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Tensor-Based Temporal Control for Partially Observed High-Dimensional
Streaming Data

Zihan Zhang , Shancong Mou, Kamran Paynabar, and Jianjun Shi

H. Milton Stewart School of Industrial and Systems Engineering, Georgia Tech, Atlanta, GA

ABSTRACT
In advanced manufacturing processes, high-dimensional (HD) streaming data (e.g., sequential images or
videos) are commonly used to provide online measurements of product quality. Although there exist
numerous research studies for monitoring and anomaly detection using HD streaming data, little research
is conducted on feedback control based on HD streaming data to improve product quality, especially
in the presence of incomplete responses. To address this challenge, this article proposes a novel tensor-
based automatic control method for partially observed HD streaming data, which consists of two stages:
offline modeling and online control. In the offline modeling stage, we propose a one-step approach
integrating parameter estimation of the system model with missing value imputation for the response
data. This approach (i) improves the accuracy of parameter estimation, and (ii) maintains a stable and
superior imputation performance in a wider range of the rank or missing ratio for the data to be completed,
compared to the existing data completion methods. In the online control stage, for each incoming sample,
missing observations are imputed by balancing its low-rank information and the one-step-ahead prediction
result based on the control action from the last time step. Then, the optimal control action is computed
by minimizing a quadratic loss function on the sum of squared deviations from the target. Furthermore,
we conduct two sets of simulations and one case study on semiconductor manufacturing to validate the
superiority of the proposed framework.
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1. Introduction

In advanced manufacturing processes, high-dimensional (HD)
streaming data (e.g., sequential images or videos) have been
widely used to measure and inspect the product quality. Exam-
ples include overlay measurements in semiconductor manu-
facturing (Zhong, Paynabar, and Shi 2023) and dimensional
deformation profiles of fuselages in the aircraft assembly process
(Zhong et al. 2022). Although numerous research has been done
for monitoring and anomaly detection using HD streaming data
(Thudumu et al. 2020), little research has been conducted on
feedback control to improve HD quality response, especially
when data is partially observed. For example, in semiconductor
manufacturing, overlay errors induced by the pattern misalign-
ment between adjacent layers in the lithography process can
be controlled by adjusting the position/orientation of wafers,
and the lens height, as indicated in Figure 1(a). Specifically, the
entire wafer is comprised of identical rectangular fields, and each
field has one chip fabricated through one exposure. After each
exposure, the wafer stage moves horizontally to enable another
time of exposure. As shown in Figure 1(b), the grids represent
the boundaries of the cells; and the vectors are the measurement
2D vector, whose value on each axis denotes the overlay error on
the corresponding axis, that is, the relative locational difference
between two adjacent layers with the starting point on the pre-
vious layer and the endpoint on the current layer. The collection
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of all overlay measurements gives a sketch of the entire overlay
vector field of the wafer. However, only limited fields in each
wafer can be monitored by using a costly high-resolution micro
camera, which results in incomplete measurements. Developing
a control strategy to reduce the overlay errors is challenging due
to the high dimensionality, complex spatio-temporal structure,
and incomplete measurements. To address these challenges, this
article proposes a new tensor-based automatic control method
for HD streaming data with missing observations.

To create a feedback control model, the first step is to
build a predictive model to quantify the relationship between
the HD response and control variables. To address the high-
dimensionality issue, traditional dimension reduction methods
such as principal component regression (PCR) (Wold, Esbensen,
and Geladi 1987) and partial least square (PLS) (Zhao et al.
2013) are widely used. Those methods first, extract features from
the raw input data, and then, study the correlation between the
features and HD response. Although PCR and PLS can reduce
the data dimension based on the vectorized data, they fail to
explore the spatial structure within high-order tensors such as
images (Gahrooei et al. 2021). Recently, tensor analysis and
multilinear algebra techniques have been used in HD stream-
ing data modeling and analysis and provided promising results
in many applications (Gaw, Yousefi, and Gahrooei 2021). For
example, Yan, Paynabar, and Pacella (2019) propose a tensor
regression model to link the HD response with the scalar input

© 2023 American Statistical Association and the American Society for Quality
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Figure 1. The overlay errors and the photolithography process. (a) a simulator for photolithography process (b) overlay errors.

through a tensor coefficient, in which Tucker decomposition
(Kolda and Bader 2009) is adopted to represent the coefficient in
a low-dimensional (LD) space. Lock (2018) develops a tensor-
on-tensor regression (TOT) model, in which both inputs and
outputs are in tensor format and approximated using CP decom-
position (Kolda and Bader 2009). To relax the data homogeneity
assumption for covariates in the TOT model, Gahrooei et al.
(2021) propose a multiple tensor-on-tensor regression method.
Besides, Llosa-Vite and Maitra (2023) propose a tensor-variate
linear model with tensor-variate normal (TVN) errors, in which
they render four types of low-rank structure on the model
coefficient and allow the errors to follow a TVN distribution.
Based on independent responses, they can estimate both model
coefficients and covariance matrices for the TVN from the data.

Because these regression methods assume no temporal cor-
relation in the response sequence, they cannot properly model
HD streaming data, and hence, they cannot be used for
online process control. To address this issue, Zhong, Payn-
abar, and Shi (2023) develop a tensor-based time series (TTS)
model under the autoregressive with exogenous variables (ARX)
framework to consider both spatial and temporal structures of
responses, and further execute a one-step-ahead predictive con-
trol. Although their proposed model has effective process mod-
eling capability, it assumes that the HD responses are completely
observable without missing observations, which may not be true
in many manufacturing processes for the following reasons: (i)
The sensing capability may be insufficient. For example, due to
budget limitations, sensing cost, and/or space constraints, the
number of sensors is typically less than the number of variables
to be monitored in a fuselage assembly process (Zhong et al.
2022); (ii) It may not be feasible to fully transfer data from
high-resolution sensors to the data center or computing unit,
such as the case in the solar flare detection problem (Gómez, Li,
and Paynabar 2022), where partial solar images are transmitted
back to the data center on earth, due to bandwidth restrictions.
(iii) Faulty sensors may not be replaced timely at their early
degradation stages (Zhang and Yang 2021). Thus, not all data
will be collected or measured with high quality, which leads to
missing values.

