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DETONATE: Nonlinear Dynamic Evolution Modeling of Time-dependent
3-dimensional Point Cloud Profiles

Michael Biehlera, Daniel Linb, and Jianjun Shia

aH. Milton School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA; bWalton High School,
Marietta, USA

ABSTRACT
Modeling the evolution of a 3D profile over time as a function of heterogeneous input data and
the previous time steps’ 3D shape is a challenging, yet fundamental problem in many applications.
We introduce a novel methodology for the nonlinear modeling of dynamically evolving 3D shape
profiles. Our model integrates heterogeneous, multimodal inputs that may affect the evolvement
of the 3D shape profiles. We leverage the forward and backward temporal dynamics to preserve
the underlying temporal physical structures. Our approach is based on the Koopman operator the-
ory for high-dimensional nonlinear dynamical systems. We leverage the theoretical Koopman
framework to develop a deep learning-based framework for nonlinear, dynamic 3D modeling with
consistent temporal dynamics. We evaluate our method on multiple high-dimensional and short-
term dependent problems, and it achieves accurate estimates, while also being robust to noise.
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1. Introduction

Spatiotemporal 3D shape profiles provide a flexible and rich
geometric representation of objects in a physical world. In
contrast with images, 3D point clouds can provide accurate
shape and displacement measurements. However, most of the
existing works focus on static 3D shape analysis, e.g., classifica-
tion (Qi et al. 2017), regression (Biehler et al. 2022), segmenta-
tion (Landrieu and Simonovsky, 2018), or object detection
(Zhou and Tuzel, 2018). Few works study the nonlinear evolu-
tion of 3D shape profiles. Additionally, the evolution of 3D
shapes is impacted by a wide range of heterogeneous (i.e., multi-
modal) inputs. To the best of our knowledge, no existing work
has modeled the evolution of 3D shapes as a function of multiple
heterogeneous inputs and their previous 3D shape. There are
many important applications of those data characteristics: In
multistage manufacturing, the geometry of a part is affected by
both the shape of the previous stage and the process conditions
and settings at the current stage. Blast explosions and their evolu-
tion over time are affected by environmental conditions such as
wind speed and initial energy. The evolution of landslides on
mountain ranges over time is affected by their shape topology at
a given time and the environmental conditions at a given time
point. We have visualized those motivating applications in
Figure 1, to allow readers to identify new application scenarios
for the proposed methodology. The data characteristics of our
framework can be summarized as follows:

� Dynamically, nonlinear, temporally evolving 3D shape
profiles.

� 3D shape profiles are spatially affected by heterogeneous
input data as well as temporally affected by their previ-
ous time steps’ shape.

� 3D shapes are represented by unstructured 3D point clouds.

More formally, given point cloud frames X 1
S,X 2

S, :::,X t�1
S

and K heterogenous process inputs X t�1
h, j, j ¼ ð1, :::,KÞ, we

are interested in predicting X̂ t
S, with no prior knowledge of

the ground truth X t
S:

To tackle this challenging problem, we take inspiration
from the existing work in physics and dynamic control on
Koopman-based models (Durbin and Kooperman, 2012; Otto
and Rowley, 2019; Azencot et al., 2020; Han et al., 2020;
Surana, 2020; Bevanda et al., 2021; Brunton et al. 2021; Lange
et al., 2021; Wang et al., 2022). On a high level, Koopman the-
ory is based on the insight that a nonlinear dynamic system
can be fully described using an operator that describes how
scalar functions propagate over time. The Koopman operator
is linear, and thus, preferable in practice. However, the
Koopman operator maps between function spaces, and it is
infinite-dimensional. When the Koopman theory was discov-
ered a century ago, this property limited its applications
(Koopman 1931). However, advancements in computation
and operator theory has led to a revived interest. Nowadays,
machine learning can be utilized to learn a data transform-
ation under which an approximate finite-dimensional
Koopman operator is available. This data mapping can be
represented by an autoencoder network, which embeds the
high-dimensional input onto a low-dimensional latent space.
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In this latent space, the Koopman operator is approximated
using a linear layer that encodes the dynamics (Takeishi et al.,
2017).

Based on Koopman theory, we proposed a novel frame-
work for the modeling of nonlinear dynamically evolving 3D
shape profiles. Our model simultaneously leverages the for-
ward and backward dynamics of the 3D shape profiles to
obtain consistent prediction results. Although not for all sys-
tems (e.g., diffuse systems) the backward map exists, this
assumption holds in many practical cases. Related ideas have
been applied to structured time series (Otto and Rowley,
2019; Azencot et al., 2020; Nayak et al. 2021, Girgis et al.,
2022) and generative adversarial networks (Zhu et al., 2017;
Hoffman et al., 2018).

The main contributions of this article are as follows:

1. We develop a modeling framework for nonlinear dynam-
ically evolving 3D shape profiles that also considers mul-
tiple, heterogeneous, multi-modal data inputs.

2. We provide a principled way to integrate heterogeneous,
multimodal data (i.e., tabular data, images, time series)
into deep-learning frameworks. Our model addresses
the need for a generalizable methodology to handle het-
erogeneous data formats exhibiting complex, nonlinear
relationships. It can leverage user-defined pre-trained
feature extraction models as part of a unified processing
and feature aggregation stage.

3. We show that Koopman operator theory for dynamic,
time-dependent shape modeling is especially suitable for
high-dimensional (unstructured) 3D data that exhibits
strong short-term dependencies.

4. We evaluate the performance of our proposed frame-
work on both clean and noisy systems including 3D
blast explosions and additive manufacturing and achieve
superior results with our model.

5. We conduct extensive case study experiments and show
how to leverage 3D shape profiles along with heteroge-
neous process data in a unified way. We see this as a

guiding example for the design and modeling of novel
machine learning systems for dynamic 3D shape modeling.

