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PLURAL: 3D Point Cloud Transfer Learning via
Contrastive Learning With Augmentations

Michael Biehler , Yiqi Sun, Shriyanshu Kode , Jing Li , and Jianjun Shi

Abstract— Unlocking the power of 3D point cloud machine
learning models can be a challenge due to the need for extensive
labeled datasets, which presents a challenge when applying these
models to new domains. Transfer learning can help overcome
this challenge by utilizing data from related tasks to enhance
model performance. However, traditional (2D) transfer learning
methods struggle with 3D point cloud domain adaptation, due
to differences in physical environments and sensor configura-
tions. To address this issue, we propose PLURAL, a novel 3D
point cloud transfer learning methodology based on contrastive
learning with augmentations. Our approach is inspired by the
notion that high-level shape features are more transferable
than low-level geometry features. We propose a co-training
architecture that includes separate 3D point cloud models with
domain-specific parameters, as well as a module for learning
domain-invariant features. Additionally, PLURAL extends the
approach of contrastive instance alignment to 3D point cloud
modeling by considering physics-informed hard sample min-
ing. Our experiments on simulation and real-world datasets
demonstrate that PLURAL outperforms state-of-the-art transfer
learning methods by a significant margin, effectively reducing
the domain gap.

Note to Practitioners—The usage of 3D point cloud machine
learning models is currently limited by the need for extensive
labeled data. With our proposed framework, data from related
tasks can be utilized to enhance the model performance on
new applications or domains. PLURAL explicitly considers the
acquisition of 3D point clouds by diverse sensors and in diverse
environments. The method is highly adaptable and includes
separate models with domain-specific parameters, making it
applicable to a wide range of applications and domains.

Index Terms— Transfer learning, 3D point cloud, contrastive
learning, hard sample mining.

I. INTRODUCTION

3DPOINT clouds have become increasingly important
in real-world applications, such as predicting man-

ufacturing quality and identifying objects in autonomous
driving. The advancements in high-precision laser and LiDAR
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Fig. 1. Motivation of 3D Point Cloud Transfer Learning (PLURAL)
approach.

sensors have revolutionized 3D point cloud modeling. How-
ever, obtaining labeled datasets for new domains remains a
challenge, leaving many engineering problems unresolved.
Different domains of 3D point cloud data are usually not
independently and identically distributed, leading to domain
shifts due to differences in physical environments or sensor
configurations (e.g., different types of sensors, varying num-
bers of laser beams, and installation positions). One example
of domain shift can occur due to differences in sensor con-
figurations used to capture the same object and scene. As a
result, most existing transfer learning methods are not readily
applicable to this domain. To address these issues, we propose
a transfer learning methodology that utilizes labeled data from
related engineering problems to enhance the performance of an
(unlabeled) target learning task based on contrastive learning
with augmentations. Our method aims to effectively adapt 3D
point cloud models from labeled source domains to a novel,
unlabeled target domain by learning transferable features.
As illustrated in Fig. 1, the goal of the PLURAL framework is
to utilize 3D point cloud data from diverse source domains to
enhance the predictive performance on a novel target domain.
The 3D point clouds from different domains may exhibit
significant domain shifts due to different acquisition sensors
and object sizes and characteristics.

Domain shifts in 2D images typically manifest as changes
in image appearance, such as blur, illumination, and weather
conditions. In contrast, domain shifts in 3D point clouds are
primarily caused by variations in shape geometry, resulting
from both external factors and internal sensor configurations.
Unlike 2D images, which have a uniform distribution of pixels,
3D point clouds can exhibit significant differences in low-level
local geometry, making it challenging to transfer knowledge
between different domains. Figure 2 serves as an illustration
of this concept: in 2D scenes, such as transitions from the
GTA [1] to Citiscapes [2] dataset, domain shifts are primarily
characterized by changes in visual appearance. In contrast,
3D domain shifts predominantly manifest as variations in
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Fig. 2. Illustration of characteristics of 2D and 3D domain shift.

geometry, stemming not only from external environmental
factors but also from internal sensor configurations (e.g.,
differing laser beam configurations in datasets like KITTI [3]).

To address these challenges, we propose a novel transfer
learning framework for 3D point cloud learning tasks called
PLURAL. Our architecture includes separate models for each
domain, along with a domain-agnostic learning module and
a discriminative head. We hypothesize that high-level shape
features are more transferable than low-level, local features,
which form the basis of our architecture design. Our frame-
work also incorporates a novel contrastive learning mechanism
that leverages contrastive instance alignment, data augmenta-
tion, and hard sample mining to improve transferability and
prevent the model from getting stuck in local minima. Unlike
prior work in 3D point cloud transfer learning that used a
self-training pipeline, PLURAL co-trains labeled data from
multiple source domains and the target domain, leading to
improved transfer of knowledge across domains.

The main contributions of this paper are as follows:

• We propose a novel transfer learning approach for 3D
point cloud modeling that utilizes a unique architecture
design involving parallel training of deep neural networks
for a source and (unlabeled) target domain, with separate
feature extractors.

• We introduce innovative techniques tailored for 3D point
cloud data, including contrastive instance alignment and
hard sample mining. For example, we employ cosine
similarity distance, which possesses advantageous char-
acteristics such as scale invariance for varying point
densities and the preservation of directional information
in spatial relationships, even when the scale of objects
varies across domains.

• We conduct extensive simulations and case studies to
demonstrate that our proposed method outperforms exist-
ing state-of-the-art transfer learning methods in terms of
accuracy and generalizability.

• We provide new insights into how to encourage deep neu-
ral networks to learn transferable 3D point cloud features,
with potential applications across various domains.

The structure of the article is as follows: In Section II,
we provide a literature review on existing work in 3D point
cloud transfer learning. Section III presents our proposed
PLURAL framework for point cloud transfer learning via
contrastive learning with augmentations. Section IV validates
the effectiveness of the proposed methodology through exten-
sive case studies and comparisons with existing benchmark
methods. In Section V, we discuss the implications of our

findings and outline potential avenues for future research.
Finally, we conclude the article in Section VI.

II. LITERATURE REVIEW

In this section, we provide a comprehensive review of the
existing literature on transfer learning for 3D point cloud data.
While there is a considerable amount of research on transfer
learning with 2D images, the literature on transfer learning
with 3D data is still limited.

