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A Ranking-based Weakly Supervised Learning model for telemonitoring of
Parkinson’s disease

Dhari F. Alenezia, Hang Shib, and Jing Lia

aSchool of Industrial and Systems Engineering, Georgia Tech, Atlanta, GA, USA; bDepartment of Neurology, Emory University, Atlanta,
GA, USA

ABSTRACT
Telemonitoring is the use of electronic devices to monitor patients remotely. A model is needed
to translate the data collected by a patient’s mobile device into a predicted score for disease
severity assessment. Labeled samples are scarce, which makes it difficult to train a supervised
learning model. On the other hand, there is an abundance of samples without precise labels but
whose relative rank can be known from domain knowledge. We propose a Ranking-based Weakly
Supervised Learning (RWSL) model to integrate both types of data. We apply RWSL to predict
Parkinson’s disease severity based on mobile-collected tapping activity data of patients. RWSL
achieves high predictive accuracy and outperforms competing methods.

KEYWORDS
Health care; machine
learning; data mining

1. Introduction

In today’s world, mobile phones have moved from being a
simple communication tool to being an essential part of
people’s daily lives. According to App Annie, an application
analytics firm, Americans spent an average of four hours per
day on their phones in 2020 (Kristianto, 2021). Combining
this high screen time and the increasing sensing capabilities
of mobile phones, remote and continuous monitoring of an
individual’s health has become easier than ever, and with
negligible costs. Modern smartphones are equipped with
various sensors and custom-built applications that can col-
lect user-specific health data. Monitoring such health data is
commonly referred to as telemonitoring. Telemonitoring is
defined as the use of technological devices to remotely
monitor and transmit information related to a person’s
health status (Dansky et al., 2008).

In this paper we focus on the monitoring and modeling
of mobile phone-collected data in patients with Parkinson’s
disease (PD). PD is a brain disorder that leads to aberrations
in movement, including tremors, slowness of movement,
rigidity, and difficulty with walking, balance, and coordin-
ation. Globally, PD affects seven to ten million people
worldwide (Goetz et al., 2009). PD costs the United States
$52 billion every year (Michael J. Fox Foundation, 2019).
There is currently no cure for PD, but treatments are avail-
able to control and reduce symptoms. However, to effect-
ively control symptoms, frequent monitoring of the patient’s
condition is required to titrate mediations, engage in PD-
specific physical therapies, and adjust devices such as deep
brain stimulators.

The conventional approach to assess the patient’s PD
condition is through clinical visits where medical experts

inquire about symptoms and perform physical examination.
These include questions about the patient’s medical history
and observations of physical signs or symptoms of PD
(Rizek et al., 2016). During the physician’s assessment,
standardized clinical instruments/questionnaires are typically
used to provide some guidance and help reduce subjectivity
and misdiagnosis errors. For example, Movement Disorder
Society-Unified Parkinson’s Disease Rating Scale (MDS-
UPDRS) is one of the commonly used clinical instruments.
UPDRS was developed in 1987 as a gold standard by neurol-
ogists for monitoring signs and symptoms of PD (Fahn &
Elton, 1987). UPDRS remained the most widely used PD
scale until an updated version, MDS-UPDRS, was commis-
sioned by the MDS in 2007. MDS-UPDRS improves upon
the original UPDRS by enhancing scale properties and
including more non-motor items so that the breadth of PD
manifestations is adequately captured.

In conventional clinical practice, clinical visits with a
physician happen around every 4–6months and much less
frequently in resource-limited countries and regions (e.g., in
years) (Dotchin et al., 2011). The lack of frequent assess-
ment of a patient’s PD condition leads to a delay in effective
intervention. Telemonitoring technologies offer one possible
solution to addressing this issue by making it possible to
remotely and frequently assess the patient’ clinical condition
based on individually collected mobile health data.

To enable mobile-based telemonitoring, an application is
needed to become the platform for data collection and
transmission. Generally, telemonitoring systems can be div-
ided into self-administered telemonitoring systems such as
mPower (Bot et al., 2016) and wearable inertial sensors-
based telemonitoring systems such as those introduced in
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Sica et al. (2021). mPower is an app installed on the user’s
mobile phone. Once launched, the app would guide the user
to perform several pre-designed activities that measure PD
symptoms, such as tapping, speaking, and walking. The data
of these activities would be recorded by the mobile’s built-in
sensors such as accelerometers, gyroscopes, and micro-
phones. Alternatively, wearable inertial sensors-based tele-
monitoring systems collect free-living movements for a
prolonged period of time (Sica et al., 2021). Such an
approach has been shown to reduce the well-known
"Hawthorne observation effect" (Maetzler et al., 2013) since
patients tend to pay less attention when performing their
daily free-living activities.

Both types of aforementioned telemonitoring systems
open the opportunity for more frequent and convenient
assessment of the conditions for PD patients compared to
the conventional clinical setting. This paper focuses on the
former type of systems represented by mPower with several
promising features: Firstly, mPower collects data specific to
activities that a patient commonly performs in the clinic;
such activities have been shown to capture symptoms rele-
vant to assessing PD severity. On the other hand, the data
collected by inertial sensors systems are less focused and not
specific to activities that are commonly used to assess PD
severity. Secondly, in many inertial sensors-based systems,
the assessment of multiple symptoms necessitates employing
a high number of wearable devices, compromising patients’
comfort. In contrast, mPower does not have such issues
since the telemonitoring is conducted purely through a
mobile app interface. Thirdly, the ease of using a mobile
phone as the data collection platform by mPower makes it
possible to collect other important information for PD
patients in addition to their activities, such as medication
use. Such information helps provide a better assessment of
the PD condition and progression.