When HD responses involve incomplete entries, further
research is required to handle the missing information. An
intuitive solution is to first recover the incomplete responses
using tensor completion (e.g., decomposition (Xue et al. 2021) or
rank minimization (Gandy, Recht, and Yamada 2011)), and then
construct the regression model using restored responses. How-
ever, due to the strong assumption on low-rank, tensor comple-
tion only works in a limited low-rank range. Additionally, this
approach does not take the correlation between the response
and control variables into account, when imputing the missing
data. To address this issue, a popular approach is to impose low-
rank assumptions directly on the data and shift the modeling of
temporal dynamics to temporal factors. For example, Xiong et al.
(2010) propose a probabilistic tensor factorization for temporal
relational data, in which they assume that each time feature vec-
tor depends only on its immediate predecessor, and thus ignores
the long-range dependency among responses. Besides, they only
focus on the prediction (extrapolation) rather than imputing the
embedded missing information. Yu, Rao, and Dhillon (2016)
propose a temporal regularized matrix factorization framework,
in which temporal dependencies are incorporated into matrix
factorization models. However, their work (i) only involves the
latent temporal vector embeddings rather than higher-order
tensors, (ii) ignores the involvement of control actions to adjust
the process, and (iii) ignores the correlation among noise terms
by assuming a Gaussian distribution. Later, Chen and Sun
(2020) propose a Bayesian temporal factorization framework for
multi-dimensional time series prediction, but they (i) ignore the
spatial correlation among the response since they assume that
the observed entries are independent and each entry follows a
Gaussian distribution, and (ii) do not mention the potential to
involve the control execution in their future work, which makes
it harder for readers to conduct control actions. In addition,
although these two works consider the data completion, they
only validate their performance under a relatively low missing
ratio (i.e., less than 60%), which limits their applicability. To
enable the data imputation in a wider range of missing ratio,
Wang et al. (2021) propose an augmented tensor regression
framework to recover incomplete responses by introducing the
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system equation to provide additional information for the tensor
response completion based on the tensor nuclear norm. Their
work achieves good completion performance under high miss-
ing ratios, such as 90%. Furthermore, by imposing the low-rank
property, sparsity, and fusion constraints, Zhou et al. (2021)
derive the finite-sample error bound of the predictor for the
tensor-based autoregressive model whose coefficients admit a
CP-decomposition structure. For multivariate time-series fore-
casting, Chen and Sun (2020) propose a low-rank autoregressive
tensor completion method. However, the proposed model can-
not be applied to online estimation since it must be retrained
for every prediction window, and this method fails to consider
the potential relationship between the incomplete response and
process inputs.

To achieve the feedback control for incomplete HD streaming
data, this article will address imputation challenges for build-
ing a tensor-based time-series model with exogenous variables
and an online control model using partial data. These chal-
lenges include that the accuracy of parameter estimation is
impacted by partially observed autocorrelated responses; and
incomplete online observations reduce the efficiency of control
actions.

The proposed framework is illustrated in Figure 2. As shown
in this figure, the proposed framework involves two stages: (i)
offline modeling, and (ii) online control. For offline modeling,
we propose a one-step method that learns model coefficients
for the tensor-based ARX model and recovers missing entries of
responses simultaneously. For online control, an optimal control
law is derived based on the trained model and is employed
to minimize the predicted output deviation from a target. In
the online control stage, for each new sample, we first need to
complete partial observations. To this end, an online completion
strategy is proposed to impute the missing values considering its
low-rank information and the one-step-ahead prediction result
from the control action in the last time step.

The rest of the article is organized as follows: Section 2
elaborates the tensor-based automatic control model for incom-
plete HD streaming data and discusses its advantages. In Sec-
tion 3, we propose a one-step algorithm for offline modeling,
including response completion and parameter estimation. Based
on the trained model, we make the one-step-ahead predictive
control and propose an online completion algorithm to impute

Figure 2. The proposed tensor-based control framework with partially observed
HD streaming data.

new missing observations in Section 4. Next, we validate the
proposed methodology and compare it with some benchmark
methods in terms of offline completion and online control per-
formance using simulations and a case study of overlay errors in
Sections 5 and 6, respectively. Finally, Section 7 concludes the
article.

2. Partially Observed Tensor-Based Automatic
Control Model

In this section, we introduce tensor notations, basic assump-
tions, and the problem formulation.

2.1. Problem Setup

Consider a set of training data of size m, which contains
a sequence of historical incomplete tensor responses Y−

t ∈
R

Q1×···×Qd(t = 1, . . . , m) (corresponding to unknown com-
plete Yt), and input control variables Xt ∈ R

P(t = 1, . . . , m)

collected over time. Here, we assume a uniformly-at-random
missing pattern (Liu et al. 2013). To model both the spatio-
temporal structure of Yt using partially observed Y−

t , and its
relationship with input Xt , we propose a partially observed
tensor-based automatic control (poTAC) method based on the
TTS model in Zhong, Paynabar, and Shi (2023). Specifically,
the relationship among the current response tensor Yt , the
previous response tensors Yt−j, j = 1, . . . , p, as well as the
control variable Xt is modeled using the following tensor-based
ARX as

Yt = �
p
j=1Yt−j ∗ Aj + Xt−1 ∗ B + Et

with P�t (Yt) = P�t

(
Y−

t
)

, (1)

where p is the autoregressive order, which can be selected
either based on domain knowledge or using cross validation
(or AIC/BIC metrics); Et ∈ R

Q1×···×Qd represents the tensor
of random noises; Aj ∈ R

Q1×···×Qd×Q1×···×Qd(j = 1, . . . , p)

and B ∈ R
P×Q1×···×Qd are the coefficients of correspond-

ing inputs, which reflect the temporal correlation within HD
streaming data; the operator ∗ is the contraction product of two
tensors defined as (Xt−1 ∗ B)q1,...,qd = �p (Xt−1)p (B)p,q1,...,qd
(Gahrooei et al. 2021); a projection function projects the tensor
R ∈ R

Q1×···×Qd onto the observed set �t at time step t, such
that [P�t (R)](q1,...,qd) = R(q1,...,qd) when

(
q1, . . . , qd

) ∈ �t .
To simplify the notations, we fold m complete tensor obser-

vations over time t into a higher-order tensor denoted by
Ỹ ∈ R

m×Q1×···×Qd = {Y1, . . . ,Ym}. As illustrated in Fig-
ure 3, Ỹ−

(−r)
(
r = 0, . . . , p

)
represent tensor responses within[

p − r + 1, m − r
]

time steps from Ỹ−. Similarly, X(−1) ∈
R(m−p)×P and E ∈ R(m−p)×Q1×···×Qd are augmented control
variables and noises, respectively. Consequently, (2.1) can be
written as

Ỹ(0) = �
p
j=1Ỹ(−j) ∗ Aj + X(−1) ∗ B + E

with P�

(
Ỹ
)

= P�

(
Ỹ−) , (2)

where � = {�1, . . . , �m}. Besides, E is assumed to follow a
tensor normal distribution as E ∼ N (0, �1, �2, . . . , �d, �b),
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Figure 3. Image response notation representation.

or equivalently vec (E) ∼ N (0, �E ), where vec (R) is the
vectorization of a tensor R. It is assumed that �E = �d ⊗
· · · ⊗ �2 ⊗ �1 ⊗ �b, where �k(k = 1, . . . , d) represents
the spatial correlation of the noise, which are assumed to be
defined by �k|i1,i2 = exp

(−�‖ri1 − ri2‖2) , k = 1, . . . , d
with the bandwidth � controlling the strength of the spatial
correlation and

(
ri1 − ri2

)
measuring the distance between data

points i1 and i2; �b represents the between-sample (temporal)
covariance. Here, � can be estimated using cross validation. The
learning of �b can refer to Algorithm 2 in Zhong, Paynabar, and
Shi (2023).