A. Methods Based on 2D Transfer Learning

Similar to other works in the field of 3D vision, a popular
approach is to utilize well-established frameworks from 2D
image processing and extend them to 3D data by either
transforming the data itself (e.g., birds-eye-view) or extending
network components to 3D (e.g., 3D convolutions). Along
this direction, Imad et al. [4] convert the raw point cloud
to a 2D bird’s eye view and utilize a 2D convolutional
neural network to perform semantic segmentation of 3D
objects. Yan et al. [5] utilize deep learning models for
existing sensor modalities (e.g. RGB images, 2D LiDAR)
to learn a new 3D LiDAR-based human classifier from
other sensors over time, taking advantage of a multisensor
tracking system. Chai and Zhou [6] introduced a transfer
learning methodology for industrial fault diagnosis, featuring
a similarity learning-based discrimination module to identify
fault prototypes (FPs) that are both representative of individ-
ual faults and discriminative across various fault categories.
Additionally, a fault prototypical-adaptation module has been
incorporated to adapt multiple FPs to the target dataset,
enhancing category-specific domain invariance with precision.
Chai et al. [7] introduced a multisource-refined transfer net-
work to address fault diagnosis challenges in the presence
of both domain and category inconsistencies. The network
employs a multisource-domain-refined adversarial adaptation
strategy to mitigate category-wise distribution inconsistencies
within source–target domain pairs, avoiding negative transfer
issues. Additionally, a multiple classifier complementation
module leverages various diagnostic knowledge sources by
transferring source classifiers to the target domain based on
similarity scores, resulting in target-faults-discriminative and
domain-refined-indistinguishable feature representations.

B. Methods Based on 3D Transfer Learning

3D point cloud learning constitutes a highly active research
field. Prior to the emergence of Point-Net [8], point cloud
segmentation methods within the realm of deep learning
typically relied on multi-view approaches [9] or volumet-
ric techniques [10]. PointNet [8] marked a pivotal shift
as the first deep learning-based method designed to learn
directly from individual points. Utilizing point-wise multi-
layer perceptrons, PointNet extracts global features, while
its subsequent refinement, PointNet++ [11], was extended
to encompass local information. PointConv [12] introduced
point-wise convolution operators that convolute points with
their neighboring counterparts. Edge-conditioned convolution
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(ECC) treats each point as a graph vertex and employs graph
convolution. RandLA-Net [13] adopts attention scores for
points as soft masks, replacing the original pooling layer.
Recently, transformer-based methods have gained attention,
with point cloud transformer (PCT) [14] pioneering by incor-
porating self-attention layers into the original PointNet [8]
framework.

However, annotating large volumes of real-world data
for deep learning-based approaches in this domain is often
challenging or even impractical. Recent methodologies have
applied transfer learning directly within the 3D data domain.
One viable solution involves the application of simulation-
to-reality (sim2real) methods, where learning occurs with
simulated data, and the acquired knowledge is subsequently
transferred to real-world applications. This strategy, commonly
employed in robot learning for tasks such as vision-related
robotic tasks [15], [16], [17], typically involves rendering
simulated scenes into RGB images, often with additional
depth, thermal, or flow images. Deep learning-based neural
networks are then pretrained using synthetic data and adapted
to the real world through domain adaptation [18]. While
this approach is prevalent in computer vision tasks involving
images, limited work has been done regarding transfer learning
on 3D point clouds [19]. Horache et al. [20] proposed utilizing
a multi-scale U-Net-based method for descriptor matching for
the specific learning task of 3D point cloud registration. Their
approach allows the transfer of descriptors for registration on
an unknown dataset without any supervision. Xiao et al. [21]
focus on the transfer learning between synthetic and real (sim-
to-real) 3D point clouds. Their approach translates synthetic
point clouds to have a similar appearance and sparsity as real
point clouds. However, their approach does not consider the
performance of the translated point clouds on downstream
tasks such as semantic segmentation. Wu et al. [19] extend
one of the most widely used transfer learning techniques to 3D
learning: Their 3D neural network model is firstly pre-trained
on the synthetic data and then fine-tuned on the real-world
data. Xie et al. [22] proposed a method for unsupervised
pre-training on a large source set of a 3D scene to improve the
performance on a small target dataset. Wei et al. [23] proposed
a weakly supervised learning scheme for 3D point cloud scene
semantic segmentation to reduce the labor and time cost for
annotation on 3D datasets.

C. Methods Based on 3D Hard Sample Mining

Hard sample mining is the process of selecting difficult
training examples to improve model performance in chal-
lenging cases. It leads to better model generalization and
performance by focusing the training on the most informative
and hardest samples. For 3D point cloud data, Du et al. [24]
proposed a self-contrastive learning framework with hard
negative sampling based on nonlocal self-similarity, aiming
at accurate point cloud representation learning in a self-
supervised fashion. Yang et al. [25] proposed a self-supervised
contrastive learning 3D classification model, that includes a
confusion-prone classes mining module that mines classes
with small inter-class variations. In the field of 3D vehicle

detection, Zeng et al. [26] observed, that many region pro-
posals contain no vehicles, or many region proposals contain
simple examples, so online hard example mining [27] is
adopted to augment the dataset.

To summarize, the development of 3D transfer learning is
currently dependent on progress in 2D image transfer learning.
However, to our knowledge, there has been no prior attempt to
apply contrastive transfer learning directly to 3D architectures
without relying on 2D data or network projections, while
utilizing hard sample mining to examine areas of data that
have been overlooked. This approach allows for the use of
our transfer learning methodology in engineering applications
that demand high precision, as using 2D projections would
result in a loss of resolution and information.