The remainder of the article is organized as follows.
Section 2 gives a brief literature review. Then the proposed
DETONATE framework for consistent temporal forecasting
and backcasting with heterogeneous input and unstructured
3D point cloud output is introduced in Section 3. Section 4
validates the proposed methodology by using simulated
data. Furthermore, the performance of the proposed method
is compared with existing benchmark methods in terms of
estimation accuracy and computational time. In Section 5,
we conduct a real-world case study for predicting the 3D
shape evolvement in additive manufacturing. Finally, we
conclude the article with a brief discussion and an outline of
future work in Section 6.

2. Literature review

In this section, we will review four major categories of meth-
odology related to the DETONATE framework: tensor-based
methods for 3D time series modeling, deep-learning-based
methods for 3D point cloud times series modeling, methods
for modeling the forward and backward dynamics, and data-
driven Koopman frameworks.

2.1 Tensor-based methods for 3D time series modeling

The analysis of tensor (multidimensional array) time series is
one of the most active areas of modern statistical method-
ology. The classic Vector AutoRegressive (VAR) model is fun-
damental to multivariate time series modeling and has
recently been applied to the high-dimensional case (Zheng
and Cheng, 2021). To alleviate the curse of dimensionality
when estimating a large number of parameters, Wang et al.
(2021) proposed a high-dimensional VAR time series model
that utilizes tensor decomposition for dimensionality reduc-
tion. Other tensor time series models based on factor models
(Chen et al., 2022) and block Hankel tensor ARIMA (Shi
et al., 2020) have been proposed. However, one major draw-
back of tensor-based methods is the restrictive assumptions of
(linear) tensor decompositions. Another drawback is the fact
that they cannot be applied to unstructured data, which can-
not be represented efficiently as a tensor.

2.2 Deep-learning-based methods for 3D point cloud
time series modeling

Sequential data are commonly modeled using Recurrent
Neural Networks (RNNs) (Elman, 1990). The main difference
compared with standard neural networks is the fact that
RNNs maintain a hidden state that uses the current input and
previous inner states to make predictions. Due to the unstruc-
tured data format of 3D point clouds, most of the existing spa-
tiotemporal RNN models cannot be utilized. Point clouds are
unordered, so point features and states from two different
time steps cannot be directly processed. To this end,
PointRNN (Fan and Yang, 2019) utilizes point-based states

Figure 1. Overview of possible application scenarios for the DETONATE
Framework.
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based on point coordinates. Gomes et al. (2021) extended spa-
tiotemporally local correlation to aggregate point features and
those ideas to a spatiotemporal Graph-RNN, which utilizes a
layer that learns topological information of point clouds to
form a representative spatiotemporal neighborhood. The
main drawback of the existing deeplearning-based methods is
that they do not consider any additional heterogeneous data
inputs, which affect the shape evolvement.

In contrast with deep-learning-based methods, Koopman-
based frameworks offer several advantages, such as interpret-
ability and theoretical backing for modeling spatiotemporal
dynamics. Due to those properties, it enables a wide variety
of future research and downstream tasks, such as Koopman-
based control. On the other hand, deep learning approaches
for temporal modeling have disadvantages such as the need
to train separate models for backward and forward predic-
tions, temporal consistency issues, overparameterization and
overfitting, and optimization issues such as exploding and
vanishing gradients.

2.3 Forward and backward temporal modeling

Modeling the forward and backward dynamics of a system is
essential in applications, where the past, as well as the future
system states, are not available. Furthermore, considering both
the forward and backward dynamics can improve the perform-
ance of the time series models by considering the underlying
physical structure of the sequence. The majority of time series
models do not consider the forward and backward dynamics
concurrently. However, models for missing time series value
imputation have leveraged the forward and backward dynamics
(Moahmed et al., 2014). Another example is the integration of
forward and backward dynamics for wind power forecasting
(Zhao et al., 2016). Other models that consider both forward
and backward dynamics can be found in economics (Gardini
et al., 2009), physics-based modeling (Bot and Csethek, 2016),
or resource allocation (He and Zhang, 2013). The main draw-
back of the existing methods for forecasting and backcasting is
the fact that they cannot be applied to unstructured, high-
dimensional point cloud time series data. The conversion to
structured data is not straightforward and will lead to informa-
tion loss, especially in cases when no reference object (e.g.,
CAD (Computer Aided Design) model) is available.

2.4 Data-driven Koopman frameworks

The modeling of dynamical systems via Koopman operators
has received increased attention in recent years. Most prom-
inently, Schmid (2010) proposed to approximate the
Koopman operator via the Dynamic Mode Decomposition
(DMD) algorithm. Many extensions to the original DMD
algorithm have been proposed in the last decade. Most
prominently, Williams et al. (2015) proposed the extended
DMD to allow for a better global approximation of
Koopman modes, eigenvectors, and eigenfunctions. Most
related to our approach are the variants of DMD, which
address the dynamics of the symmetric, forward, and back-
ward system (Arbabi and Mezig, 2017; Le Clainche and

Vega, 2017; Azencot et al., 2019; Haseli and Cortes, 2019;
Salova et al., 2019; Azencot et al., 2020; Nayak et al., 2021;
Haseli and Cortes, 2022). The control of dynamical systems
via Koopman theory is also an important research area. Pan
et al. (2021) proposed a control method for large-scale prob-
lems utilizing the direct identification of Koopman eigenfunc-
tions via a sparsity-promoting algorithm. In robotics,
Abraham and Murphy (2019) use Koopman Operators to
derive a linearizable data-driven model and utilize it for
model-based control. Lusch et al. (2018) were the first to
incorporate the Koopman theory into a deep learning-based
framework utilizing an Autoencoder structure. Since then, an
extension to graph convolution networks has been proposed.
However, to the best of our knowledge, no existing method-
ology addresses the time series modeling for unstructured 3D
profile point clouds, while also considering several heteroge-
neous input data sources.