However, estimating parameters in such a HD setting using
traditional ARX estimation methods is impossible due to the
overfitting issue and its computational and storage complexities.
Moreover, the missing information also hinders the accuracy of
parameter estimation. In order to handle these challenges and
consider the spatial-temporal correlation among HD responses,
we assume that the response data and model coefficients are
low rank (Zhong, Paynabar, and Shi 2023). Thus, we can take
advantage of the low-rank structure by representing the model
using a LD core tensor and a set of factorizing matrices as
defined in Tucker decomposition (Kolda and Bader 2009).
That is,

B = CB ×1 UB ×2 VB1 ×3 · · · ×d+1 VBd, (3)
Aj = Cj ×1 Uj1 ×2 · · · ×d Ujd ×d+1 Vj1 ×d+2 · · · ×2d Vjd,

j = 1, . . . , p, (4)

where CB ∈ R
P×Q̃1×···×Q̃d and Cj ∈ R

Q̃1×···×Q̃d×Q̃1×···×Q̃d

are core tensors with Q̃i � Qi (i = 1, . . . , d). Uji ∈ R
Qi×Q̃i(

j = 1, . . . , p; i = 1, . . . , d
)

and UB ∈ R
P×P are basis (factor-

izing) matrices spanning the input space; and Vji ∈ R
Qi×Q̃i(

j = 1, . . . , p; i = 1, . . . , d
)

and VBi ∈ R
Qi×Q̃i (i = 1, . . . , d)

are basis matrices spanning the output space. To simplify the
parameter estimation, we assume that UB is an identity matrix.
Besides, we set

{
U1i = U2i = . . . = Upi = Ui

}
(i = 1, . . . , d) to

capture the intercorrelation among the input data. Thanks to the
flexibility of the core tensor

{
Cj
}

and basis matrices
{

Vji
}

, they
could provide sufficient degrees to learn the high dimensional
coefficients even if we set

{
Uji
}

to be the same for all j (Zhong,
Paynabar, and Shi 2023).

2.2. Problem Formulation

In the offline modeling stage, we propose the following loss
function to complete the partially observed response tensor and
estimate regression coefficients simultaneously:

argmin{
Ỹ(−j)

}
,Cj,CB,{Ui},{Vji},{VBi},�E⎧⎨
⎩γ

p∑
j=0

rank
(
Ỹ(−j)

)
+ vec (H)T �−1

E vec (H)

⎫⎬
⎭ ,

subject to

P�

(
Ỹ
)

= P�

(
Ỹ−) ,

VT
ji �

−1
i Vji = Ii, VT

Bni�
−1
i VBni = Ii,

j = 1, . . . , p; i = 1, . . . , d,

H = Ỹ(0) −
p∑

j=1
Ỹ(−j) ∗ Aj − X(−1) ∗ B,

Aj = Cj ×1 U1 ×2 · · · ×d Ud ×d+1 Vj1 ×d+2 · · · ×2d Vjd,
j = 1, . . . , p,

B = CB ×1 UB ×2 VB1 ×3 · · · ×d+1 VBd, (5)

where vec (H) = vec
(

Ỹ(1)
(0)

)
− ∑p

j=1
((

Vjd ⊗ · · · ⊗ Vj1
) ⊗

Z(−j)
)
vec

(
Cj
)−((VBd ⊗ · · · ⊗ VB1) ⊗ X(−1)

)
vec (CB). Specif-

ically, in vec (H), Ỹ(1)
(0) and Ỹ(1)

(−j) are the transpose of the mode-

1 matricization of complete response tensors Ỹ(0) and Ỹ(−j),
respectively; Z(−j) = Ỹ(1)

(−j) (Ud ⊗ · · · ⊗ U1); Cj ∈ R
Q̃×Q̃ and

CB ∈ R
P×Q̃ are the unfoldings of Cj and CB with Q̃ = ∏d

i=1 Q̃i,
respectively; and Ii is a Q̃i × Q̃i identity matrix.

Here, we apply the weighted constraint given by VT
ji �

−1
i Vji =

Ii, and VT
Bni�

−1
i VBni = Ii, which guarantees a similar spatial

covariance structure for the estimated basis matrices and gives a
closed-form solution. Besides, γ is a user-defined tuning param-
eter that can be selected using cross-validation.
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2.3. Model Interpretation and Discussion

There are two terms in the objective function, that is, (5), where
the first term exploits the low-rank structure of the output tensor
for data completion and the second term minimizes the negative
likelihood for parameter estimation. By combining these two
terms, the data completion performance is improved through
additional guidance provided by system dynamics embedded in
the negative likelihood, which consequently improves parameter
estimation accuracy.

Specifically, if γ → ∞, (5) reduces to low-rank tensor com-
pletion algorithm (HALRTC) in Liu et al. (2013), a traditional
tensor completion problem, that is

argmin{
Ỹ(−j)

}
⎧⎨
⎩γ

p∑
j=0

rank
(
Ỹ(−j)

)⎫⎬
⎭ ,

subject to

P�

(
Ỹ
)

= P�

(
Ỹ−) . (6)

However, Huang et al. (2015) shows that (6) accurately recov-
ers missing entries only under a restricted relationship between
missing ratio and rank, which limits its performance in more
complex scenarios. On the contrary, the proposed method can
boost the completion performance under a wider range of miss-
ing ratio and rank by incorporating system dynamics.