III. PLURAL METHODOLOGY

This section presents the PLURAL framework as an
approach to point cloud transfer learning via contrastive
learning with augmentations. We assume the following data
scenario: From the target domain, a set of input point clouds
X T

=
{

X T
i

}N T

i=1 is available, where i is the sample index, N T

is the total number of samples, and the sample X T
i consists

of a set of nT
i unstructured, varying-sized 3D measurement

points (i.e., X T
i ∈ RnT

i ×3). Note, that we do not assume that
the response YT is available (i.e., unlabeled dataset). For the
source domain, a set of input point clouds X S

=
{

X S
i

}N S

i=1

is available along with a vector response Y S
=

{
Y S

}N S

i=1,
where Y S

∈ Rd S
y , where d S

y denotes the dimension of the
(multivariate) regression response or several one-hot labels of
the classification response. Based on this dataset, we study the
problem of unsupervised domain adaptation for 3D point cloud
models, by adapting a 3D model fθ parametrized by θ from a
labeled source domain (i.e.,

{
X S,Y S

}
) to an unlabeled target

domain X T . The main objective of the PLURAL framework
is to improve the performance of the 3D model fθ on the
unseen test set of the target domain, which requires careful
consideration of the architecture and loss function to enable
the learning of transferable features.

A. Architecture Design and Big Picture

To achieve this goal, we employ 3D encoders for the
target and source domains to learn domain-specific features.
We then utilize a shared 3D encoder structure to learn
transferable features, which are utilized in the discriminative
head of the model. Fig. 3 provides a high-level overview of
the proposed framework. Our hypothesis for the architecture
design is that the 3D networks will gradually process domain-
specific non-transferable features and acquire domain-invariant
features. Therefore, we utilize domain-specific 3D encoders
to learn low-level features that are distinct and specific to
each data domain. Then we concatenate the features from
the low-dimensional feature space and perform contrastive
alignment for instance-level feature alignment. Finally, a dis-
criminative head is utilized to obtain a supervision signal for
the source domain and predict pseudo-labels for the target
domain, which are subsequently updated during the joint
optimization.
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Fig. 3. Overview of the proposed PLURAL framework.

Transfer learning for 3D objects is challenging due to
extreme geometry shifts, including density variations and
different occlusion ratios of point clouds caused by diverse
physical environments and sensor configurations. Unlike 2D
domain models trained on ImageNet, 3D point cloud modeling
lacks a transferable, well-trained backbone. One reason is the
difficulty of reducing domain shifts in geometric representa-
tions for low-level features in the 3D model architecture. At a
high level, we expect the 3D model to progressively process
domain-specific non-transferable features and learn domain-
invariant features. The neural network architecture facilitates
this process by progressively learning domain-specific and
domain-invariant information across its layers. This is a
result of the network’s hierarchical structure. In the early
layers, particularly in convolutional neural networks (CNNs),
convolutional layers utilize filters to capture local patterns,
detecting simple features like edges and textures. Subse-
quent pooling layers then downsample spatial dimensions,
highlighting salient features while reducing sensitivity to
precise spatial locations. As the data advances through the
network, deeper layers combine low-level features into more
intricate and abstract representations. This gradual abstrac-
tion of features contributes to the network’s capacity for
invariance to irrelevant variations, fostering generalization.
It is important to note that while conventional interpretations
of invariance learning often treat domain-invariant features
as separable from domain-specific features, our proposed
approach emphasizes the network’s learned ability to “filter
out” domain-specific information. This process minimizes the
influence of domain-specific details while retaining pertinent
information for achieving domain invariance.

Our architecture design utilizes domain-specific 3D
encoders that learn different mapping functions to convert
unstructured 3D point clouds into a low-dimensional feature
space. This leads to domain adaptation on the target domain
while maintaining performance on the source domain, allow-
ing for bi-directional knowledge sharing. Shared 3D encoders
are then utilized to co-train with data samples from both
domains, further compressing the outputs of the domain-
specific 3D encoders. At this stage, we extend ideas from
contrastive alignment learning in 2D vision, which encourages

the learning of domain-invariant features for deeper features
that are more transferable because they have similar structures
to grid-based feature maps in 2D image tasks. The discrimina-
tive head then predicts a regression response or classifies the
3D objects. Given labeled samples from the source domain,
the detection head is trained to minimize a mean squared error
(MSE) or cross-entropy loss for regression or classification
tasks, respectively.

Ldiscr,reg =
1

N S

∑N S

i=1

∥∥Y s
i − fθ

(
X S

i

)∥∥2
2

Ldiscr,cls = −
1

N S

∑N S

i=1

∥∥Y s
i · log

(
fθ

(
X S

i

))∥∥2
2 (1)

B. Contrastive Instance Alignment

In this section, we utilize the concept of contrastive
instance alignment induced by pseudo-labels. The funda-
mental notion behind contrastive alignment is to minimize
the feature distance between similar samples from different
domains. We do this by leveraging pseudo-labels, which
enable us to enhance the discriminative ability of the net-
work and ensure that similar samples are aligned in the
low-dimensional feature space. This approach significantly
improves the generalization capability of the model and
enhances its ability to tackle domain shift problems. Specif-
ically, we choose the feature instance pair (F S

i , F T
j ) based

on a similarity criterion as follows. Note that the similarity
criterion slightly differs for regression and classification tasks.
For each source feature instance F S

i , we aim to find a feature
instance F T

j∗ from the target domain that maximizes the cosine
similarity:

j∗

regr = max
1≤ j≤N T

{
8(F S

i , F T
j )

}
, 1 ≤ i ≤ N S (2)

j∗

class = max
1≤ j≤N T

c

{
8(F S

i , F T
j )

}
, 1 ≤ i ≤ N S

c , c = 1, .., |C |,

where 8
(

F S
i , F T

j

)
=

F S
i ·F T

j

∥F S
i ∥·

∥∥∥F T
j

∥∥∥ calculates the cosine sim-

ilarity between features of a source sample and a target
candidate. For the classification task, N S

c and N T
c denote the

total number of samples in class c in the source and target
dataset (i.e., S and T ), respectively. |C | denotes the total
number of categories. In addition to minimizing the inter-class
distance between domains, we also constrain the intra-class
distance between different samples within the same domain.
Hence, we get the following loss functions for the contrastive
alignment depending on the discriminative task (regression
versus classification).