3. DETONATE methodology

In this section, we introduce the DETONATE framework as
an approach to model an unstructured, 3D point cloud pro-
file sequence as a function of heterogeneous input data and
the previous time step 3D shape. We assume a set of N 3D
point cloud sequences with T time steps is available, denoted
by XS, i ¼ fX 1

S, i,X 2
S, i, :::,XT

S, ig, where i denotes the sample
index, i ¼ 1, :::N; subscript S denotes 3D shape data; and T
is the length of the sequence. Additionally, a sequence of K
heterogeneous inputs Xh, i ¼ fX 1

h, j, i:::,XT
h, j, ig, j ¼ 1, :::K is

available, where j is the index denoting the data inputs and K
is the total number of heterogeneous inputs.

3.1 Problem setup using Koopman operator theory

In our work, we focus on the modeling of 3D time series
sequences, which can be described by a nonlinear 3D profile
propagation model (DETONATE) as follows

X tþ1
S ¼ f X t

S,X
t
h

� �
, X t

S 2 M � R
Np�3, Xt

h � R
mh , (1)

where X t
S denotes the state (i.e., 3D profile) of the system at

time t 2 T; Np denotes the number of Cartesian coordinate

points representing the 3D shape; Xt
h are the heterogeneous

inputs at time t, and mh is the dimension of the heterogen-
ous input data sources. Then the map f : M0 ! M0 is a
(potentially nonlinear) update on a finite-dimensional mani-
fold S: Here, M0 is the space spanned by X t

S and Xt
h: The

associated probability space is denoted by ðM,R,lÞ: The
model assumes that future states X tþ1

S only depend on the
current state X t

S, the heterogeneous inputs Xt
h, and not on

information from a sequence of previous states. In the set-
ting of 3D shape evolvement, this assumption is not
extremely restrictive, given that shape evolvement exhibits
strong short-term dependencies, and we additionally con-
sider other heterogeneous inputs. However, for example,
when modeling materials with shape memory effects, this
framework could be extended to an autoregressive structure.
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To predict future shapes, one could directly train an end-
to-end neural network that learns an approximation of the
map f : However, the resulting model ignores the prior
knowledge about the sequential problem structure and suf-
fers from the curse of dimensionality. Solving directly for f
is challenging, since the m, the number of features m � n,
and the number of samples n ¼ N � T, thus leading to an
underdetermined system. In our setting, m ¼ Np � 3þmh

is extremely large, here mh is the feature dimension of het-
erogeneous inputs. An alternative approach is to learn a
data transformation (i.e., latent embedding) for the states X t

S

and Xt
h so that the corresponding latent variables xts and xth

evolve on a linear path, as illustrated in Figure 2.
Using latent encoding, the dynamics can be approximated

using a linear model, which alleviates the curse of dimen-
sionality and allows the integration of prior physics know-
ledge about the data sequence into the training process. This
is a direct implication from Koopman theory, which states
that there exists a data transformation for any nonlinear
dynamical system so that the future states can be predicted
via a linear mapping from t to t þ 1: Formally, the
Koopman operator is defined as

KugðX S,XhÞ ¼ g � uðX S,XhÞ, (2)

where the dynamics u induce the Koopman operator Ku

that acts on scalar functions g: M0 ! R 2 S, where S is a
finite-dimensional manifold on M0 (Koopman 1931).
Throughout this article, we use the following notations: The
function composition � takes two functions f and g and
produces a function h ¼ g � f such that h xð Þ ¼ gðf xð ÞÞ: A
composition operator C/, with symbol / is a linear operator
defined by the rule C/ fð Þ ¼ f � /, where f � / denotes the
function composition. The Koopman operator is a compos-
ition operator, as the function g is composed with the map
u: In other words, g � u is defined as g � u X S,Xhð Þ ¼
g u X S,Xhð Þð Þ: The operator models the evolution of the sca-
lar function by utilizing future values: Kug at X S,Xh is the
value of g evaluated at the future state X tþ1

S : We note that
our data is equally spaced in time, i.e., Dt is the sampling
interval, which is the same for each time t, although exten-
sions to this setting can be accommodated (Tu et al., 2014).
Intriguingly, it is easy to show that Ku is linear for any

a, b 2 R

Ku ag þ bhð Þ ¼ ag þ bhð Þ � u ¼ ag � uþ bh � u
¼ Kuag þKubh (3)

In the remainder, we assume the backward dynamics s
exists, and we denote the associated Koopman operator by
T s: One key obstacle is that the theoretical Koopman oper-
ator Ku is infinite-dimensional. Therefore, we work with the
key assumption, that in most practical applications, there
exists a transformation w, whose conjugation with Ku leads
to a finite-dimensional approximation of the dynamics.
Assume the data are elements of L2ðM0,lÞ: The Koopman
invariant subspace is defined as G0 � L2ðM0, lÞ s.t. 8g0 2 G0,
Kug0 2 G0: If G0 is spanned by a finite number of functions,
then the restriction of Ku to G0 becomes a finite-dimensional
linear operator. The field of Koopman analysis is concerned
with learning the right nonlinear dimensionality reduction
function to form an invariant subspace (Brunton et al., 2016).
We utilize the approximate forward Koopman matrix F

F ¼ w � Ku � w�1, F 2 R
K�K, (4)

where w and its inverse w�1 extract and reconstruct the cru-
cial information from Ku: Analogously, we denote the
approximate backward Koopman matrix by

B ¼ w � T s � w�1, B 2 R
K�K (5)

The main focus of the remainder of this methodology
section is how to find matrices F and B, and a nonlinear
transformation w such that the underlying system dynamics
are recovered well.

Additionally, we develop a principled way to incorporate
heterogeneous data inputs into the Koopman framework.
The methodology overview of the DETONATE framework
is visualized in Figure 3. The horizontal direction describes
the Koopman-based temporal modeling, whereas the vertical
direction shows the treatment of heterogeneous inputs used
to enhance the modeling of the nonlinear system dynamics.