Furthermore, if γ = 0, (5) reduces to a regression problem
with incomplete response:

argmin
Cj,CB,{Ui},{Vji},{VBi},�E

{
vec (H)T �−1

E vec (H)
}

,

subject to

P�

(
Ỹ
)

= P�

(
Ỹ−) ,

VT
ji �

−1
i Vji = Ii, VT

Bni�
−1
i VBni = Ii,

j = 1, . . . , p; i = 1, . . . , d,

H = Ỹ(0) −
p∑

j=1
Ỹ(−j) ∗ Aj − X(−1) ∗ B,

Aj = Cj ×1 U1 ×2 · · · ×d Ud ×d+1 Vj1 ×d+2 · · · ×2d Vjd,
j = 1, . . . , p,

B = CB ×1 UB ×2 VB1 ×3 · · · ×d+1 VBd. (7)

It can be expected that the incomplete response will decrease
the accuracy of parameter estimation and deteriorate the online
control performance, especially under a high missing ratio.
Therefore, it will be beneficial to incorporate the information of
imputed entries in parameter estimation.

3. Offline Modeling

Solving (5) is challenging, since it involves both data imputation
and model estimation. In this section, we propose an offline
modeling algorithm to complete missing entries in the response
and estimate the model coefficients.

Rather than adopting the NP-hard nonconvex rank penalty
of a tensor R, that is, rank (R), we use its convex relaxation

(i.e., tensor nuclear norm) to make optimization tractable. The
nuclear norm of a tensor R, denoted by ‖R‖∗, is defined as the
weighted average of nuclear norms of its matricizations along
each mode (Wang et al. 2021), that is, ‖R‖∗ = ∑d

i=1 αi‖R(i)‖∗,
where R(i) ∈ R

Ii×I−i(I−i = I1 × I2 · · · × Ii−1 × Ii+1 × · · · × In)
is the mode-i matricization of a tensor R ∈ R

I1×···×Ii×···×In ,
and ‖R‖∗ = ∑

j λj(R) is the nuclear norm of the matrix R with
λj(R) to be its corresponding jth largest singular value. Here, we
assign equal weights to each of the tensor modes in the nuclear
norm, that is, αi = 1

d+1 (i = 1, . . . , d + 1). Let � be the set of
parameters including Cj, CB, {Ui} ,

{
Vji
}

, {VBi}, and �E , where
j = 1, . . . , p; i = 1, . . . , d. We can reformulate (5) as

argmin{
Ỹ(−j)

}
,Cj,CB,{Ui},{Vji},{VBi},�E⎧⎨

⎩
d+1∑
i=1

p∑
j=0

γαi‖Ỹ(i)
(−j)‖∗ + vec (H)T �−1

E vec (H)

⎫⎬
⎭ ,

subject to

P�

(
Ỹ
)

= P�

(
Ỹ−) ,

VT
ji �

−1
i Vji = Ii, VT

Bni�
−1
i VBni = Ii,

j = 1, . . . , p; i = 1, . . . , d,

H = Ỹ(0) −
p∑

j=1
Ỹ(−j) ∗ Aj − X(−1) ∗ B,

Aj = Cj ×1 U1 ×2 · · · ×d Ud ×d+1 Vj1 ×d+2 · · · ×2d Vjd,
j = 1, . . . , p,

B = CB ×1 UB ×2 VB1 ×3 · · · ×d+1 VBd. (8)

To realize offline modeling, we adopt the block coordinate
descent (BCD) algorithm to update and iteratively as shown in
Algorithm 1, in which the convergence is satisfied when (i) the
difference of the objective function is less than the tolerance
threshold or (ii) the algorithm reaches the maximal iteration
number.

Algorithm 1 Offline Modeling Algorithm for Solving (5).

1: Inputs: Ỹ−, X(−1), and �.
2: Initialize Ỹ by solving (6).
3: Initialize � by solving (7) based on the initialized

Ỹ in Step 2.
4: Loop
5: (Ỹ-update) Given �k, update Ỹk to Ỹk+1.
6: (�-update) Given completed Ỹk+1, update �k

to �k+1.
7: Let Ỹk = Ỹk+1 and �k = �k+1.
8: End until convergence.

In the following sections, we will introduce the Ỹ-update
(Step 5) and �-update (Step 6) procedures in detail. For nota-
tional convenience, we omit the iteration number k in the fol-
lowing discussion.
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3.1. Ỹ-update

Assuming that �k is given at the (k + 1)th iteration of the
algorithm, we update Ỹ by solving the following sub-problem:

argmin
Ỹ

{
vec (Hs)

T �−1
E vec (Hs) +

d+1∑
i=1

γαi‖Ỹ(i)‖∗

}
,

subject to

P�

(
Ỹ
)

= P�

(
Ỹ−) , (9)

where Hs = S0Ỹ(1) −∑p
j=1 SjỸ(1)Aj − X(−1)B(1), Aj ∈ R

Q̃×Q̃

is an unfolding of Aj with Q̃ = ∏d
i=1 Q̃i, B(1) is mode-1

matricization of B, Ỹ(1)

(−j) = SjỸ(1) with the sampling matrix

Sj ∈ R(m−p)×m selecting response slides from Ỹ(1) as defined by

Sj (i, r) =
{

1, if r = i + p − j,
0, otherwise.

(10)

Next, we use ADMM algorithm to solve (9). If we regard Ỹ
as a global variable, the problem becomes a consensus problem.
To tackle the interdependent nuclear norm terms, we introduce
auxiliary local tensors Ỹ i, where i = 1, . . . , d + 2. Thus, we can
decompose (9) into problems with independent local variables,
that is

argmin{
Ỹ i
}

,Ỹ

{
vec

(
Hd+2

s

)T
�−1

E vec
(

Hd+2
s

)
+

d+1∑
i=1

γαi‖Ỹi
(i)‖∗

}
,

subject to

P�

(
Ỹ
)

= P�

(
Ỹ−) , Ỹ = Ỹ i, i = 1, . . . , d + 2, (11)

where Hd+2
s = S0Ỹd+2

(1) −∑p
j=1 SjỸd+2

(1) Aj − X(−1)B(1). To solve
(11), we first address the equality constraints Ỹ = Ỹ i by defining
the augmented Lagrangian as follows:

Lρ

({
Ỹ i
}

, Ỹ ,
{
U i}) =

{d+1∑
i=1

γαi‖Ỹi
(i)‖∗ + vec

(
Hd+2

s

)T

×�−1
E vec

(
Hd+2

s

)
+

d+2∑
i=1

(
〈U i, Ỹ i − Ỹ〉 + ρ

2
‖Ỹ i − Ỹ‖2

F

)}
,

(12)

where
{
U i}

i=1,...,d+2 are dual variables, ρ is the step size which
can be chosen according to Section 3.4 in Boyd et al. (2011),
〈·, ·〉 represents the inner product of tensors, and ‖R‖2