Despite the promising features, telemonitoring systems
like mPower have some limitations that need to be
addressed to fully utilize the system’s capabilities. First and
foremost, mPower provides a data collection platform with
no feedback to users (i.e., patients and physicians).
Providing feedback in terms of the severity and condition of
the patient’s disease is critical as it would help with timely
intervention. To provide such feedback, data analytics and
machine learning algorithms are needed to integrate the col-
lected activity data into predicted disease severity scores.
However, current telemonitoring systems do not have
adequate predictive analytics capability beyond providing a
data collection platform. This paper aims to mitigate
this gap.

The predictive analytics task posed above is not trivial
due to some uniquely challenging properties of the datasets
collected via mPower. First, there is a lack of sufficient
labeled samples to train the machine learning model.
Specifically, while the activity data (X) can be conveniently
obtained via the telemonitoring system, it is not easy to
obtain the matched observation for PD severity (Y, a.k.a.
label) as this requires expert assessment. For example, using
the mPower app, a patient can perform app-guided activities

such as tapping, walking, and speaking anytime and any-
where; thus, the activity data can be collected as frequently
as multiple times a day. However, disease severity assess-
ment typically only happens at most every 4–6months. As a
result, the sample size with matched (X,Y) datasets from
each patient is quite limited. Furthermore, because the data
collection process is patient self-administered, there is miss-
ing data due to non-adherence and mistakes (Son et al.,
2020), which further reduces the qualified samples that can
be used to train a robust model. Lastly, as mentioned previ-
ously as a promising feature, mPower collects other crucial
information such as medication use beyond just the activity
data. However, how to effectively leverage this information
to augment the capability of the predictive model training
remains a challenging issue.

To overcome the aforementioned challenges and provide
advanced analytics capability to integrate with the mPower
platform, we propose a novel machine learning based pre-
dictive model called the Ranking-based Weakly Supervised
Learning (RWSL) model. RWSL aims to overcome the chal-
lenge of insufficient labeled samples (X,Y) by effectively lev-
eraging and integrating the knowledge in the abundant
activity data without a matching Y, known as unlabeled
data. Integrating unlabeled and labeled data to train a
machine learning model is known as semi-supervised learn-
ing (SSL), belonging to the broader field of weakly-super-
vised learning. However, different from the existing SSL that
assumes the Y for each unlabeled sample is completely
unknown, we note that domain knowledge can be utilized
to provide some weak labeling information of Y.
Specifically, domain knowledge may allow for ranking of
unlabeled samples in terms of their Y values. As mentioned
previously, mPower collects other crucial patient informa-
tion beyond the activity data, such as medication use. In
PD, medication can lessen the severity of the disease; thus,
two samples of a patient’s activity data that are collected
before and after medication can be ranked as yi � yj, where
yi and yj are the severity levels corresponding to the two
samples, even though the exact values for yi and yj are
unknown. Our model aims to integrate insufficient labeled
samples and domain knowledge based ranked samples to
build a predictive model for a response variable Y (e.g., dis-
ease severity) using features X (e.g., mobile-collected activity
data). Since RWSL utilizes domain knowledge to create
ranked samples, the model is also related to the machine
learning subfield of Information Retrieval (IR), in which
learning-to-rank algorithms have been developed to deter-
mine the relevance of documents concerning a given user
query and order them accordingly. However, although
RWSL can incorporate ranked samples in training, the
objective of RWSL is different from existing learning-to-
rank algorithms in IR, as our model aims to integrate
ranked samples with labeled samples to build a superior pre-
dictive model.

The remainder of this paper is organized as follows: Sec.
2 reviews the related work and points out gaps. Section 3
presents the proposed model, RWSL. Section 4 presents
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simulation experiments. Section 5 presents a real data appli-
cation in PD. Section 6 concludes the paper.

2. Related work

Our work exists at the intersection of three lines of research
pursued by different research communities. Section 2.1 will
be dedicated to reviewing research related to healthcare ana-
lytics for PD based on telemonitoring data. Section 2.2 will
focus on reviewing research in two subfields of machine
learning that are related to our model.

2.1. Healthcare analytics for PD based on
telemonitoring data

Telemonitoring has enabled the generation of a tremendous
amount of patient-specific data that is yet to be fully
explored. Such data has made it possible for monitoring,
predictive analytics, and understanding of various diseases.
The importance of telemonitoring of PD lies in providing
data about a patient’s daily life not observed by a physician,
which may help gain understanding of the complex nature
of PD and develop better interventions. Generally, the
healthcare analytics literature for PD can be divided based
on the end goal and type of PD data utilized. For example,
some work has focused on processing of the raw telemoni-
toring data and feature engineering to obtain proper features
related to a clinician’s diagnosis (Far et al., 2021; Lenain
et al., 2020; Wang et al., 2020). Other research has focused
on applying classification models to the extracted features
related to PD to classify subjects as PD patients or healthy
controls, which may help with PD screening (Abujrida et al.,
2017; Arora et al., 2014; Zhang et al., 2020). Another area of
research focuses on specific symptoms related to PD
(Pastorino et al., 2011; Rigas et al., 2012; Yoneyama et al.,
2014); for example, (Rigas et al., 2012) built a hidden
Markov model for assessing tremor in PD. Lastly, one major
area of research is related to the ability of using telemonitor-
ing apps to collect samples with respect to the timing of
medication; such samples have provided researchers the
opportunity to study patients’ responses to medication
(Matarazzo et al., 2019; Zhan et al., 2016).