3.2 Latent encoding via 3D autoencoders

Many dimensionality reduction techniques have been devel-
oped in recent years, which can be applied to estimate a

Figure 2. Linearization of nonlinear dynamics via a nonlinear data transformation (Encoder and Decoder) using a latent space.
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data transformation w, which maps the high-dimensional
inputs to a low-dimensional embedding. However, unstruc-
tured 3D point clouds cannot be modeled by methods such
as fully connected AutoEncoders (AEs). 3D point cloud
processing is more challenging than 2D images since point
cloud samples live on an irregular structure, whereas 2D
images rely on 2D grids (pixels) with regular spacing.
Additionally, point cloud geometries are represented by a
set of sparse 3D points. These data characteristics make it
difficult to apply traditional machine-learning frameworks.

Therefore, we propose to utilize recent advances in
unsupervised learning for point clouds to model the trans-
formation w: In particular, we utilize a deep point cloud
AE. The input to the encoder is a Np � 3 matrix, where Np

is the number of measurement points in each sample. Each
row of the matrix is composed of 3D positional coordinates
ðx, y, zÞ: The output is a m� 3 matrix, representing the
reconstructed point positions. The number of reconstructed
points m is not necessarily the same as Np: Therefore, the
loss between the input point set S1 and the reconstructed
point set S2 can be computed via the extended Chamfer dis-
tance

deCH S1, S2ð Þ ¼ max
1
jS1j

X
x2S1

min
y2S2

kx� yk2,
1
jS2j

X
y2S2

min
x2S1

ky� xk2,
( )

(6)

The term miny2S2 kx� yk2 enforces that any 3D point x
in the original point cloud has a matching 3D point y in the
reconstructed point cloud and the term minx2S1 ky� xk2
enforces the matching vice versa cases. The max operation
enforces that the distance from S1 to S2 and the distance
vice versa cases have to be small simultaneously. If there are
multiple matching 3D points with the same distance, any
matching 3D point can be chosen randomly, since it does
not change the computation of the distance.

We note that the number of measurement points may
vary across samples, due to different data acquisition techni-
ques. Therefore, we apply sampling strategies to up- or
down-sample all the 3D point clouds to a fixed number of
measurement points. For up-sampling, we use furthest point
sampling and for down-sampling, we use random sampling
without replacement, which are standard techniques in point
cloud processing (Krim and Yezzi, 2006). We note that if

the number of measurement points varies significantly or
very high-resolution 3D shapes are needed, some existing
works explicitly handle the problem of varying-sized,
unstructured 3D point clouds (Biehler et al., 2022).

In a nutshell, the deep AE computes a latent representa-
tion for each input point cloud and the decoder reconstructs
the point cloud using the latent representation. We have
evaluated several deep AE architectures for 3D point clouds
and have confirmed the state-of-the-art performance of the
FoldingNet (Yang et al., 2018). For the encoder, this method
utilizes graph-based enhancement to promote the learning
of local structures. For the decoder, a folding-based oper-
ation deforms a canonical 2D grid onto the underlying 3D
object surface of a point cloud, leading to high-accuracy
reconstructions of delicate 3D structures. We initialize our
network with a pretrained model on ShapeNet and train on
our dataset. We can achieve reasonable reconstruction per-
formance with a sample size of about 100 samples, which is
in line with the findings of previous studies on 3D point
cloud AEs. For instance, Yan et al. (2022) demonstrated that
a FoldingNet-based architecture, pre-trained on a larger
dataset, can achieve good performance for a sample size of
100. For architecture and implementation details, interested
readers are referred to Yang et al. (2018).

More formally, given a set of N observations D ¼ X S, if gNi¼1

where each X S, i is a sequence of T time steps, we embed our
inputs into a low-dimensional latent space using the nonlinear
map we, represented by the point cloud encoder. The decoder
map wd allows the reconstruction of the latent embeddings
into the spatial domain. To train the AE, we define

X̂ S ¼ wd � weðX SÞ, (7)

where X̂ S denotes the reconstructed version of X S utilizing
the AE. Consequently, the reconstruction loss for our
DETONATE framework becomes

Lrec ¼
XN
i¼1

XT�1

t¼2

deCHðX S, X̂ SÞ (8)

3.3 Backward dynamics

Most time series models for dynamic systems u are con-
cerned with the forward prediction to future time points.

Figure 3. Illustration of the DETONATE methodology.
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However, in several applications, modeling the backward
dynamics x: X t

S ! X t�1
S is an important problem. For

example, in warhead blast experiments, backward dynamics
are utilized to design warheads that minimize civilian casu-
alties (Mulekar et al., 2021). Most existing time series mod-
eling techniques do not consider the backward dynamics in
their modeling or training.

Additionally, in our framework, the time sequence of high-
dimensional data is assumed to be measured by sensor devi-
ces. Naturally, in these settings, the observations are assumed
to be corrupted by various types of noise. The existence of
process or sensor noise (e.g., 3D surface reflections) may
result in a bias in traditional time series models that only con-
sider the forward modeling. By considering both forward and
backward dynamics, much of the bias due to noise can be
eliminated. In the remainder of this work, we will assume
additive white Gaussian noise as the noise distribution.

To account for the forward as well as the backward
dynamics, we incorporate two linear layers with no biases
into our network to represent the approximate forward and
backward Koopman operators (Takeishi et al., 2017; Dogra
and Redman, 2020). In particular, the Koopman operators

F and B allow obtaining forward forecasts X̂ tþ1
S and back-

ward backcasts �X t�1
S : This leads to better generalizability

and more accurate forecasting and backcasting of the pro-
posed DETONATE framework. We define the following loss
terms to model the forward and backward dynamics:

Lfwd ¼
XN
i¼1

XT�1

t¼1

deCHðX tþ1
S , X̂ tþ1

S Þ (9)

Lbwd ¼
XN
i¼1

XT
t¼2

deCHðX t�1
S , �X t�1

S Þ (10)

A schematic illustration of this structure is given in
Figure 3 on the horizontal axis. The design includes an
encoder and decoder architecture (i.e., we and wd), as well
as the Koopman matrices F and B: Note all the connections
on the horizontal axis are bi-directional, representing that
data can flow from left to right and right to left.