F is the
Frobenius norm of a tensorR, which is defined as the 2-norm of
its vectorization, that is, ‖R‖2

F = ‖vec (R) ‖2
2. Correspondingly,

the problem is represented as

argmin{
Ỹ i
}

,Ỹ ,{U i}
Lρ

({
Ỹ i
}

, Ỹ ,
{
U i}) ,

subject to

P�

(
Ỹ
)

= P�

(
Ỹ−) . (13)

Next, we will update local variables, global variables, and dual
variables iteratively. To update the local variable, we solve the
following two unconstrained problems:

argmin
Y i

{
γαi‖Ỹi

(i)‖∗ + 〈ui
(i), Ỹi

(i) − Ỹ(i)〉 + ρ

2
‖Ỹi

(i) − Ỹ(i)‖2
F

}
,

i = 1, . . . , d + 1. (14)

argmin
Ỹd+2

f
(
Ỹd+2

)
= argmin

Ỹd+2

{
vec

(
Hd+2

s

)T
�−1

E vec
(

Hd+2
s

)

+〈ud+2
(1) , Ỹd+2

(1) − Ỹ(1)〉 + ρ

2
‖Ỹd+2

(1) − Ỹ(1)‖2
F

}
. (15)

Equations (14) and (15) can be solved using Propositions 1
and 2, respectively.

Proposition 1. The closed-form solution of (14) is

Ỹi
(i) = Ur�λVT

r , (16)

where �λ is a diagonal matrix with (�λ)ii =
max

(
0, 	p,ii − γαi

1+ρ

)
, Ur and Vr are the first r columns of

Up and Vp from the SVD decomposition of Pi = Ỹi
(i) − 1

ρ
ui

(i),
with Pi = Up�pVT

p , and r = rank
(
Pi).

The proof of Proposition 1 can be found in Appendix of
supplementary materials.

Proposition 2. By setting the gradient of (15) to be zero, we can
get the corresponding closed-form solution as follows:

vec
(

Ỹd+2
(1)

)
=
⎛
⎝ρI + 2�d1 ⊗ (

ST
0 �sS0

)

−2
p∑

j=1

⎛
⎝
(
�d1AT

j

)
⊗ (

ST
0 �sSj

)+(
Aj�d1

)⊗
(

ST
j �sS0

)
⎞
⎠

+
p∑

j=1

p∑
k=1

⎛
⎝
(

Ak�d1AT
j

)
⊗ (

ST
k �sSj

)+(
Aj�d1AT

k
)⊗

(
ST

j �sSk
)

⎞
⎠
⎞
⎠

−1

× vec
(
2ST

0 �sX(−1)B(1)�d1

−2
p∑

j=1
ST

j �sX(−1)B(1)�d1AT
j

− ud+2
(1) + ρY(1)

⎞
⎠ , (17)

where �d1 = �−1
d ⊗ · · · ⊗ �−1

2 ⊗ �−1
1 , �s = �−1

b , and I is an
(mQ1 . . . Qd) × (mQ1 . . . Qd) identity matrix.

The proof of Proposition 2 is provided in Appendix II of
supplementary materials.

Although (17) provides a closed-form solution, it could only
be used in small-scale problems when the computation resource
is limited since it will result in computation challenges due to
multiple Kronecker products and matrix inversion. To address
this issue, we can use stochastic gradient descent algorithm
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or its variants (e.g., Nesterov’s accelerated gradient descent
(AGD) algorithm) to solve (15) for large-scale problems and
summarize details in Algorithm 2, where

{
D(l)} are auxiliary

variables at the lth iteration and ε is the user-defined error
tolerance (Nesterov 1983).

Algorithm 2 Alternative Solution (for large-scale problems)
to (15).

1: Inputs: �k, Ỹ(1), X(−1),
{

Sj
}

, ρ, and �.
2: Initialize Ỹd+2(0)

(1) = D(0) = Ỹ(1).
3: While ‖∇f

(
D(l)) ‖F ≥ ε:

4: Ỹd+2(l+1)

(1) = D(l) − μ∇f
(
D(l)).

5: D(l+1) = Ỹd+2(l+1)

(1) + l−1
l+2

(
Ỹd+2(l+1)

(1) − Ỹd+2(l)

(1)

)
.

6: l ← l + 1.
7: End while.
8: Return Ỹd+2(l)

(1) .

To update the global variable, the following constrained opti-
mization problem is formulated:

argmin
Ỹ

{d+2∑
i=1

(
〈U i, Ỹ i − Ỹ〉 + ρ

2
‖Ỹ i − Ỹ‖2

F

)}
,

subject to

P�

(
Ỹ
)

= P�

(
Ỹ−) . (18)

According to Wang et al. (2021), Equation (18) can be
solved by

Ỹ =
{
Ỹ−, if (i, q1, . . . , qd) ∈ �,

1
d+2

∑d+2
i=1

(
Ỹ i + 1

ρ
U i
)

, otherwise.
(19)

Finally, we update the dual variable via U i ← U i +
ρ
(
Ỹ i − Ỹ

)
, i = 1, . . . , d + 2.

The details of Ỹ-update are shown in Algorithm 3, where
(t) represents the iteration number. The stopping criteria follow
Algorithm 1.

Algorithm 3 Response Completion Algorithm by Solving (9).

1: Inputs: �k, Ỹ−, X(−1),
{

Sj
}

, ρ, and �.
2: Loop
3: Update local variable by solving (14) and (15): Ỹ i(t+1)

← Ỹ i(t) .
4: Update global variable using (19): Ỹ(t+1) ← Ỹ(t).
5: Update dual variable: U i(t+1) ← U i(t) + ρ

(
Ỹ i(t) − Ỹ(t)

)
.

6: Let Ỹ i(t) = Ỹ i(t+1) , Ỹ(t) = Ỹ(t+1), and U i(t) = U i(t+1) .
7: End until convergence.

3.2. �-update

When Ỹk+1 is updated from Ỹk, �k can be updated by solving
the following sub-problem:

argmin
�

{
vec (H)T �−1

E vec (H)
}

subject to VT
ji �

−1
i Vji = I, VT

Bi�
−1
i VBi = I. (20)

To efficiently optimize (20), following Zhong, Paynabar, and
Shi (2023), we adopt the alternating least square with block
coordinate descent (ALS-BCD) method to update � iteratively
as shown in Algorithm 4, where ε is the error tolerance. The
details are summarized in Appendix III of supplementary
materials, in which the stopping criteria follow Algorithm 1.

Algorithm 4 Parameter Estimation Algorithm for
Solving (20).

