused filament fabrication
MLP = multi-layer perceptron

NRMSE = normalized root mean squared error
OoI = object of interest
PDF = probability distribution function
PLA = polylactic acid
PT = physical twin

RMSE = root mean squared error
UTM = universal testing machine
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