Linter, regr (S, T ) =

−

∑
i∈N S

= log
exp (F S

i · F T
j∗/τ)

exp
(

F S
i · F T

j∗/τ
)

+
∑

j∈N T exp
(

F S
i · F T

j

)
Linter, class(S, T ) =

−

|C |∑
c=1

∑
i∈N S

c

log
exp (F S

i · F T
j∗/τ)

exp
(

F S
i · F T

j∗/τ
)

+
∑

j∈N T
|C |\c

exp
(

F S
i · F T

j

)
(3)
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Lintra, regr (D)

=−

∑
i∈N D , j∈N D

log
exp

(
F D

i ·F D
j∗ /τ

)
exp

(
F D

i · F D
j∗ /τ

)
+

∑
j∈N D exp

(
F D

i · F D
j

) ,

D = {S, T }

Lintra, class (D)

=−

|C |∑
c=1

∑
i∈N D , j ∈N D

log
exp (F D

i · F D
j∗ /τ)

exp
(

F D
i ·F D

j∗ /τ
)
+

∑
j∈N D

|C |\c
exp

(
F D

i · F D
j

) ,

D = {S, T } (4)
Lcontr,align = Linter (S, T ) + Lintra(S) + Lintra(T ), (5)

where τ denotes a tuning parameter for the strength of domain
adaption. The contrastive alignment loss Lcontr,align considers
the pairwise relations of samples between and within domains
(source and target) to enable inter-domain transfer learning and
improved discriminative performance on intra-domain tasks.
Finally, by combining the loss terms in Equations 1 and 5,
we optimize the model fθ (·) by minimizing the following loss:

min
θ
Ldiscr + λ · Lcontr,align (6)

where λ is a tuning parameter to balance domain adaptation
(i.e., contrastive alignment) and the learning of the discrim-
inative task. However, since the features of point clouds are
sparsely distributed, it is difficult to achieve effective align-
ment between domains by using global distribution alignment.
In our experiments, we found that the simple use of con-
trastive alignment introduces the mismatch in point density and
occlusion ratio between sample distributions of pseudo-labels
and ground truths in the target domain. Therefore, we utilize
effective augmentation via hard sample mining to further
enhance domain adaptation.

C. Hard Sample Mining

A straightforward use of the contrastive instance alignment
tends to introduce the mismatch between the sample distri-
butions obtained by pseudo-labels and ground truths on the
target domain. First, pseudo-labels are more concentrated in
the patterns with dense point clouds than those with sparse
point clouds. Second, pseudo-labels cannot completely cover
the patterns of severe occlusions. Therefore, most instances
induced by pseudo-labels can be viewed as “easy sam-
ples” with sufficient points or complete geometry. However,
we believe that the neglected “hard samples”, which are more
likely to be distributed in the tails of the predictive distribution,
are equally important to 3D transfer learning.

Hard sample mining transforms point clouds by considering
the specific geometry mismatches. There are some recent
works [27], [28], concurrent to our own that select hard
samples for training deep neural networks. Similar to our
approach, all these methods based their selection on the current
loss for each data point. More generally, the alternating steps
that define a hard sample mining algorithm are as follows:

a) For some period of time, a fixed model is used to find
new examples to add to the active training set,

b) Then, for some period of time, the model is trained on
the fixed active training set.

To maximize the network learning, augmented sample
X T

i,hsm generated by the augmentor should satisfy two
requirements:

i. X T
i,hsm should be more challenging than X T

i , i.e., we aim
for the discriminative loss to be larger (Ldiscr

(
X T

i,hsm

)
≥

Ldiscr
(
X T

i

)
);

ii. X T
i,hsm should not lose its 3D shape features, meaning

that it should describe a shape that is not too far (or
different) from X T

i .
To achieve requirement (i), a simple way to formulate the

loss function for the hard sample mining (denoted by Lhsm) is
to maximize the difference between the discriminative losses
on X T

i and X T
i,hsm , or equivalently, to minimize

Laug = −
(
Ldiscr

(
X T

i,hsm

)
− Ldiscr

(
X T

i

))
. (7)

Note that, for X T
i,hsm to be more challenging than X T

i ,
we assume that Ldiscr

(
X T

i,hsm

)
≥ Ldiscr

(
X T

i

)
) and a larger

Ldiscr
(
X T

i,hsm

)
indicates a larger magnitude of augmentation,

which can be defined as ε = Ldiscr
(
X T

i,hsm

)
− Ldiscr

(
X T

i

)
.

However, if we naively minimize Eq. 7 for Laug → 0,
we encourage Ldiscr

(
X T

i,hsm

)
−Ldiscr

(
X T

i

)
→ ∞. This is due

to the fact that Laug minimizes the negative difference between
the discriminative loss of the hard and original sample respec-
tively (i.e., X T

i,hsm and X T
i ). This effectively maximizes the

difference. Since the Ldiscr is fixed, without further constraints,
we could choose the hard sample X T

i,hsm arbitrary far away
from the original sample and improve our objective value.
Hence, a naive solution for X T

i,hsm is an arbitrary, random shape
regardless of X T

i . Such a X T
i,hsm clearly violates requirement

(ii). Hence, we further restrict the augmentation magnitude
ε. Therefore, we upper-bound Ldiscr

(
X T

i,hsm

)
with a dynamic

parameter δ:

ε=Ldiscr
(
X T

i,hsm

)
−Ldiscr

(
X T

i

)
≤δ · Ldiscr

(
X T

i

)
= εmax , (8)

where εmax is the upper bound on the augmentation magnitude
ε. Note that, when we learn the hard samples, the 3D encoders
are fixed so Ldiscr

(
X T

i

)
is fixed. Hence, ε depends only on

δ. Since it should be non-negative, we thus ensure δ ≥ 1.
Moreover, considering that the 3D models are very fragile at
the beginning of the training, we pay more attention to training
the classifier rather than generating a challenging hard sample
X T

i,hsm . Hence, ε should not be too large at the beginning
of the training process, meaning that X T

i,hsm should not be
too challenging. Later, when the 3D model’s discriminative
ability becomes more powerful, we can gradually enlarge ε to
allow the augmentor to generate a more challenging X T

i,hsm .
Therefore, we design a dynamic δ to control δ with the
following formulation:

δ = max (1,
1

Ldiscr
), (9)

where max (1, ·) ensures δ ≥ 1. At the beginning of the
network training, the discriminate loss will be larger, since
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the predictions may not be accurate. Hence, the inverse dis-
criminative loss 1

Ldiscr
is generally small, resulting in a small

δ, and ε will also be small according to Equation 8. When
the classifier becomes more powerful, the discriminative loss
Ldiscr will decrease, its inverse 1

Ldiscr
will increase, and we will

have larger δ and ε accordingly. Hence, the final hard sample
loss is computed as follows,