In summary, the existing telemonitoring data analytics
research for PD primarily focuses on feature engineering,
classification of PD patients from healthy controls, modeling
and understanding of the dynamics of some specific symp-
toms, and tracking of response to medication. Little research
has been done to use telemonitoring activity data to predict
disease severity, which is an important task to allow for
timely monitoring of disease progression and effective inter-
vention. The present paper aims to mitigate this gap. On the
other hand, it is a challenging task to train a robust machine
learning model to predict disease severity using telemonitor-
ing activity datasets. While the activity data (X) can be con-
veniently obtained via the telemonitoring system, it is not
easy to obtain the matched observation for PD severity (Y,
a.k.a. label). This results in a small labeled sample size.
Furthermore, because the telemonitoring activity is patient

self-administered, there is missing data due to non-adher-
ence and mistake (Son et al., 2020), which further reduces
the qualified samples that can be used to train a robust
model. In this paper, we address these challenges by propos-
ing a new machine learning model, RWSL, which integrates
ranked samples and labeled samples for training a robust
model to predict PD severity (Y) using activity data (X).

2.2. Weakly-supervised learning and information
retrieval algorithms in machine learning

Supervised learning is a type of machine learning models
that uses features x to predict or classify a response variable
y: To train a supervised learning model, a training dataset is
needed, which typically contains samples with both x and y
available. Such samples are called labeled samples because
their response variables are precisely measured. However, it
may be difficult to obtain precisely measured response vari-
able for each sample in many application domains, i.e., the
label is “weak.” This creates the need for weakly-supervised
learning algorithms. Weakly-supervised learning can be div-
ided into several major sub-fields: incomplete-supervision,
inexact-supervision, and inaccurate-supervision (Zhou,
2018). For incomplete supervision, only a subset of the
training samples have labels while the other samples are
unlabeled, which is the category our proposed method
falls into.

Incomplete supervision can be further divided into two
sub-fields: active learning (Settles, 2009) and semi-supervised
learning (Chapelle et al., 2006; Zhou & Li, 2010; Zhu, 2008).
Active learning assumes that there is an ’oracle’, such as a
human expert, that can be queried to get labels for selected
unlabeled samples (Settles, 2009). The goal of active learning
algorithms is to select the most valuable unlabeled samples
to query.

On the other hand, semi-supervised learning (SSL)
assumes no ’oracle’ intervention; instead, it aims to integrate
labeled and unlabeled samples to train a model to predict or
classify y using x: There are different types of SSL algo-
rithms. Some methods assume that samples have inherent
cluster structure, and therefore samples falling into the same
cluster should have a similar class label (Chapelle et al.,
2006). Some methods treat the labels of unlabeled samples
as missing values based on the assumption that labeled and
unlabeled data samples are both generated from the same
model (Nigam et al., 2000). Graph-based methods are popu-
lar in SSL, in which a graph is constructed with nodes cor-
responding to training samples and edges representing
relationships between the nodes (Blum & Chawla, 2001;
Fujino et al., 2006; Zhou et al., 2004; Zhu et al., 2003).
Another type of popular methods assumes that low-dense
regions separate labels and aims to identify a classification
boundary that goes across the less-dense region while keep-
ing the labeled data correctly classified (Chapelle & Zien,
2005; Joachims, 1999; Li et al., 2013). Despite the fact that
SSL is a popular field in machine learning, to our best
knowledge, there is little work on leveraging the rank infor-
mation of unlabeled samples like our method.
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On the other hand, we found that ranking algorithms
have been mainly investigated in another machine learning
field called information retrieval (IR). IR is the process of
finding documents of an unstructured nature that satisfies
an information/query need from extensive collections of
documents (Sanderson et al., 2010). IR relies heavily on
learning-to-rank algorithms since returned results may not
match the search query and need to be ranked by relevance.
Learning-to-rank algorithms can be divided into three cate-
gories: pointwise approaches, pairwise approaches, and list-
wise approaches (Liu, 2011). Pointwise approaches are the
earliest in this field. The basic idea is to map the documents’
feature vector from ordinal scales to numeric values, and
then solve the ranking as regression, classification, and
ordinal regression, respectively (Crammer & Singer, 2001; Li
et al., 2007). A limitation of pointwise approaches is that the
input is a single document without considering the inter-
dependency between documents, and thus the position of a
document in the final ranked list is invisible to the point-
wise loss function (Liu, 2011). Alternatively, listwise
approaches directly compare the relevance of a list of docu-
ments to a query considering the inter-dependency between
documents (Cao et al., 2007; Kondor et al., 2007). Although
the performance of listwise approaches has been shown to
be better than pointwise and pairwise approaches in many
cases, the computational complexity is very high due to the
permutation-based loss function evaluation (Liu, 2011).
Finally, pairwise methods compare every two documents’
relevance, and then rank all the documents based on all
these comparison results (Burges et al., 2005, 2006;
Joachims, 2002).

Although our method can incorporate ranked samples in
training, the objective of our method is different from exist-
ing learning-to-rank algorithms in IR. First, learning-to-rank
algorithms are mainly aimed to rank a set of documents
related to a search query. This means that the objective of
the problem is to find the best set of coefficients that meets
an unknown latent ranking variable. Hence, a solution of
the problem may meet the ordinal requirement but not
necessarily produce a good prediction performance. In con-
trast, our method aims to integrate ranked samples with
labeled samples to build an accurate predictive model.
Second, learning-to-rank algorithms start by a set of docu-
ments whose relevance to a search query is judged using a
feature extraction or retrieval function. For example, deci-
sions about ranking a certain pair of documents relative to a
query may be based on how frequently a matching term
appears within a specific document. This is not how features
are intended to be used in our problem, while our objective
is to find how features are relevant to response variable
of interest.