3.4 Consistent dynamics

Because the backward mapping is highly unconstrained (i.e.,
paired forward and backward data is not available), the
accuracy of backcasts typically falls short of the forward
mapping (Zhu et al., 2017; Hoffman et al., 2018). Therefore,
we would like to exploit the forward Koopman matrix F to
obtain more accurate backcasts. A straightforward approach
to this is to model the backward evolution as the inverse of
F�1 as follows:

�X t�1
S ¼ wd � F�1ðX t

S,X t
hÞ (11)

However, the backward loss Lbwd does not consider this
inverse relationship. This means that the backward and for-
ward prediction errors will not affect the optimization of the
complementary Koopman matrices F and B: Therefore, we

will introduce a loss function, which promotes consistent
dynamics in both directions. An initial version of this loss
function would take the form

min
F

XN
i¼1

XT�1

t¼2

�
1
2
kFðX t

S,X t
hÞ � X tþ1

S kF

þ 1
2
kX t

S � F�1ðX tþ1
S ,X tþ1

h ÞkF
�

(12)

where k � kF denotes the Frobenius norm. If X t
h ¼ X tþ1

h and

F is orthogonal (i.e., F�1 ¼ FT), then the terms
kFðX t

S ,X t
hÞ � X tþ1

S kF and kX t
S � F�1ðX tþ1

S ,X tþ1
h ÞkF in (12)

are equal. However, in a general case, even after dropping the
heterogeneous inputs for the case X t

h ¼ X tþ1
h , we have

kFðX t
SÞ � X tþ1

S kF ¼ TrððXt
SÞ

TFTFX t
S

�2ðX t
SÞ

TFTX tþ1
S þ ðX tþ1

S ÞTX tþ1
S Þ 6¼ TrððXt

SÞ
TX t

S

�2ðX t
SÞ

TF�1X tþ1
S þ ðX tþ1

S ÞTFTF�1X tþ1
S Þ

¼ kX t
S � F�1ðX tþ1

S ÞkF

(13)

Due to the inverse forward dynamics F�1, this optimiza-
tion problem is highly nonconvex. Therefore, we reformu-
late (12) by utilizing the backward dynamics B ¼ F�1 as an
auxiliary variable;

min
F ,B

XN
i¼1

XT�1

t¼2

�
1
2
kFðX t

S,X t
hÞ � X tþ1

S kF þ
1
2
kX t

S

�BðX tþ1
S ,X tþ1

h ÞkF
�

s:t: FB ¼ I, BF ¼ I,

(14)

where the constitutive constraints guarantee that the mini-
mizers of (14) are the inverse of each other. From an opti-
mization perspective, those two constraints are equivalent.
However, in practice, we utilize them to make the approxi-
mate invertible relations of F and B symmetric: For design-
ing the DENOTATE loss function, we rely on the
observation that if the approximate Koopman operators
span a Koopman-invariant subspace, then FB ¼ I: In par-
ticular, the consistency error between the forward and back-
ward mapping can be quantified by MC ¼ kFB � IkF: The
consistency index IC ¼ sprad MCð Þ 2 ½0, 1	, where sprad Að Þ
:¼ max kj j j k 2 spec Að Þ

� �
is the spectral radius of A: The

spectral radius is the largest Koopman eigenvalue associated
with the evolution of the observable. From a methodology per-
spective - beyond the ability to obtain both forecasting and
backcasting - enforcing consistency avoids overfitting, and
hence, leads to better generalization. This modeling choice is
directly motivated by the theoretical results on extended dynam-
ical mode decomposition, which is the most popular dimension-
ality reduction algorithm for learning approximate Koopman
operators. In particular, Haseli and Cortes (2022) have shown
that the temporal forward-backward consistency measures the
prediction accuracy of approximate Koopman operators.

Proposition 1: Under mild assumptions, the relative root
mean squared error of the approximate Koopman operator is
tightly upper bounded by the consistency index

ffiffiffiffiffiffi
IC

p
:
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We refer interested readers to Haseli and Cortes (2022)
for a detailed proof of this proposition.

This theoretical finding motivates us to directly integrate
the consistency of the invertible system dynamics as an add-
itional loss function into the DENOTATE framework.

To understand the properties of inversion, we resort to the
spectral representation of the Koopman operator in the func-
tion space S: We choose an orthogonal basis eqf g1q¼0

for S,
where for any r, s we have

er , esh iM0 ¼
ð0
M0

er xð Þes xð Þdx ¼ drs, (15)

where drs denotes the Kronecker delta function. Under this
choice of basis, any function fs 2 S can be represented by
fs ¼

P
q fs , eq
	 


M0eq (Dunford and Schwartz, 1971). From

the linearity of the Koopman operator Ku, follows the fol-
lowing relationship: Krs ¼ er ,Kuesh iM0 : Now we can utilize
the results from Ergodic theory to state the conditions for
invertibility (Singh and Manhas, 1993; Eisner et al., 2015).

Proposition 2: Given a manifold M0, a dynamical system u
is invertible if and only if for every r and s the Koopman
operators Fu and Bx satisfy er ,BxFuesh iM0 ¼ drs:

Proof: ()): If u is invertible, then the composition x � u ¼ I

for every x 2 S: Hence, er ,BxFuesh iM0 ¼
Ð 0
M0 er xð Þes

x � uðxÞð Þ dx ¼ er , esh iM0 :

((): Per assumption, we have er ,BxFuesh iM0 ¼ drs for
all r, s: Thus, for every q, we have BxFueq ¼ eq since eq is
orthogonal to every eo, o 6¼ q: Then for a scalar function f ,
we have f x � u xð Þð Þ ¼ BxFuf xð Þ ¼ f ðxÞ and it follows
that x � u ¼ I: �

The results from the proposition along with the results
from consistent dynamic mode decomposition (Le Clainche
and Vega, 2017; Azencot et al., 2019; Haseli et al., 2019)
motivate the consistency loss Lcon:

Formally, two mappings are considered consistent if F �
B X Sð Þ ¼ X S for any X S 2 M0: In the Koopman matrix set-
ting, this is equivalent to requiring FB ¼ IK, where IK is
the identity matrix of size K: For the remainder of this
work, we assume that the underlying system dynamics to be
modeled are invertible.