Lhsm = −
(
Ldiscr

(
X T

i,hsm

)
− δ·Ldiscr

(
X T

i

))
. (10)

We here propose a novel algorithm to efficiently obtain hard
samples, that optimizes the hard sample loss Lhsm without
directly conducting gradient-based optimization to find the
hard samples X T

i,hsm . This allows us to find hard samples
more efficiently. This method combines two major compo-
nents: Firstly, it simulates object occlusions by altering the
complete geometry of easy samples. Concretely, we calcu-
late the viewpoint of a certain sample, randomly select a
part of the viewpoint, and discard critical points on these
angles. Secondly, it discards critical points (along the gradient
direction) from existing dense point clouds. The exclusion
of certain critical points is intentional and serves a specific
purpose: We aim to train a model that learns more robust
features, which can adapt to the challenges posed by 3D
domain shifts, such as occluded objects or sparse measurement
points. By systematically removing certain critical points,
we encourage the model to focus on learning features that are
resilient to geometric variations and domain shifts, ultimately
promoting a more robust and adaptable representation. This
also has a physical interpretation: this process simulates the
change in the number of laser beams among different 3D
sensors. The idea is to use the information of the gradient
of the neural network model which tells us for each 3D input
point whether the model performance will increase if we take
a small step in the gradient direction.

The core component of hard sample mining is the attribu-
tion score: The attribution value assigns each point a score
reflecting its contribution to the discriminative model loss.
Aggregations of highly scored points indicate important seg-
ments/subsets in a 3D point cloud. If a measurement point with
high attribution scores is discarded, the model performance
decreases significantly. Therefore, discarding a relatively large
number of points with high attribution scores leads to a new
sample that is a “hard sample” for the model to predict.
Fig. 4 illustrates the hard sample mining algorithm, which
includes the random selection of a viewpoint, the calculation
of point attributions of the points in this viewpoint, and the
subsequent deletion of points with large attribution scores
until the termination criterion Ldiscr

(
X T

i,hsm

)
− Ldiscr

(
X T

i

)
>

δ · Ldiscr
(
X T

i

)
is met.

The transformed point clouds focus on effective contrastive
instance alignment by reducing the distribution mismatch of
the target domain induced by pseudo-labels.

Figure 5 depicts the PLURAL procedure for constructive
alignment. Initially (Fig. 5a), there exists a feature space
mismatch between the source and target domains due to
domain shifts, including differences in sensor configurations.
This mismatch results in inaccurate predictions (red points)
in areas of the target domain that lack a strong match to the

Fig. 4. Illustration of hard sample mining algorithm.

Fig. 5. PLURAL procedure for contrastive alignment with hard sample
augmentation.

source domain. While the application of the contrastive loss
improves domain alignment to some extent, it tends to align
easily recognizable 3D objects but often overlooks challenging
samples (blue shaded area, Fig. 5b) characterized by severe
occlusions or density variations. Consequently, the transfer
learning model may continue to produce inaccurate predictions
in these regions, leading to discrepancies in point density
and occlusion ratios between the pseudo-labels and ground
truths in the target domain. To address this challenge, we have
developed a dedicated hard sample mining algorithm (Fig. 5c)
that transforms point clouds while taking into account specific
geometry mismatches, such as severe occlusions or density
variations. This approach results in a substantial enhancement
in domain alignment, ultimately improving the overall effec-
tiveness of our transfer learning framework.

The purpose of the hard sample mining is to further
enhance the contrastive alignment scheme of the PLURAL
framework. The original contrastive alignment focuses more
on the alignment of easy 3D objects rather than the easily
neglected hard samples with severe occlusions or density
variations. To assess the impact of hard sample mining on
alignment, we conducted an ablation study using a partial
model variant, denoted as “PLURAL w/o HSM,” which does
not include hard sample mining. The findings from this
analysis will be discussed in the experimental section.

D. Unified PLURAL Framework

We propose a stepwise training procedure with a warm-up
process to train the PLURAL framework as shown in
Algorithm 2. Specifically, we first pre-train a source model on
the labeled source domain and use it to generate pseudo-labels
on the target set. We then conduct hard sample mining
(Algorithm 1) and augment the target set. Next, we warm up
the 3D model following Equation 6, which allows a more
stable convergence in the early stages of training. For the
remaining epochs, we update the pseudo-labels using stepwise
co-training. During this process fθ (·) gradually adapts to the
target domain while maintaining the in-domain performance.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 30,2023 at 06:22:52 UTC from IEEE Xplore.  Restrictions apply. 



BIEHLER et al.: PLURAL: 3D POINT CLOUD TRANSFER LEARNING VIA CONTRASTIVE LEARNING 7

Algorithm 1 Hard Sample Mining Algorithm
Inputs:

• “Easy” Target sample: X T
i

• Dynamic upper-bounding parameter δ
• Current 3D model fθ and associate discriminative loss Ldiscr

Initialize: Number of discarded points ndisc = 0
Output:

• “Hard” Target sample: X T
i,hsm

Algorithm:
1. Select a random viewpoint X T,view

i of the 3D point cloud X T
i

2. Discard points along the gradient direction in the selected
viewpoint

while Ldiscr
(
X T

i,hsm

)
− Ldiscr

(
X T

i

)
≤ δ · Ldiscr

(
X T

i

)
a. Calculate the attribution a j of each point j in the

viewpoint of the 3D point cloud X T,view
i, j via a j =

X T,view
i, j ∇Mθ (X T

i, j ), where j = 1, . . . , n p and n p is
the number of measurement points in the 3D point
cloud.

b. Successively discard point j with the largest attri-
bution a j , ndisc = ndisc + 1

if ndisc ≥
1
3

∣∣{X T,view
i

}∣∣(do not want to discard too many points in
viewpoint)

c. Go back to Step 1, and select a new viewpoint

Algorithm 2 PLURAL Algorithm
Inputs:

• Source: Labeled point cloud dataset from source domain
DS

=
{(

X S
i , Y S

i

)}NS

i=1

• Target: Unlabeled input point cloud from target domain
{

X T
i

}NT

i=1
• Algorithm parameters: Network architecture and termination

tolerance ϵ

Output:
• Learned network weights θ of model f (·)

Algorithm:
1. Pretrain 3D base model

f ini t
= fit (DS)