In summary, even though our method has some connec-
tion with the fields of weakly-supervised learning and IR in
machine learning, these existing fields do not address the
same problem as ours, which is to integrate labeled and
ranked samples to build a predictive model for a response
variable y using features x:

3. Ranking-based Weakly Supervised Learning
(RWSL) model

3.1. Model formulation

Let x denote the feature vector, e.g., features extracted from
the tapping signal recorded on a PD patient’s smartphone.
Let y denote the severity level of the disease, e.g., the MDS-
UPDRS score of the patient. Our goal is to learn a model
f xð Þ to predict y: The uniqueness of RWSL is that it can
integrate two types of data in training the predictive model:
labeled samples and ranked samples. A labeled sample is
one for which both the feature vector and the corresponding
disease severity level are available. Suppose there are L
labeled samples, fxl, ylg, l¼1, … , L. Ranked samples are
those for which only the feature vector of each sample is
available, and there is a criterion d that allows for ranking
of each pair of samples in terms of their disease severity lev-
els. Suppose there are Xdj j pairs of ranked samples,
fxi�xjg, i, jð Þ 2 Xd, and the notation “�” means that yi �
yj, while the exact values for yi and yj are unknown. The
criterion d is typically known by domain knowledge, which
will be discussed in further detail in Sec. 3.3.

To incorporate ranked samples in model training, the
problem boils down to learning the most robust function
f xð Þ that correctly predicts the ordering of any given ranked
samples. Hence, the best function f is the one that will give
us a positive margin such that

f xið Þ � f xjð Þ � 0, i, jð Þ 2 Xd: (1)

There are several algorithms in the literature that attempt
to solve this problem. One of the popular approaches is the
SVMRank algorithm (Jankovic, 2008). SVMRank makes it
possible to design an efficient algorithm for finding the
function f 2 F that maximizes the ordering constraint in
(1) and generalizes well beyond the training data. The algo-
rithm uses margin-maximization which leads to an ordering
that is more robust with respect to noise in x: However,
SVMRank has a different objective from ours: it aims to
train a model to rank samples whereas we want to train a
model to predict y:

We propose the RWSL model that adopts the margin-
maximization concept of SVMRank for incorporating
ranked samples, while at the same time adding labeled sam-
ples through supervised learning. RWSL has the following
model formulation:

minb
1
2
kbk22 þ

kL
2 Lj j

XL

l¼1

kyl � fb xlð Þk22 þ
kR
Xdj j

X
i, jð Þ2Xd

nij,

:
s:t

fb xið Þ � fb xjð Þ � 1� nij, 8ði, jÞ 2 Xd,

(2)

nij � 0, 8 ði, jÞ 2 Xd, where b contains the model coeffi-

cients, nij is a non-negative slack variable, and k k22 is the
squared L2-norm. The objective function consists of three
terms: the first term aims to achieve a good generalization
on the ranked samples by maximizing the closest distance
between two ranked samples defined as 1

kbk2 , where it can
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be shown that maximizing 1
kbk2 is equivalent to minimizing

kbk22; the second term uses a quadratic loss to encourage
the predicted responses to be close to the true responses for
labeled samples; the third term upper-bounds the slack vari-
ables to preserve the ordering of ranked samples, which will
serve as a "soft" ordering constraint that may allow for some
samples to be mis-ordered. Depending on the application,
the choice for the mapping function fb may vary. In our
application, a linear function showed satisfactory results.
The coefficients kL and kR control the relative degrees of
emphasis on the labeled and ranked samples, respectively.
The degree of emphasis on the ranked samples will depend
on the noise in those samples, which is dependent on the
choice of ranking threshold. In Sec. 4.3, we try to provide
some guidance on the effect of ranking threshold selection
in reducing noise in ranked samples.

3.2. Optimization algorithm

The constrained optimization problem in (2) can be con-
verted to an unconstrained optimization with a hinge loss
Lhinge tð Þ ¼ max 0, 1� tð Þ, i.e.,

min
b

1
2
kbk22 þ

kL
2 Lj j

XL

l¼1

kyl � fb xlð Þk22 þ
kR
Xdj j

X
i, jð Þ2Xd

Lhinge 1� fb xið Þ � fb xjð Þ
� �� �

:
(3)

(3) is convex but not differentiable. To make it differenti-
able, the hinge loss can be replaced by another loss function
that has comparable performance (Chapelle & Keerthi,
2010), a Huber loss:

Lhuber tð Þ ¼ max 0, 1� tð Þ2 �max 0, � tð Þ2 (4)

The Huber loss combines the robustness of L1-norm with
the stability of L2-norm. For huge errors, it is linear; for
small errors, it is quadratic. The Huber loss also gives fast
methods for computing gradient and performing Hessian
times vector operations. The problem is now convex, uncon-
strained, and differentiable, and can be formulated as
follows:

min
b

1
2
kbk22 þ

kL
2 Lj j

XL

l¼1

kyl � fb xlð Þk22 þ
kR
Xdj j

X
i, jð Þ2Xd

Lhuber 1� fb xið Þ � fb xjð Þ
� �� �

:
(5)

By choosing a linear mapping for the f function, the
problem can be further simplified to:

min
b

1
2
kbk22 þ

kL
2 Lj j

XL

l¼1

kyl � bTxlk22 þ
kR
Xdj j

X
i, jð Þ2Xd

Lhuber 1� bT xi � xjð Þ
� �

,
(6)

which can be solved using the Newton’s method (Dennis &
Schnabel, 1996).