1: Inputs: � (initialization) and Ỹ .
2: Estimate �E (Part 1 of Appendix III).
3: Estimate {Ui} using Tucker decomposition

(Part 2 of Appendix III).
4: Calculate the initial value of the likelihood term in (20).
5: Loop
6: Loop
7: Estimate

{
Vji
}

and {VBi} iteratively
(Part 3 of Appendix III).

8: End until convergence.
9: Estimate

{
Cj
}

and CB (Part 4 of Appendix III).
10: End until convergence.

Figure 4 summarizes the parameter estimation and response
completion procedure used for offline modeling. Next, we
present the predictive control model.

4. One-Step-Ahead Predictive Control

Given estimated parameters �̂ and completed historical
responses

{
Ycp

t−j

}
j=1,...,p

obtained from the offline modeling
stage, the optimal control can be achieved at time step t − 1
by minimizing the expected difference between the one-step-
ahead predicted response and the target value, which can be
formulated as

ψ (Xt−1) = min
Xt−1

E‖Ŷt|{t−j} (Xt−1) − Y target
t ‖2

F (21)

where Y target
t is the target tensor, E(·) is the expectation opera-

tor, and Ŷt|{t−j} (Xt−1)
(
j = 1, . . . , p

)
is the one-step-ahead pre-

dicted tensor at time step t − 1 based on imputed historical
responses

{
Ycp

t−j

}
j=1,...,p

and estimated model coefficients Âj

and B̂, and the control action Xt−1, that is,

Ŷt|{t−j} (Xt−1) = �
p
j=1Âj ∗ Ycp

t−j + B̂ ∗ Xt−1, (22)

The optimal control law is given by the closed-form solution
of (21):

Xt−1 = C−1
B (VBd ⊗ · · · ⊗ VB1)

T

× vec

⎛
⎝Y target

t −
p∑

j=1
Ycp

t−j ∗ Aj

⎞
⎠ , (23)

where CB ∈ R
P̃×Q̃ is the folded core tensor CB with Q̃ =∏d

i=1 Q̃i. The detailed derivations can be found in Appendix IV
of supplementary materials.
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Figure 4. Flowchart of offline modeling algorithm.

Next, when a new observation Y−
t is available, we need to

impute its missing entries before moving to the next time step.
Intuitively, we can just fill in the one-step-ahead prediction result
in the missing entries of new observations, that is

Ycp
t =

{
Y−

t , if (i, q1, . . . , qd) ∈ �t ,
Ŷt|{t−j} (Xt−1) , otherwise.

(24)

This strategy is easy to implement when the online compu-
tation resource is limited. However, (24) highly depends on the
model trained offline, while ignoring the low-rank structure of
the response, which may mislead the online completion when
the system model is inaccurately estimated. To achieve a better
performance, we propose the following low-rank prediction-
oriented completion (LRPOC) strategy to impute the incom-
plete entries:

min
Ycp

t

{
μ‖Ycp

t ‖∗ + 1
2
‖Ycp

t − Ŷt|{t−j} (Xt−1) ‖2
F

}

subject to P�t

(
Ycp

t

)
= P�t

(
Y−

t
)

, (25)

where μ is a user-defined tuning parameter that can be selected
using cross-validation.

Equation (25) has two-fold benefits for online control: (i) it
makes use of the most of available information, that is, the true
observations and the impact from control actions; and (ii) it
explores the low-rank structure of the output response. For nota-
tional convenience, we call (24) simplified LRPOC (sLRPOC)
strategy. Following a similar approach in solving (9), we apply
ADMM to solve the problem by introducing auxiliary variables
to reformulate (25) to be a global consensus problem:

min{
Ycp

t(i)

}
i=1,...,d+1

{d+1∑
i=1

αi

(
μ‖Ycp

t(i)‖∗ + 1
2
‖Ycp

t(i)

−
[

Ŷt|{t−j} (Xt−1)
]
(i)

‖2
F

)}

subject to P�t

(
Ycp

t

)
= P�t

(
Y−

t
)

,Ycp
t = Y i

t ,

i = 1, . . . , d + 1, (26)

where Yi
t(i) represents the mode-i matricization of local tensors

Y i
t , i = 1, . . . , d + 1. We first address the equality constraints

Ycp
t = Y i

t , i = 1, . . . , d + 1 by defining the augmented
Lagrangian as follows:

Lτ

(
Ycp

t ,
{

Yi
t(i)

}
,
{
F i

t
}) =

d+1∑
i=1

{
μαi‖Yi

t(i)‖∗ + αi
2

‖Yi
t(i)

−
[

Ŷt|{t−j} (Xt−1)
]
(i)

‖2
F + 〈F i

t ,Ycp
t − Y i

t〉 + τ

2
‖Ycp

t − Y i
t‖2

F

}

(27)

where
{
F i

t
}

denote dual variables, and τ is the step size. Then
(25) is represented as

min
Ycp

t ,
{

Yi
t(i)

}
,
{
F i

t
} Lτ

(
Ycp

t ,
{

Yi
t(i)

}
,
{
F i

t
})

subject to P�

(
Ycp

t

)
= P�

(
Y−

t
)

. (28)

The solution details can be found in Appendix V of supple-
mentary materials.

Based on the one-step-ahead prediction and online
completion strategy, the one-step-ahead predictive control
algorithm is summarized in Algorithm 5.

Algorithm 5 Online Control Algorithm.

1: Inputs: �̂,
{
Ycp

t−j

}
j=1,...,p

, and Y target
t .

2: Execute control action according to (23).
3: Calculate the one-step-ahead prediction based on (22).
4: Collect new observation Y−

t , and initialize Ycp(0)

t = Y−
t .

5: Impute Y−
t to get the recovered Ycp

t by solving (25).
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5. Performance Evaluation via Simulations

In this section, we conduct simulation studies to validate the
proposed partially observed tensor-based automatic control
method.