2. Generate pseudo-labels for target domain samples{
Y T

i

}NT

i=1
= predict ( f ini t ,

{
X T

i

}NT

i=1)

3. Mine hard samples to augment the target set

DT
hsm0

=

{(
X T

i,hsm0
, Y T

i,hsm0

)}NT,hsm0

i=1
= hsm

({(
X T

i , Y T
i

)}NT

i=1

)
4. Initialize the model with 3D base model

fθ = f ini t

5. Warm start of PLURAL model
f 0
θ = fit (DS, DT

hsm0
)

6. PLURAL iteration: Iteration index k
While not converged:
6.1 Update pseudo labels:{

Y T
i,hsm k

}NT ,hsmk

i=1
= predict ( f 0

θ ,
{

X T
i

}NT

i=1)

6.2 Add new hard samples to the target dataset

DT
hsmk

=

{(
X T

i,hsmk
, Y T

i,hsmk

)}NT,hsmk

i=1

= hsm
({(

X T
i,hsmk−1

, Y T
i,hsmk−1

)}NT,hsmk−1

i=1

)
6.3 Model update
f k
θ = fit (DS, DT

aug,k)

Termination check: f k−1
θ − f k

θ ≤ ϵ

In our transfer learning approach, the generation of
pseudo-labels serves as a crucial bridge for knowledge transfer

between the source and target domains. These pseudo-labels
facilitate effective domain alignment and are essential for
model adaptation. We prioritize adaptability and robustness,
enabling the model to excel in both source and target domains,
particularly in scenarios with challenges like occlusions and
sparse data points. To mitigate negative transfer, we employ
two key strategies: contrastive instance alignment with cosine
similarity and hard sample mining. Pseudo-labels play a
pivotal role in these strategies, promoting the alignment of
semantically similar instances while fostering generalization
and robust feature learning. Our approach aims to maintain
a balance between adaptability and domain-specific preserva-
tion, ultimately enhancing generalizability and target domain
performance.

E. Hyperparameter Tuning
We note that the use of machine learning algorithms com-

monly involves careful tuning of learning parameters requiring
expert experience, rules of thumb, or brute force search. On the
contrary, we view this issue as the global derivative-free
optimization of an unknown (nonconvex) black-box function
and utilize the Bayesian optimization procedure proposed by
Snoek et al. [29] with its accompanying Python package
“Spearmint” to automatically optimize the performance of
the PLURAL algorithm for a given problem. This process is
fully automated and can be parallelized for computational effi-
ciency during training time. Bayesian optimization has been
shown to outperform other global optimization algorithms for
tuning parameter selection on several multimodal black-box
functions [30].

IV. SIMULATION STUDIES

In this section, we evaluate the PLURAL approach with
simulated unstructured 3D point clouds against three bench-
mark methods. The data characteristics are as follows:
(i) the parts are measured and represented by unstructured
point clouds, and (ii) the goal is to develop a model to link
the point cloud inputs with a scalar regression response. In the
simulation studies, we will use conic shapes to predict the
roundness error. In manufacturing applications, conic shapes
are commonly used as reference objects for problems such
as part-to-part variation pattern identification [31] or process
control [32]. Therefore, we simulate truncated cone point
clouds with n p (i.e., i = 1, . . . , n p) following this procedure:

1. Generate random angles θi ∈ [0, 2π ] and radius on the
bottom (r1 = N (3, 2)) and top (r2 = N (10, 2)) of the
cone;

2. Generate random coordinates zini t
i ∈ [0, hini t

], where
hini t is the height of the cone;

3. Add random perturbations to the radius ri and height hi :

r1
i = N (0, 0.5); h1

i = N (0, 0.1 · hini t ); hi = hini t

+ h1
i ; zi = zini t

i + hi ; (11)

4. Add perturbations to the wall coordinates of the cone:
Wave amplitude wA

i = N (0.5, 1); Wavelength
wA

i = N (5, 1); Wave phase wA
i = U [0, 2π ];

Eccentricity Ei = (r1 − r2)/2, Eccentricity perturbation

E1
i = N (0, 0.2)
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Fig. 6. Examples of generated truncated cones.

r p
i =

r1 + r2

2
+ Ei ·

(
1 −

zi

hi

)
+ r1

i + E1
i

+ wA
i · sin

(
2π ·

z
wA

i
+ wA

i

)
+ wA

i · cos
(

2π ·
z

wA
i

+ wA
i

)
(12)

5. Calculate the corresponding x and y coordinates on the
surface of the cylinder:

xi = r p
i · cos(θi ); yi = r p

i · sin(θi ) (13)

6. Add random noise to each coordinate to simulate
measurement errors

X i =
(
xi + εx , yi + εy, zi + εz

)
, (14)

where ε is an additive Gaussian noise centered at the respective
coordinate (i.e., εx = N

(
xi , σ

2
)
, εy = N

(
yi , σ

2
)
, εz =

N
(
zi , σ

2
)
). Here, x and y are the Cartesian coordinates on the

surface of the cylinder, given by the radius and the angle at
each point. The resulting point cloud X ={X i }

n p

i=1 will consist
of n p3 D points with (x, y, z) coordinates that lie on the
surface of the cylinder, with a wave and eccentricities added
to the walls of the cylinder. Two examples of the generated
truncated cone point clouds with n p = 3000 are shown in
Fig. 6.

Domain shift can occur in 3D point clouds due to different
sensor configurations used for data acquisition. This means
that the statistical properties of the data may differ between
two datasets acquired using different sensors, even if they
represent the same scene or object. Such variations can lead
to reduced performance of downstream tasks.

To simulate different sensor configurations, we generate two
datasets by applying subsampling techniques:

- Dataset A: Uniform acquisition: Ground LiDAR
Large-scale point clouds acquired by ground laser (LiDAR)

scanning typically exhibit a uniform sampling structure [33],
[34]. Therefore, we subsample a generated point cloud X to
n p = 1500 using uniform subsampling to obtain a sample X A

of dataset A.
-Dataset B: Space filling acquisition: High-resolution ter-

restrial laser scanning (TLS)
High-resolution terrestrial laser scanning (TLS) produces

point clouds with billions of measurement points posing sig-
nificant computational challenges. Therefore, it is common to
apply postprocessing to reduce the size of the point clouds but
preserve their spatial information. Methods such as 3D Hilbert
curves [35] or regular 2D grid sorting [36] lead to 3D point

Fig. 7. Example of Datasets A and B mimicking different 3D sensor
configurations.

clouds with space-filling properties. Therefore, we subsample
a generated point cloud X to n p = 1500 using furthest-point
subsampling to obtain a sample X B of dataset B.