3.2.1. Parameter tuning
There are two tuning parameters in RWSL, kL and kR,
which control the relative degrees of emphasis on the
labeled and ranked samples in training, respectively. Due to
the computational efficiency of RWSL, a grid search of the
optimal tuning parameters is feasible. Specifically, the data-
set is divided into a training set with labeled and ranked
samples, and a validation set with labeled samples. Given
fixed values of the two tuning parameters, a model is
trained, which is then used to predict the response variables
of the samples in the validation set. The mean square error
(MSE) between the predicted and true responses for the val-
idation samples is computed. In this way, we can compute
the MSEs for all possible combinations of the tuning param-
eter values and choose the optimal tuning parameter com-
bination, (k�L, k

�
R), as the one that yields the smallest MSE.

When the dataset has limited labeled samples, a cross-valid-
ation scheme can be used to replace the training-validation

split of the data. Let b̂k�L , k
�
R
denote the parameter estimates

by solving the optimization in (6) under (k�L, k
�
R). Then, for

any new sample, xnew, the predicted response variable can

be obtained by ŷnew ¼ b̂k�L , k
�
R

T
xnew:

3.3. Criteria for ranking samples

The proposed RWSL model assumes the availability of
ranked samples according to a criterion d: In the medical
field, such criteria typically exist through domain knowledge.
For example, medication can lessen the severity of a disease.
Thus, two samples of a patient, xi and xj, that are collected
before and after medication respectively, can be ranked
as xi�xj:

Specifically related to PD, the movement disorder of
PD occurs largely due to the selective loss of neurons
that results in depletion of dopamine in the striatum
(Jankovic, 2008; Samii et al., 2004; Sveinbjornsdottir,
2016). Dopaminergic drugs designed to replace the action
of dopamine in the deplete striatum. Generally, the clin-
ical effect of dopaminergic drugs is noticed quickly, and
may last for several hours, particularly in the early stages
of the disease (Zahoor et al., 2018). As a result, it is rea-
sonable to use medication as the criterion d to create
pairs of ranked samples for each patient. It can be
assumed that the disease is more severe before medication
than relatively immediately after medication. Also, it is
common for telemonitoring apps to collect samples with
respect to the timing of medication, which naturally cre-
ates ranked samples. For example, the mPower app
requests the users to perform their activities three times a
day with at least one time before and one time after
medication. Finally, our model is designed to address the
scenario of limited labeled samples by compensating for
that shortage with ranked samples; however, the model is
expected to perform as good as a supervised learning
model for patients without ranked samples.
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4. Simulation study

In this section, we use simulated data to test the perform-
ance and capabilities of our model in comparison with com-
peting methods. Our simulation experiments in Secs. 4.1–4.4
aim to answer the following questions: How is the perform-
ance of RWSL compared to competing methods under dif-
ferent sample sizes for labeled and ranked data (Sec. 4.1)?
How much labeled data can be saved by including ranked
data in training (Sec. 4.2)? What type of ranked data should
be included to achieve the best performance of RWSL (Sec.
4.3)? How robust is RWSL with respect to label noise
(Sec. 4.4)?

Data generation: In all the experiments, the data gener-
ation process is similar, whereas the parameters values may
vary. The data generation process starts by sampling the fea-
ture vector from a multivariate normal distribution, i.e.,
x � MNð0, RxÞ, where the covariance between the i-th
and j-th samples is created by having Rx, i, j ¼
a i�jj j, where a 2 ð0, 1�: Then, we generate the coefficients
corresponding the features by b � Nðlb, r2bIÞ: All the coef-

ficients are held fixed after they are generated and consid-
ered as the ground truth values to be compared with the
estimated coefficients by a model. Furthermore, the response
variable is created using an additive model as follows: y ¼
bTx þ e, where e is sampled from Nð0, r2e Þ: r2e is decided

based on the desired signal-to-noise ratio SNR ¼ Var bTxð Þ
r2e

: In

our simulations, the SNR is fixed at five unless stated other-
wise. Also, the number of real features is set to be 15, while
we add 15 noise features to test the robustness of the model.

Models under comparison: The proposed RWSL integra-
tes labeled and ranked samples in training a predictive
model. To our best knowledge, there is no existing model
that provides this capability. Because RWSL adopts the

margin-maximization concept in its formulation, which is
also the basis of RankSVM, we compare RWSL with
RankSVM, which can only use ranked samples in training.
Additionally, we compare RWSL with supervised learning,
which can only use labeled samples in training. Ridge
regression is a supervised learning model that adopts a
quadratic loss for labeled samples and a squared L2 penalty
for model coefficients, which are similar to the part of
RWSL that accounts for labeled samples. Therefore, we
choose ridge regression to compare with RWSL.

Performance metrics: Several performance metrics are
adopted to compare the models: (1) Mean Squared Error
(MSE) measures the average squared difference between pre-
dicted and true responses. The MSE is aimed to evaluate the
model’s ability to quantify the disease severity accurately. (2)
Predictive correlation, i.e., the Pearson correlation between
predicted and true responses, which complements MSE as it
is bounded between �1 and 1. The predictive correlation is
aimed to evaluate if the prediction index is reasonably corre-
lated with the true disease severity, to identify if the patient’s
condition is getting better or worse. (3) Feature selection
(FS) accuracy. As our simulation data purposely includes
noise features, we define the following metric to evaluate the
capability of a model for identifying the true features:

FS accuracy ¼
P

i2K jb̂ijP
i2K jb̂ij þ

P
j2N jb̂jj

,

where K and N are index sets of true and noise features,
respectively.