Using our previous notation, where the approximate for-
ward and backward Koopman operators F and B are K�
K, the above condition reduces to

1
2
kBF � IKk ¼ 0, (16)

However, in the discrete setting, a slightly modified ver-
sion of this condition is necessary. Based on recent results
from dynamic mode decomposition, we derive a consistent
loss for our Koopman-based framework (Azencot et al.,
2019; Salova et al., 2019; Haseli and Cortes, 2022). We also
note the connection to the consistency of functional maps
(Huang et al., 2014). In line with existing theory, we assume
that the manifold M is represented by the domain M �

R
Np�3, which is sampled using m vertices. Under this

assumption, the scalar functions f : M ! R are vectors f 2
R

m storing values of vertices with intermediate values
obtained via interpolation. The encoding map u: M0 ! M0

can be defined using a matrix Pu 2 R
m�m

Pudx ¼ guðxÞ, (17)

where gx is a function that stores the vertex coefficients such
that gTx C ¼ xT , with C 2 R

m�Np�3 being the spatial coordi-
nates of M: Analogously, we denote Px as the matrix associ-
ated with x by Pxdx ¼ gxðxÞ: Now we denote B 2 R

m�m as
the matrix containing the orthogonal basis elements in its
columns (i.e., bu , bvh iM ¼ bTu bv ¼ duv for every u, v). Then
we can define the forward and backward matrices as follows

F ¼ BTPuB
B ¼ BTPxB

(18)

Formally, a discrete map u is consistent if, for every x,
we have u � u xð Þ ¼ x: Utilizing the results from functional
mappings and consistent dynamical mode decomposition
(Le Clainche and Vega, 2017; Azencot et al., 2019; Haseli
and Cortes, 2019), we can state and prove the following
theorem.

Theorem 1: Given a domain M, the map u is consistent if
and only if for every u and v the forward and backward
matrices F and B satisfyXK

l¼1

1
2l
kBlF l � Ilk2F ¼ 0;

where Bl and F l are the upper l rows of B and the leftmost l
columns of the Koopman matrix F :

Proof: ()): If u is a consistent map, then PxPudx ¼ dx for
every x and thus PxPu ¼ I: In addition, for every l we have
that BlF l ¼ BT

l PxBB
TPuBl ¼ BT

l PxPuBl ¼ BT
l Bl ¼ I, where

Bl are the first l basis elements of B and BBT ¼ I:
((): Furthermore, we assume that the forward and back-

ward maps are constructed using (18) and the conditionPK
l¼1

1
2l kBlF l � Ilk2F ¼ 0 holds. Then BT

l PxPuBl ¼ Il for
every l: By induction on l it follows that PxPubl ¼ bl, for
every l, where bl are the l th columns of B and thus
PxPu ¼ I as B spans the space of scalar functions on M: �

Therefore, we incorporate the following loss into our
DETONATE framework to promote consistency

Lcon ¼
XN
i¼1

XT�1

t¼2

XK
l¼1

�
1
2l
kBlF l � Ilk2F þ

1
2l
kF lBl � Ilk2F

�
:

(19)

This loss is directly motivated by the consistent dynamics
of the time series sequences and derived based on recent
advances in the consistency of functional mappings and
dynamic mode decompositions.

The consistency loss in DETONATE serves as a regular-
ization technique that addresses the curse of dimensionality,
which is a common problem in many engineering applica-
tions, where the number of training samples is significantly
smaller than the number of model parameters. Although
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typical regularization methods promote sparsity by penaliz-
ing model weights, different neural architectures, data
modalities, and learning problems may require alternative
regularization techniques. In DETONATE the consistency
loss can be interpreted as a relaxed version of strict revers-
ibility and stability constraints in physics-informed learning,
while still regularizing the parameter space.

3.5 Heterogeneous input data sources

The accurate 3D sequence modeling of complex systems
requires knowledge from multiple data sources and various,
heterogeneous input modalities. Multimodal deep learning
architectures are a natural extension to existing single
modality frameworks: they emulate the approach that domain
experts or engineers currently use to perform predictions for
complex problems. Typical engineering practice uses a diverse
set of data formats such as tabular data (e.g., process settings,
material properties), image data (e.g., photographs, infrared
images, X-ray, and computerized-tomograph scans), and
functional curves (e.g., temperature data, acoustic emissions).
Although recent efforts have utilized linear tensor-decomposi-
tions to fuse multiple sources of heterogeneous data
(Gahrooei et al., 2021), those techniques are not applicable
during the model deployment in real-time and the modeling
of complex, nonlinear, and extremely high-dimensional het-
erogeneous data sources. This motivates the need for a gener-
alizable and modular deep learning approach to extract
information from heterogeneous data sources. It can leverage
user-defined pretrained feature-extraction models as part of a
processing and feature aggregation stage that allows the down-
stream modeling of a variety of predictive tasks. This process is
visualized in the vertical direction in Figure 3, which shows
how multiple, heterogeneous data sources X t

h, 1,X t
h, 2, :::,X t

h, k

are fed into data type-specific feature extractors to obtain their
respective latent embeddings xth, 1, x

t
h, 2, :::, x

t
h, k:

Lh ¼ min
hh

XN
i¼1

XT�2

t¼1

Xk

j¼1
kfh, k xth, j, hh

� �
� X t

h, jk
2
F , (20)

where fh, k denotes the data-type-specific feature extractor
with parameters hh: To integrate the heterogeneous data
into the DETONATE framework, we directly integrate the
learning of latent embeddings xth, j into the overall

DETONATE loss. By jointly optimizing heterogeneous data
loss with the temporal model, we learn those latent embed-
dings of the heterogeneous data that are most correlated
with the temporal evolution model. In other words, we want
to extract the part of the variation in the heterogeneous
input that contributes the most to the temporal evolution of
the 3D profiles.