5.1. Data Generation

Following Zhong, Paynabar, and Shi (2023), we include two
types of responses in our simulation study: (i) wave-shape sur-
face control, and (ii) truncated cylinder control. For each case,
we generate a complete data series, and then, select partially
observed series of length Ntr and Nte to be the training and test
data, respectively.
Case 1: Wave-shape surface point cloud simulation

Assuming l = 1 and p = 2, a sequence of waveform surface
responses in a 3D Cartesian coordinate system is generated.
Specifically, as shown in Figure 5(a), for the t-th sample, an I1×I2
matrix is simulated using the following model:
yt = yt−1 ∗ A1 + yt−2 ∗ A2 + CB ×2 V1 ×3 V2 ×1 Xt−1 + Et ,

(29)
where ×i is the mode-i tensor product between a tensor R1 ∈
R

I1×···×In by a matrix R2 ∈ R
M×Ii , that is, R1 ×i R2 ∈

R
I1×···×Ii−1×M×Ii+1×···×In , matrix yt includes the height infor-

mation at the location
(

i1
I1

, i2
I2

)
(i1 = 1, . . . , I1; i2 = 1, . . . , I2),

A1 = C1×1V1×2V2×3V1×4V2,A2 = C2×1V1×2V2×3V1×4
V2, CB ∈ R

3×3×2 is randomly generated from a normal distribu-
tion N(0.3, 0.5), and basis matrices V(k) =

[
v(k)

1 , v(k)
2 , v(k)

3

]
with

v(k)
α =

[
sin
(

πα
Ik

)
, sin

(
2πα

Ik

)
, . . . , sin

(
Ikπα

Ik

)]T
(k = 1, 2; α =

1, 2, 3). The elements of input matrices Xt ∈ R
4×1(t =

1, . . . , Ntr or Nte) are randomly sampled from the standard nor-
mal distribution N (0, 1) . The noise is generated from the tensor
normal distribution N (0, �2 ⊗ �1 ⊗ �b), where �1 = �2.
Case 2: Truncated cone point cloud simulation

We simulate a truncated cone point cloud based on a set of
scalars and simple profile data in a three-dimensional cylindrical
coordinate system (r, φ, z), where φ ∈ [0, 2π ], and z ∈ [0, 1]. An
equidistant grid of size I1 × I2 over the (φ, z) space is generated
by setting φi = 2π i

I1
(i = 1, . . . , I1) and zj = j

I2
(j = 1, . . . , I2). We

simulate the mean patterns of the point cloud surface St such that
r (φ, z) = 1 for any pair of (φ, z). Next, the variational pattern is
generated by the following tensor time-series sequence:
St = St−1 ∗ A1 + St−2 ∗ A2 + CB ×2 V1 ×3 V2 ×1 Xt−1 + Et ,

(30)

where St ∈ R
I1×I2 represents the variational pattern at time t,

and Xt ∈ R
4×1 is a control vector. CB is generated from a normal

distribution N(0.3, 0.5). We also generate A1,A2, V1, V2, and
the noise term in a similar way to Case 1. Examples of truncated
cone point cloud are given in Figure 5(b).

The target response for Case 1 is zero, while its Frobenius
norm is 6.64 for Case 2. For both cases, we generate Ntr = 50
samples as training data and Nte = 40 as test data.

5.2. Benchmark Methods in Comparative Study

In Study 1, we analyze the completion efficiency of the proposed
poTAC method and compare it with the HALRTC algorithm
(Liu et al. 2013) for low-rank tensor completion.

As for Study 2, an intuitive two-step CT method is chosen as
a benchmark for comparison, in which the response completion
(C) is first conducted by using the HALRTC algorithm (Liu et al.
2013), and then the regression model is established based on the
TTS model (T) in Zhong, Paynabar, and Shi (2023).

By combining different strategies for either offline modeling
or online completion, we will test the performance of four meth-
ods as summarized in Table 1. Specifically, they are: (i) poTAC
(offline modeling using Algorithm 1, and online completion
using LRPOC), (ii) CTC (CT followed by online completion
still using HALRTC), (iii) spTAC (simplified poTAC, i.e., offline
modeling using Algorithm 1, and online completion using sLR-
POC), and (iv) CTLRC (CT followed by online completion still
using sLRPOC). From Table 1, we find that poTAC and spTAC
share the same proposed one-step offline training method, while
spTAC uses the simplified version of the proposed online control
algorithm. SpTAC and CTLRC employ the same online control
algorithm, but CTLRC first completes the response using HAL-
RTC and then builds the regression using TTS, which is a two-
step method different from the proposed one-step method. As
for CTLRC and CTC, they use the same two-step offline train-
ing algorithm, but CTC only considers the low-rank structure
to complete the response while CTLRC imputes the response

Table 1. The methods in the comparative study.

Methods
Offline

modeling
Online

completion

poTAC Algorithm 1 LRPOC

spTAC (one-step method) sLRPOC
CTLRC HALRTC followed by TTS

CTC (two-step method) HALRTC

Figure 5. Examples of generated data in simulations. (a) Wave-shape surface point cloud. (b) Truncated cone point cloud.
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considering the deviation of prediction from the target. Note
that the same control law, that is, (24), is executed to get a new
response.

5.3. Simulation Results

Study 1: Offline Completion Performance Evaluation
We generate data according to the described procedure with

I1 = 20 and I2 = 12. In order to demonstrate the applicability
of the proposed method, we test its performance under different
settings including (i) five random missing ratios, that is, 50%,
60%, 70%, 80%, and 90%; (ii) four levels of signal-to-noise ratios
(SNR, defined by

∑Ntr
i=1 ‖Ytr,i‖2

F/
∑Ntr

i=1 ‖Etr,i‖2
F), that is, 1013,

1011, 109, and 107; and (iii) three Tucker rank tuples, that is, 3,
6, and 9 for all modes, respectively.

Since this is a small-scale problem, we use the closed-form
solution, that is, (16), for offline modeling. In this Study, we eval-
uate the offline performance using the mean squared completion
error (MSCE), that is, 1

Ntr

∑Ntr
t=1 ‖Ycp

t − Yt‖2
F . The simulation

results are summarized in Appendix VI of supplementary mate-
rials, in which 30 experiments are replicated for each setting.
From Appendix VI, we can find that the SNR level has a limited

Figure 6. MSCE results for offline completion given true system model with SNR≈
1013.

effect on the completion performance. Both poTAC and HAL-
RTC have robust performance with respect to SNR values under
considered SNR levels. Therefore, to have a clearer illustration of
relationships among different settings, Figure 6 shows only the
results for the highest SNR level.

From Figure 6, we can find that poTAC outperforms HAL-
RTC in all considered scenarios. It is also evident that under
the same missing ratio, unlike HALRTC, the performance of
poTAC is not sensitive to the rank. Regardless of variations in
the missing ratio and response rank, the completion perfor-
mance of poTAC is relatively robust, while the completion error
of HALRTC increases drastically under either higher response
rank or higher missing ratio. These simulation results indicate
that the completion performance benefits from the additional
information provided by the ARX structure.