4.1. Model performance under different sample sizes

This experiment aims to evaluate and compare the perform-
ances of models under different sample sizes. We create 20

Figure 1. Average MSE comparison of three models on test data.

IISE TRANSACTIONS ON HEALTHCARE SYSTEMS ENGINEERING 327



different scenarios, starting from a small-sample setting with
10 labeled samples and 10 ranked pairs (i.e., scenario 1),
and gradually increasing the numbers of labeled samples
and ranked pairs in a fixed step size in each scenario until
reaching a large-sample setting of 200 labeled samples and
1000 ranked pairs (i.e., scenario 20). In each scenario, 70%
of the labeled samples and ranked pairs are used for training
and the rest for validation. Additionally, we generate a blind
test set of 300 labeled samples to evaluate and compare the
prediction accuracy of different model.

In each scenario, RWSL is trained based on both labeled
samples and ranked pairs. The two tuning parameters of
RWSL are selected by minimizing the MSE on the validation
data. Ridge regression can only include labeled samples in
training and parameter tuning of ridge regression is done
similarly to RWSL by minimizing the validation MSE.
RankSVM can only include ranked pairs in training and the
model is to rank samples not to predict a response variable y:
Thus, parameter tuning of RankSVM cannot use validation
MSE. Instead, we tune RankSVM by maximizing the percent-
age of pairs ordered correctly (POC) among the total number
of ranked pairs included in the validation set. In the experi-
ments, we note that the POC criterion suffers from the fact
that there could be several tunning parameters’ values that
give the same maximum POC. Therefore, a selection rule has
to be in place to deal with this situation. We follow a rule that
chooses the smallest parameter value, which showed the most
robust performance in our experiments.

The training/validation/testing process is repeated ten
times for each model and the average MSE on the test set is
plotted in Figure 1. We can observe that the average MSE
achieved by RWSL is consistently lower than ridge regres-
sion and RankSVM. To assess the statistical significance of
the performance difference, we conduct one-sided hypoth-
esis testing to compare RWSL and each of the two compet-
ing models. The result shows that the mean MSE of RWSL
is significantly lower than the competing models for all
scenarios except scenario 1 that is the most challenging
small-sample setting. Furthermore, comparing RWSL with
ridge regression, we can see that the gap between the two
models is most significant in scenarios 2–6, which are the
scenarios with limited labeled samples. This shows the
advantage of RWSL due to its capability of incorporating

ranked pairs to augment labeled samples in training.
Moreover, comparing RWSL with RankSVM, we can
observe that the gap between the two models gets bigger in
later scenarios. This indicates that RankSVM has a perform-
ance limit even with a large number of ranked samples used
in training, whereas RWSL does not suffer from this issue
due to the inclusion of labeled samples.

Furthermore, in order to compare not only the average
but also the variability of MSE over different runs, we show
the boxplot of MSE at each scenario for the three models in
Figure 2. We can observe a faster drop in both the mean
and variance of MSE for RWSL. We can also notice that
RankSVM experiences higher variance and mean fluctua-
tions. This is because RankSVM, by design, is a model to
rank samples, instead of predicting a response variable y:
When being used as a predictive model, the performance of
RankSVM is less satisfying and is unstable.

Additionally, we compare the three models on other per-
formance metrics such as predictive correlation and feature
selection accuracy. Specifically, Figures 3 and 4 show average
curve and boxplots of the correlation between true and pre-
dicted responses on the test set. Figures 5 and 6 show the
average curve and boxplots of the feature selection accuracy.
Similar observations to MSE can be drawn.

4.2. Saving of labeled samples by RWSL

The findings in the previous section showed that RWSL can
help us improve performance under a limited number of
labeled samples compared with using a supervised learning
model such as ridge regression. The improvement is achieved
by incorporating ranked samples in training, which are typic-
ally easier to obtain than labeled samples. This result gives
rise to an essential question of whether RWSL can achieve a
desired performance by just increasing the number of ranked
samples and fixing the labeled samples to a low level. In other
words, it is desirable to learn how many labeled samples can
be saved by adopting RWSL. To answer this question, we
focus on scenario 8 in Sec. 4.1, in which RWSL achieved an
average MSE of 0.937 with a training set of 80 labeled samples
and 375 ranked pairs. Ridge regression trained only based on
80 labeled samples achieved an average MSE of 1.256. To
identify the number of additional labeled samples needed for

M
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Figure 2. Boxplots of MSE on test data for three models.
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ridge regression to reach the same MSE as RWSL, we vary the
labeled samples from 80 to 150 with a step size of 10 and train
ridge regression under each sample size. Figure 7 shows the
MSE of ridge regression (red curve) in comparison with
RWSL (blue curve).

We can observe that the MSE of ridge regression drops
to be lower than that of RWSL with 150 labeled samples in
training. To account for statistical significance in comparing
models, we conduct one-sided hypothesis testing to see
when ridge regression has statistically equivalent MSE to
RWSL. We find that the first time when the two models
have statistically equivalent performance is when ridge
regression includes 130 samples in training. This indicates
that an increment of 130–80¼ 50 labeled samples in ridge
regression is equivalent to 375 ranked pairs in RWSL. If
labeled samples are expensive to collect while ranked pairs
cost substantially less, the saving of the cost in data collec-
tion by RWSL is a clear benefit.Figure 3. Average predictive correlation comparison of three models on

test data.

Figure 4. Boxplots of predictive correlation on test data for three models.