The data-type-specific feature extractor fh, k can be chosen
as follows: (i) based on engineering domain knowledge or
(ii) based on well-established knowledge about feature
extractors for certain data modalities. Common feature
extractors for image, functional curve, and tabular data are
listed in Table 1 and serve as guiding examples for the selec-
tion of fh, k:

Our approach is motivated by insights from transfer learn-
ing related to layer (un-)freezing (Guo et al., 2019). To avoid
convergence issues, the AE is first trained without heteroge-
neous data only on the shape reconstruction tasks. Then, we
freeze the early layers of the AE architecture to enable learn-
ing generic 3D shape features. Those layers are marked gray
in Figure 4. Then, we fine-tune the last p layers by utilizing
ideas from multi-head attention to jointly model information
from different data subspaces. We extract the hidden activa-

tions ah, j, tp from each heterogeneous data source and concat-
enate them with the corresponding p hidden activation layer
in the AE architecture. The same process is applied to the last
layer containing the latent embeddings of the heterogeneous
data sources xth, j, which are added to the penultimate activa-

tion layer of the AE. This process is illustrated in Figure 4. If
no intermediate hidden layers are available for the heteroge-
neous data feature extractors, only the latent embeddings xth, j
are concatenated. If the heterogeneous data are added at all
layers (i.e., p is equal to the depth of the AE), this approach
reduces to a multi-input neural network architecture, which
can be easily implemented with deep learning packages.

3.6 Unified DETONATE framework

In this section, we propose an efficient framework to simul-
taneously optimize the components of the DETONATE
framework. The DETONATE framework allows us to model
the time series sequence of unstructured, 3D point clouds
X tþ1

S as a function of their previous time step shape X t
S as

well as multiple heterogeneous inputs X t
h, j by utilizing the

following loss function:

LDETONATE ¼ Lrec þ k1 � Lfwd þ k2 � Lbwd þ k3 � Lcon þ k4 � Lh

¼
XN
i¼1

XT�1

t¼2

deCHðX S, X̂ SÞ þ k1 �
XN
i¼1

XT�1

t¼2

deCHðX tþ1
S , X̂ tþ1

S Þ

þk2 �
XN
i¼1

XT�1

t¼2

deCHðX t�1
S , �X t�1

S Þ

þk3 �
XN
i¼1

XT�1

t¼2

XK
l¼1

�
1
2l
kBlF l � Ilk2F þ

1
2l
kF lBl � Ilk2F

�
:

þk4 �
XN
i¼1

XT�2

t¼1

Xk

j¼1
kfh, k xth, j, hh

� �
� X t

h, jk
2
F ,

(21)

where k1, k2, k3, k4 2 R
þ are turning parameters. The

minimization of the DETONATE loss guarantees to achieve
good AE reconstruction performance while keeping forecasts

Table 1. Guiding examples for the selection of the data-type-specific feature
extractor fh, k:

Data Type Data-type-specific feature extractor fh, k
Image Convolution Neural Network, Speeded up robust

features (SURF), Histogram of Oriented
Gradients (HOG)

Tabular Feature Selection via Regularized Regression (e.g.,
LASSO), Fully connected Neural Network

Functional Curves Wavelet Basis, Time-Frequency (Fourier) transformations
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and backcasts in time accurate, and ensuring the consistency
of forward and backward dynamics.

One of the key features of the model is that it allows dir-
ect backcasting. Given an observation X t

S and heterogeneous
inputs X t

h, j, the DETONATE model yields the forward pre-

diction X̂ tþ1
S ¼ wd � F�weðX t

S,X t
hÞ, as well as the backcasts

�X t�1
S ¼ wd � B � weðX t

S,X t
hÞ: Typically, neural networks

require the training of a separate model in the reverse direc-
tion to be able to perform backcasting. We note that in gen-
eral, multi-step predictions are possible by iteratively
substituting one-step predictions. However, this extension is
non-trivial and may require further assumptions on future
inputs and noise distributions. Therefore, we mention it at
this stage as a topic worthy of further investigation.

An important property of the proposed DETONATE loss
is the fact that it allows joint optimization with respect to all
parameters using stochastic gradient descent algorithms. This
allows for automatic differentiation and the integration of the
proposed framework into efficient computing environments.

3.7 Tuning parameter selection

The DETONATE framework relies on four main tuning
parameters k1, k2, k3, k4 in the loss function. The use of
machine learning algorithms commonly involves careful tun-
ing of learning parameters requiring expert experience, rules
of thumb, or bruteforce search. On the contrary, we view this
issue as the global derivative-free optimization of an unknown
(nonconvex) black-box function and utilize the Bayesian opti-
mization procedure proposed by Snoek et al. (2012) with its
accompanying Python package “Spearmint” to automatically
optimize the performance of the DETONATE framework for
a given problem. Bayesian optimization has been shown to
outperform other global optimization algorithms for tuning
parameter selection on several multimodal black-box func-
tions (Jones, 2001). The objective of the hyper-parameter tun-
ing is to maximize the predictive performance of forecasts
and backcasts (i.e., Lfwd þ Lbwd). We weight the importance
of each task equally. The parameters tuned by the Bayesian
optimization are k1, k2, k3 and k4: Spearmint uses a Gaussian
process prior and the Expected Improvement (EI) criterion as
an acquisition function. For further implementation details,

readers are referred to Snoek et al. (2012) and the correspond-
ing code repository.