Examples of those two different point cloud acquisition
techniques with the same random generation settings (for
comparison purposes) are visualized in Fig. 7. We can see that
dataset A has a varying point density across the 3D surface,
due to independent uniform sampling. On the other hand,
dataset B has an even distribution on the 3D surface due to
the consideration of space-filling properties for sampling.

An important quality characteristic of conic or cylindrical
shape applications, such as hot steel rolling [37] or orthopaed-
ical implants [38], is the roundness error of the manufactured
parts. However, the application of the minimum zone tolerance
(MZT) method, which provides the most accurate estimation
of the roundness error, is computationally intensive [39].
However, the recently proposed ANTLER framework [40] can
directly estimate such quality characteristics based on a point
cloud input. Therefore, we will utilize the MZT method to
compute the quality response in this simulation study via a
nonlinear function in the following way.

Given a circumferential line r(x, y, φ), the roundness error
R(x, y) is defined by

R(x, y) = OC(x, y) − I C(x, y), (x, y) ∈ Er(x, y,φ),

(15)

where OC(x, y) and I C(x, y) are the radii of the reference
circles of center (x, y) derived by n finite measurement points
and Er(x, y,φ) is the area enclosed by r(x, y, φ):

OC(x, y) = max
φi =i× 2π

n , i=1,...,n
r(x, y, φi ) (16)

I C(x, y) = min
φi =i× 2π

n , i=1,...,n
r(x, y, φi ) (17)

Finally, the average roundness (R(x, y) over circumferential
lines is used as the response Y . Following this procedure,
we generate N = 100 point cloud samples for each dataset.

In particular, we obtain the source datasets DS
A =

{
X A

j ,Y j

}N

i=1

and DS
B =

{
X B

j ,Y j

}N

i=1
. If the respective datasets serve as

target datasets, the label is only utilized for validation purposes

(i.e., DT
A =

{
X A

j

}N

i=1
and DT

B =

{
X B

j

}N

i=1
).
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A. Benchmark Methods
For this simulation study, the authors of the ANTLER

method [40] compared their proposed framework against
six benchmarks and established state-of-the-art performance
in the non-transfer learning setting on the conic shape
dataset. Therefore, we use ANTLER as the basic, non-transfer
learning benchmark. Furthermore, ANTLER serves as the
domain-specific 3D encoder of our transfer learning approach.
We note, that to the best of our knowledge, there exists no
current method that can achieve transfer for 3D point cloud
regression tasks to an unlabeled target domain. However, for
comparison purposes, we still consider the following bench-
marks, even though they have an “unfair” advantage due to
their access to target labels:

• Pretraining
One of the most widely used transfer learning techniques

is pretraining: Following Yan et al. [5], the ANTLER model
is firstly pre-trained on the source dataset and then fine-tuned
on the target dataset. The epochs to conduct fine-tuning are
chosen based on binary search.

• PointAugment
Since PLURAL uses hard sample mining for augmentation,

we compare our method against an advanced augmentation
algorithm for 3D point cloud data, which also assumes
access to target labels and is only trained on the tar-
get dataset. The goal of PointAugment [28] is to generate
new point cloud samples by augmenting current samples
to enrich data diversity. Instead of using fixed augmenta-
tion strategies, this model develops an augmentor that is
trained alongside the model. Uses sample-aware data aug-
mentation which regresses a specific augmentation function
for each input sample by considering its geometric struc-
ture. The augmentor employs an adversarial learning strategy
to optimize the augmentor so that the augmentor learns
to produce samples that will best contribute to the model
performance.

• Unsupervised Domain Adaptation Methods
To address transfer learning, another noteworthy category

involves unsupervised domain adaptation methods. Conse-
quently, we evaluate our approach against three state-of-the-art
methods within this domain: CORAL (CORrelation ALign-
ment) [41], LocIT (Localized Information Transfer) [42], and
TCA (Transfer Component Analysis) [43]. These methods
play a pivotal role in adapting models to new domains with-
out the need for labeled data, emphasizing the importance
of robust techniques in scenarios where source and target
domains differ.

• Multidomain Learning
Different domains often contain information that can mutu-

ally benefit one another, a phenomenon frequently observed
in ensemble learning. Multi-domain learning (MDL) presents
a solution by harnessing domain information to augment
the learning process. Therefore, we compare our method
with two state-of-the-art methods in the field of point cloud
MDL—Multi-Domain Knowledge Transfer (MDKT) [44] and
Pointcloud Domain Adaptation Network (PointDAN) [45].

We stress, again, that we include Pertaining and PointAug-
ment as non-transfer learning (TL) benchmarks, but those

TABLE I
SIMULATION STUDY PREDICTION RESULTS (BEST MODEL IN BOLD)

methods require access to the target labels, giving them an
“unfair” advantage over our unsupervised domain adaptation
framework.

B. Prediction Results in the Simulation Study

We compare the proposed PLURAL method with the
benchmark methods based on the Root Means Squared Error
(RMSE) calculated at different levels of noise δ. Table I reports
the average and standard deviation of RMSE obtained via
10-fold cross-validation for simulation studies.