Figure 5. Average feature selection accuracy comparison of three models on test data.
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4.3. Performance sensitivity with respect to ranked
data difference

Ranked samples play an important role in training RWSL.
However, two samples satisfying yi � yj could have slightly
or drastically different response variables. This experiment
aims to evaluate how the difference between ranked samples,
i.e., yi � yj

�� ��, affects the performance of RWSL. Let Dy ¼
yi � yj
�� �� denote a pre-selected threshold. Only ranked sam-
ples exceeding Dy are included in model training. We com-
pare three settings with small, medium, and large Dy: The
three settings are chosen relative to the value of the noise
level in the data. The small Dy is smaller than 1r of the
noise, the medium Dy is around 3r of the noise, and the
large Dy is just above 6r of the noise. Under each setting,
ranked samples of a size between 150 and 900 are simulated,
creating 15 scenarios, while the labeled samples are kept at
50 for all scenarios. Figure 8 shows the average MSE on test
data under the three settings of Dy: We can see that the

MSE performance with medium Dy is the best. The value of
the medium Dy is around 3r of the noise in the response
variable. The practical implication of this finding is to pro-
vide some guidance on the effect of threshold selection.
Underestimating the threshold will result in incorrectly
ranked samples due to noise. On the other hand, overesti-
mating the threshold will result in ignoring many valid
ranked samples. Hence, the choice of the threshold will
affect the type of ranked samples included in training RWSL
and eventually affect the performance of the model.

4.4. Performance sensitivity with respect to labeled
data noise

In many applications, it may be difficult to measure the
response variable precisely. Thus, measurement errors or
label noise in the training data are inevitable. Supervised
learning models like ridge regression completely rely on
labeled samples in training. As a result, they are susceptible

Figure 6. Boxplots of feature selection accuracy on test data for three models.

Figure 7. MSE performance of ridge regression with an increasing labeled sample size.
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to label noise. On the other hand, RWSL may be more
robust as it can additionally include ranked data in training
that is less susceptible to label noise. To verify this, we add
label noise as a percentage of the variance of the response
variable when simulating the training data. The test set is
kept without noise for performance evaluation. We set the
label noise percentage at 0%, 20%, 40%, and 60%. Under
each setting, we compare the performance of RWTL with
ridge regression. The results are shown in Figure 9. As the
noise percentage increases, we can observe that the perform-
ance gap between RWSL and ridge regression increases.
Such a behavior can be explained by the sole reliance of
ridge regression on labeled samples in training. On the other
hand, RWSL draws its performance from both labeled and
ranked data, which results in high robustness against noise.
Hence, under high noise scenarios, RWSL offers the ability
to tolerate perturbations that might affect prediction
performance.

5. Real data application

In this section, we will present an application of RWSL for
predicting the MDS-UPDRS of PD patients using the tap-
ping data collected by their mobile phones.

5.1. Data description

The data was collected by the mPower study (Bot et al.,
2016). For each PD patient enrolled in the study, the patient
was asked to use the mPower app installed on their mobile
phone to perform a tapping activity three times a day:
before medication, after medication, and another time. The
tapping activity is pre-designed, which requires the patient
to use two fingers from the same hand to alternatively tap
two stationary points on the screen for 20 seconds. Figure 10

shows the interface on a mobile phone taken from the
mPower app (Bot et al., 2016). The tapping activity aims to
measure dexterity as assessed by speed, precision, and
steadiness (Bot et al., 2016). Raw sensor data collected dur-
ing a single session of performing the tapping activity is in
the form of time series of the screen x-y coordinates on
each tap. From the raw time series data, 43 features were
extracted, such as the number of taps and the mean inter-
tapping interval based on findings from previous studies
(Arora et al., 2015; Kassavetis et al., 2016; Tavares et al.
2005). The 43 features are included in the RWSL model and
histograms of some of those features can be seen in
Figure 11.

In addition to providing tapping data, each participant
of the mPower study was also requested to fill out the
MDS-UPDRS questionnaire, which was collected on a less
frequent basis (usually monthly). The MDS-UPDRS total
score is used as the response variable for representing PD
severity. MDS-UPDRS score ranges between 0 and 64,
with 0 denoting a healthy response, 64 indicating com-
plete disability.

Among the PD participants in the mPower study, males
comprise a higher proportion than females accounting for
65.8% of cases. Although an imbalance exists between sexes,
the participants are well age-matched with respect to the
ages at which males report disease onset (56.6 ± 9.6 years),
showing no significant difference to that of females
(56.2 ± 9.0 years) (Prince et al., 2018). Moreover, regarding
the correlation between gender and tapping activity per-
formance, no significant correlation was found in baseline
performance between males (135.4 ± 61.3 taps) and females
(133.9 ± 58.0 taps). Regarding the correlation between years
since diagnosis and tapping performances, no significant
correlations were found regarding baseline and steady-state
performance (Prince et al., 2018). Lastly, the correlation

Figure 8. Average MSE comparison of RWSL under small, medium, and large ranked data difference.
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between the age of the patient and the clinical severity
assessed by the UPDRS scale was found to be weak and stat-
istically insignificant (p> 0.05) (Taravari et al., 2014).

5.2. Composition of ranked and labeled datasets

Since mPower is a mobile-based study, the number of par-
ticipants is quite large. However, because the data is self-col-
lected instead of being collected in a controlled
environment, quality of the data collected from each patient
varies significantly from one patient to another due to
patient commitment and compliance. Therefore, to ensure a
more reliable dataset, patient selection needs to be con-
ducted. Our analysis is restricted to patients who performed
at least 30 tapping tasks before medication, and 30 or more
tasks after medication, and we have 57 such patients.
Among those patients, we chose 16 patients who showed
strong statistical evidence for medication response based on
hypothesis testing suggested by the literature (Chaibub Neto
et al., 2016). From these patients, there are a total of 3711

tapping activity records before and after medication. Finally,
the ranked dataset is composed of before- and after- medi-
cation information within a 3-day window, producing 1284
valid ranked pairs.