Study 2: Online Control Performance Evaluation
For Study 2, we generate observations of size I1 = 30

by I2 = 20 and randomly remove 80%, 85%, and 90% of
training data. Under such a setting, the computation involves
Kronecker product of size 30, 000 ⊗ 30, 000 if we use the
closed-form solution of (15) in offline modeling, which is
computationally intractable. Thus, we use the gradient descent
algorithm to solve (15). Based on the trained model, we execute
the one-step-ahead predictive control and impute the new
observations using the proposed LRPOC and its simplified
version, that is, sLRPOC. In this study, we consider three SNR
levels for each setting and replicate it 30 times to evaluate the
average performance with respect to the steady state relative
mean squared deviation (RMSD) from the target, defined by∑Nc

i=1 ‖Yct
i − Y target‖2

F/
∑Nc

i=1 ‖Ywct
i − Y target‖2

F with

Yct
i = �

p
j=1Y

ct
t−j ∗ Aj + Xt−1 ∗ B + Et , (31)

Ywct
i = �

p
j=1Y

wct
t−j ∗ Aj + Et , (32)

where Yct
i is the response with control, and Ywct

i is the one
without control. The RMSD results and their variance (as
shown in brackets) are reported in Table II (Case 1) and Table
III (Case 2) in Appendix VII of supplementary materials.

We also visualize all the RMSD results in Figure 7 (Case 1)
and Figure 8 (Case 2). Note that CTC is not included in Figure 8
since its RMSD values are too large. From the figures, we can see

Figure 7. Online control performance for Case 1. (a) comparison among four methods (b) comparison between spTAC and poTAC.
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Figure 8. Online control performance for Case 2. (a) comparison among three methods (b) comparison between spTAC and poTAC.

Figure 9. Comparison between spTAC and poTAC.

that the SNR level has greater impact on the control performance
of CTLRC and CTC under the same missing ratio, while it has
limited effect on spTAC and poTAC.

We can also evaluate the performance of our offline modeling
approach by comparing spTAC and CTLRC based on the same
online completion strategy (i.e., sLRPOC). As can be seen from
Figures 7(a) and 8(a), in both cases, although CTLRC has slightly
better control performance when missing ratio is low, spTAC
clearly outperforms CTLRC in cases with high missing ratio
(e.g., 85% and 90%). This is because the high rank or high miss-
ing ratio settings are beyond the capability of HALRTC, which
validates our discussion on the impact of system dynamics in
Section 2.3.

Regarding the online completion strategy, we can see that the
proposed LRPOC is more effective than sLRPOC (HALRTC)
by comparing poTAC and spTAC (CTLRC and CTC) under
the same offline modeling setting. This is expected because
the proposed LRPOC incorporates benefits from both sLRPOC
(capturing the system dynamics) and HALRTC (considering the

low-rank structure of the response). Having a closer look at
Figures 7(b) and 8(b), we observe that sLRPOC achieves a com-
petitive performance with LRPOC at some cases. Thus, sLRPOC
is recommended under the limited computation resources.

To visualize the control performance of the proposed online
control algorithm, we show the sample response of Case 1 under
80% missing ratio and the lowest SNR level at time t = 1, 15, 30
for poTAC and spTAC, in Figure 9. As time moves forward, the
RMSD continually decrease and the process reaches a relative
steady state with small deviation around the target (i.e., zero).
Moreover, by comparing the images for t = 30, we can see
that the proposed LRPOC strategy achieves better control result
compared with its simplified version.

Additionally, to compare the control performance of the
poTAC and CTC over time, the Frobenius norms of squared
deviation from the target are shown in Figure 10. To have a fair
comparison, the sLRPOC strategy is executed for both methods.
From Figure 10, we can see that the proposed poTAC has less
deviation from the target than the CTC method since it learns
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Figure 10. System performance deviation from target. (a) Case 1. (b) Case 2.

Figure 11. Log mean squared overlay error over time. (a) under 70% missing ratio (b) under 80% missing ratio.

more about system dynamics during the offline modeling stage,
which results in a better tracking ability for the online control.

6. Case Study

Photolithography is an important process in semiconductor
manufacturing, in which the overlay error is a critical quality
characteristic that should be controlled online (Figure 1(b)). To
model the overlay errors, we represent them as images, which
includes all overlay errors from a single wafer. To control the
wafer quality, we can control the important settings of the pro-
duction machine, such as the wafer position and lens height.

In this case study, we generate the overlay data from a
simulator endorsed by a well-known semiconductor company
(Figure 1(a)). The detailed procedure of data generation can be
found in Zhong, Paynabar, and Shi (2023). Using the simulator,
we generate 50 training samples and 50 test samples to vali-
date the control performance of the proposed poTAC method.
According to the expert experience, we set p = 1 in our analysis.
The basis ranks are set to be 7 and 2 using the AIC criterion. The
target value in the online control model for the overlay error
is set to zero. We first apply the proposed method to estimate
model coefficients and restore the incomplete response. Next,
we use the trained model for online control. Here, we randomly
remove 70% and 80% of data in each observation, and each
setting will be replicated for 30 times. The RMSD results are
summarized in Appendix VIII of supplementary materials and

illustrated in Figure 11. As expected, results show that the pro-
posed poTAC method provides lower RMSD than the CTLRC
method since it incorporates the system dynamics during the
offline modeling, especially under a higher missing ratio setting.

7. Conclusions

In this article, we proposed a tensor-based control framework for
autocorrelated HD streaming data in the presence of partially
observed responses. First, we developed a one-step offline
modeling method, which simultaneously incorporates both
model parameter estimation and incomplete data imputation.
Compared with the intuitive two-step method (i.e., completion
first and then estimation), our developed method has two-fold
benefits: (i) the system dynamic equation provides additional
information for data completion, and (ii) parameter estimation
benefits from the restored missing entries. We further employed
the estimated regression model to execute the one-step-ahead
predictive control, in which an online completion strategy, that
is, LRPOC, was proposed to impute new missing observations
by balancing the low-rank structure of the response and the
estimation errors. To validate the effectiveness of the proposed
framework, we conducted two sets of simulations and a case
study in the semiconductor manufacturing process. The results
showed that the proposed method outperforms the benchmarks
in both offline completion and online control in a wider range of
ranks and missing ratios for the data to be completed. In future
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works, we can consider (i) the control model in a fully tensor
format (including a tensor-based moving-average component),
(ii) more general missing patterns and (iii) texture images
for the process control. Besides, more efficient solutions to
the proposed framework can be explored to make the online
computation faster.

Supplementary Materials

In the online supplementary materials of this article, we provide a PDF
file “poTAC-Appendix.pdf ” to contain technical details. Additionally, we
provide a folder “codes” containing a “ReadMe.txt” file and MATLAB codes
for reproducing Figure 10 in this article.
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