As shown in Table I, PLURAL outperforms all compared
models by large margins. Especially on the transfer from
the space-filling dataset B to the uniformly sampled dataset
A, which exhibits a sparse shape representation PLURAL
effectively closes the domain gap. Even though the pretraining
and PointAugment benchmarks have access to the target labels,
while PLURAL does not, they fail to achieve good model
performance due to the small sample size and complex, high-
dimensional data characteristics. In contrast, although starting
with low-quality pseudo labels, PLURAL still outperforms
those methods due to the effective co-training that incorporates
labeled source data and augmented hard samples. In our study,
we conducted comparisons with conventional unsupervised
transfer learning methods, including CORAL, LocIT, and
TCA. Our findings indicate that classical transfer learning
methods face specific challenges when applied to 3D point
clouds, owing to the distinctive characteristics of this data type.
Notably, 3D point clouds exhibit an unstructured nature, often
lacking predefined structures or topological awareness among
points. Each point within an unstructured point cloud operates
independently, and the distances to neighboring points vary,
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setting it apart from structured data. Additionally, the distri-
bution of points can be irregular, with regions characterized by
both sparsity and density, further complicating the application
of traditional transfer learning approaches. We additionally
compared our model with two state-of-the-art multi-domain
transfer models, namely PointDAN [45] and MDKT [44], both
of which exhibit better performance compared to unsuper-
vised models. However, they still struggle with distribution
mismatch issues. This becomes evident when contrasting
them with our model without hard sample mining (PLURAL
w/o HSM). Essentially, the alignment performance of the
multi-domain models becomes comparable to the PLURAL
w/o HSM, however, they may impose additional requirements
on the datasets. However, our full PLURAL model, which
additionally incorporates hard sample mining, proves effective
in mitigating the remaining mismatch, resulting in superior
prediction results.

The overall results validate the transferability of PLURAL
on unsupervised domain adaptation benchmarks. Furthermore,
we can see that with increasing noise levels the benefits of
transfer learning decrease.

V. CASE STUDY: SEWER DEFECT DETECTION

In this section, we evaluate PLURAL on a real-world dataset
for transfer learning on 3D point clouds. In particular, we uti-
lize the public AAU Sewer Defect Point Cloud dataset [46].
The dataset is focused on classifying defects in sewer pipes.
The majority of the dataset consists of semi-synthetic data,
while some point clouds of real sewer pipes were also
recorded. The semi-synthetic dataset includes dry plastic pipes
with defects introduced by displacing the pipes and placing
rubber rings or bricks inside the pipes. Semi-synthetic in
this setting means, that it is not obtained from real sewer
pipes but still consists of point clouds collected from real 3D
objects via time-of-flight sensors. Time-of-flight sensors are
devices that emit light and measure reflection from an object
to calculate distances to objects in the environment. These
sensors are commonly used for 3D point cloud acquisition
due to their ability to quickly capture depth information with
high accuracy. For the target dataset with real pipes, a laser
scanner is utilized leading to different data characteristics of
the 3D point clouds with regard to the space-filling properties
and sparsity patterns. Readers interested in the details of the
dataset are referred to Haurum et al. [46]. Four different point
clouds from both the source and target datasets are visualized
in Fig. 8.

We can see that the properties of the point clouds differ
across domains. The target domain consists of more dis-
continuous but denser shape surfaces. The source domain
on the other hand consists of evenly distrusted but sparse
3D measurement points showing the significant difference
between acquisition devices and environments across domains.

For the case study, the domain-specific 3D encoder is
chosen as the PointNeXt model, which achieves state-of-the-
art performance by utilizing advanced hyperparameter tuning
for the popular PointNet model. Furthermore, this allows for a
fair comparison with the non-transfer learning benchmark: The
model used in the dataset paper [46] is also a PointNet model.

Fig. 8. Examples of point clouds from the source dataset (first row) and
target dataset (second row) [46].

TABLE II
CASE STUDY PREDICTION RESULTS(BEST MODEL IN BOLD)

In total, there are 8100 source samples and 415 target samples.
We perform 10-fold cross-validation to obtain the average
classification performance on the target dataset. We evaluate
the models by considering the accuracy, precision, recall, and
F1-score and report the results in Table II.

From the results, it is evident that the PLURAL frame-
work consistently outperforms the other benchmarks. We note
that to the best of our knowledge, PLURAL is the cur-
rently best-performing model on the public AAU Sewer
Dataset. We can see from the precision and recall scores,
that the PLURAL framework has a well-rounded prediction
performance and does not consistently misclassify a certain
class more frequently. Classical unsupervised transfer learning
methods, including CORAL, LocIT, and TCA, exhibit limited
performance in the context of 3D point cloud data. Their
challenges arise from their inability to adequately address the
unique characteristics of this data type. A similar trend is
evident in the performance of multi-domain models. Although
there is an enhancement in accuracy, there is a deficiency in
precision, recall, and F1 score. This deficiency indicates that
these strategies struggle to achieve effective alignment and
are more inclined to classify the more frequently occurring
classes, an undesirable characteristic for a classifier. While
these models demonstrate improvements compared to unsu-
pervised models, they still inadequately address distribution
mismatches within sparsely populated and occluded point
patterns. For the PLURAL w/o HSM, we can see that the
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contrastive alignment of the PLURAL framework is more
effective than other benchmarks, but our full model with HSM
can better exploit and match the information for both domains
and achieves the best prediction performance. In this case
study, 3D point clouds present significant variations in sparsity
and point distribution between the source and target domain.
Moreover, the presence of real-world debris and occlusions
in the target domain poses obstacles to effective knowledge
transfer, further impeding the performance of these methods.
Even though the Pretraining and PointAugment methods have
access to the target labels, they are not able to achieve a good
performance due to the small sample size and complex, high-
dimensional data characteristics. In summary, on this very
challenging dataset, only PLURAL can produce reasonable
prediction results.

VI. CONCLUSION

In this paper, we presented PLURAL as an approach
for transfer learning with unstructured, 3D point clouds.
PLURAL contains a novel model architecture and a new
contrastive learning framework, that leverages the physical
dissimilarity across 3D point cloud datasets due to different
sensor configurations and environments. Based on the obser-
vation that high-level shape features are more transferable
than low-level geometry features of 3D shapes, we pro-
pose to integrate a domain-specific 3D encoder with a
domain-agnostic 3D module. We then conducted contrastive
instance alignment, which is augmented by hard sample
mining. The experiments from simulation and case studies
show the effectiveness of the proposed PLURAL frame-
work. Future work in this direction could investigate other
related learning tasks (e.g., weak supervision), and apply this
methodology to more applications. Additionally, we noticed
a higher prevalence of self-supervised approaches in point
cloud transfer learning when contrasted with multi-domain
approaches. This could stem from the challenges associated
with uncertain cross-domain variance and uneven inter-class
distribution, as highlighted by Huang et al. [47]. Nevertheless,
conducting a thorough exploration into the distinct mecha-
nisms through which various transfer learning methods handle
domain-specific knowledge and exchange domain-invariant
knowledge would constitute an interesting avenue for future
research.
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