Labeled samples are those with MDS-UPDRS measure-
ments available. There is substantial missing data of MDS-
UPDRS due to lack of commitment from participants. A
possible solution to this problem is to interpolate the data
with missing values. According to the PD literature (Tsanas
et al., 2010), a linear trend of MDS-UPDRS as PD pro-
gresses is the most plausible trend. Hence, we linearly inter-
polate the MDS-UPDRS to create weekly measurements,
ultimately obtaining 168 labeled samples.

5.3. Model training and performance evaluation

We train RWSL, RankSVM, and ridge regression using 5-
fold cross-validation (CV) and the CV accuracy of each
model is reported in Table 1 using two metrics: MSE and
predictive correlation. We can see that RWSL, in bold,

Figure 9. Average MSE comparison between RWSL and ridge regression under different levels of label noise.
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produces the smallest MSE and the highest predictive correl-
ation, and the smallest standard deviation in both metrics
demonstrating good stability of the algorithm.

Among the 43 features included in training the RWSL,
the coefficients of two features, median tapping interval and
mean tapping interval, rank the top in magnitude. The abso-
lute values of model coefficients are commonly interpreted
in the regularized regression literature as crude feature
importance scores (Tibshirani, 1996). The sum of absolute
coefficients of these two features takes 37% of the sum of
absolute total coefficients where we can observe their esti-
mates in Table 2. This is consistent with the literature in

Figure 10. The mPower app instructs a patient to perform a tapping activity (Bot et al., 2016).

Figure 11. Histograms of some of the tapping features.

Table 1. CV accuracy of MDS-UPDRS prediction based on tapping features.

Model RankSVM Ridge regression RWSL

Predictive correlation:
Mean (std)

0.7335 (0.141) 0.6913 (0.158) 0.7579 (0.083)

MSE: Mean (std) 0.0384 (0.016) 0.0342 (0.016) 0.0276 (0.013)
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which PD patients have been found to have a shorter inter-
tap interval of finger tapping due to a lack of control in fine
motor capabilities (Roalf et al., 2018; Tavares et al., 2005).

5.4. Practical implications

Telemonitoring is an emerging health care platform enabled
by smartphones and wearables, which produces a tremen-
dous amount of patient-specific health data. This paper
addresses the data science challenges in leveraging the tele-
monitoring platform to benefit patient care. Specifically, the
proposed RWSL allows for both labeled and ranked samples
to be integrated in training a robust model to predict the
disease severity of patients with PD based upon mobile-col-
lected tapping activity data. The model provides a step
toward continuous disease monitoring of PD patients,
thereby providing a tool for physicians to get insight into
patients’ real-life functioning, deliver timely interventions,
reduce clinic visits, and facilitate improving of patients’ life
quality. Those benefits are of extreme interest, especially to
health care practitioners and patients within less privileged
healthcare systems under limited resources.

6. Conclusion

We proposed a new RWSL model that allows for both
labeled and ranked samples to be integrated in training a
predictive model. Simulation experiments showed that
RWSL was superior to ridge regression and RankSVM, espe-
cially in scenarios of scarce labeled samples. RWSL was
applied to the tapping activity data of patients with PD col-
lected by their mobile phones and demonstrated good per-
formance in predicting their disease severity.

Despite the promising features of our model, some limi-
tations need to be addressed and open the doors for future
research. First, PD condition/severity is a latent construct, it
cannot be perfectly known no matter which clinical instru-
ment is used or even by more comprehensive clinical assess-
ment. In this paper, we chose to use the MDS-UPDRS score
as a surrogate measure for PD condition/severity because it
has a long history of being a gold standard by neurologists
for monitoring signs and symptoms of PD, and it has shown
excellent internal consistency across multiple studies and
across stages of disease severity as measured by the Hoehn
and Yahr staging system (Goetz et al., 2008; Mart�ınez-
Mart�ın et al., 1994; Louis et al., 1996). On the other hand,
we acknowledge that MDS-UPDRS may not perfectly cap-
ture all aspects of the disease. It is expected that a more
comprehensive PD severity scale will be developed by the
medical society in near future driven by the advances of

diagnostic instrument and medical sciences. By that time,
RWSL can be re-trained to predict the new severity scale
using mobile activity data to allow for more accurate and
reliable prediction of PD severity for each patient.

Furthermore, the telemonitoring data collection process is
patient self-administered. Hence, there is missing data due
to non-adherence and mistakes. This raises questions that
are worth exploring in the future about the best data imput-
ation and pre-processing techniques that can mitigate the
effect of these occurrences in the data. Also, related to the
specific structure of our model, RWSL relies only on medi-
cation as the criteria to create ranked samples, and it is
worth studying for including other PD-related criteria to
create ranked samples.

Finally, it is worth mentioning that there are practical
issues that need to be addressed before our model can be
implemented in clinical practice. For example, the mPower
dataset we used in this paper was created by a research
study, whose quality is relatively higher than the data from
the general patient population. It remains a challenge about
how to improve user compliance for using the app and gen-
erate quality-assured tapping activity data for each patient.
Furthermore, RWSL predicts disease severity of each patient
based on their mobile-collected datasets. While the informa-
tion may be useful to support clinical decision, this tool
needs to gain physicians’ trust before they are willing to
adopt it. To this end, extensive clinical validations are
needed. Also, since the data is collected by patients’ mobile
phones, substantial efforts would be needed to ensure cyber
security so that the data is not maliciously altered, mis-
placed, or misused.
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