4. Simulation studies – 4D warhead detonations

In this section, we evaluate the DETONATE framework
using a simulated 4D warhead fragmentation in-flight
behavior. Warhead detonations eject fragments over large
distances, causing collateral damage to structures, vehicles,
and persons. We represent the fragment locations as
unstructured 3D point clouds evolving over time as a func-
tion of heterogeneous inputs modeled by a characteristic
(time-varying) velocity curve. To avoid civilian casualties, it
is imperative to understand the in-flight detonation behavior
so that collateral damage and lethality estimates can be used
to make decisions regarding effective target application.
However, the current state of the art is expensive field test-
ing. The installation of vision systems enables the real-time
tracking of fragments and enables new statistical analysis of
the 3D evolvement of the blast. It allows the comparison
and contrasting of detonations under a wide range of pro-
cess conditions. Furthermore, the backward modeling of
warhead detonations is vital for forensic tasks. Therefore, we
use our DETONATE model as a guiding example for
another important application with the same data character-
istic: an unstructured 3D shape nonlinearly evolves as a
function of time and (multiple) heterogeneous inputs.

We start by initializing the 3D shape starting from the
coordinate origin:

X 0
S ¼ 0

! 2 R
Np�3 (22)

Then the evolvement of the 3D shape is modeled using
the previous time steps shape and multiple heterogeneous
inputs X h, j: According to Gurney’s equation (Gurney, 1943),
the initial velocity of a fragment from a cylindrical casing is
expressed by

v0 Xh, 1,Xh, 2,Xh, 3ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðb0h, 1 þ b1h, 1Xh, 1Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xh, 2=Xh, 3

1þ 0:5Xh, 2=Xh, 3

s
,

(23)

where b0h, 1,b
1
h, 1 are explosive specific constants, Xh, 1 is the

detonation velocity of the explosive, Xh, 2 is the mass of the
explosive, and Xh, 3 is the mass of the warhead casing, respect-
ively. We consider four different material settings utilized to
compute the initial velocity, which are summarized in Table 2.

We consider four different material settings, in each
simulation study, we either consider the following settings:

m.i) homogenous material: We only consider material set-
ting A.

m.ii) heterogeneous material: We generate an equal portion
of samples (i.e., 25%) for each material

setting (A, B, C, and D).

Furthermore, the warhead fragment velocity is impacted by
the characteristic flight curve, which depends on the exact
design and material properties of the warhead. We consider this

Figure 4. Holistic framework to integrate heterogeneous data source into deep
learning models.
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flight curve as a heterogeneous input X t
h, 4: We choose the fol-

lowing settings to account for a wide range of external impacts
(e.g., warhead design and material, the impact of wind):

v.i) Increasing: Xh, 4 tð Þ ¼ 100 � t m
s


 �
v.ii) Varying: X h, 4 tð Þ ¼ 100 � sinðtÞ m

s


 �
Using the previous time step’s shape and the heteroge-

neous inputs, we can describe the temporal evolution of the
3D fragments with the following equation

X t
S ¼ X t�1

S þ v0 Xh, 1,Xh, 2,Xh, 3ð Þ � Dt þ Xh, 4 tð Þ þ 1
2
G � Dt2 þ e,

(24)

where G ¼ 0, 0, 9:8ð Þ m
s2 is a constant gravity vector, and e ¼

Nðl,RÞ is a 3D multivariate Gaussian, where the mean
matrix l 2 R

Np�3 is centered at the new coordinate points
of the 3D point cloud and R 2 R

ðNp�3Þ�ðNp�3Þ is the corre-
sponding covariance tensor with its diagonal entries as r:
These settings are consistent with real experiments of blast
experiments (Wang et al., 2019).

We evaluate the robustness of DETONATE with respect
to different noise levels and correlation levels between het-
erogeneous inputs and the 3D shapes, which are modeled
using the different characteristic velocity curves.

An example of a blast simulation at different time steps
is presented in Figure 5.

Using this procedure, we create N ¼ 200 samples, T ¼
10 time steps for each sample, where each step is 1 ls, and
Np ¼ 5000 unstructured fragment measurement points for
each of the time steps, which is intended to simulate the
low sample size in many engineering applications.

To model the heterogeneous input data, we utilize the
following data-type-specific feature extraction procedures:
For the tabular data (i.e., b0h, 1, b1h, 1, Xh, 1,Xh, 2,Xh, 3), we
directly use the variables without feature extractions. For the
functional curve Xh, 4 tð Þ, we use a fully connected neural
network AE structure. The encoder and decoder have the
inverse structure of each other. We use one hidden layer
with 10 nodes and a bottleneck size of three. The activation
functions are chosen as rectified linear units (ReLU).

4.1 Benchmark methods and evaluation metrics

As pointed out in the literature review, to the best of our
knowledge, there is no existing method that can model the

evolution of an unstructured 3D point cloud shape profile as a
function of heterogeneous input data and the previous time
steps’ 3D shape. However, to thoroughly benchmark the per-
formance of our DETONATE framework, we adopted an exist-
ing method based on Graph-RNN (Gomes et al., 2021) to
enable the prediction of shape evolvement. Although this
method cannot consider heterogeneous inputs, it can predict
future frames in a point cloud sequence. Additionally, this
method has been shown to outperform the previous state-of-
the-art method PointRNN (Fan and Yang, 2019) as well as
naïve methods such as “Copy Last Input”, which simply uses
the shape at the previous (one) time step as a predictor.

To evaluate the performance of the proposed method, we
must compare the predicted 3D shape (in the form of a 3D
point cloud) against the ground-truth 3D shape, which is also
represented by a point cloud. Two permutation-invariant
metrics for comparing unordered point sets have been pro-
posed in the literature (Fan et al., 2017). On the one hand, the
Earth Mover’s Distance (EMD) (Rubner et al., 2000) is the
solution to a transportation problem that attempts to trans-
form one set into the other. For two equally sized subsets
S1 
 R

3, S2 
 R
3, their EMD is defined by

dEMD S1, S2ð Þ ¼ min
/:S1!S2

X
x2S1

kx� /ðxÞk2, (25)

where / is a bijection. As a loss, EMD is differentiable
almost everywhere. On the other hand, the Chamfer
(pseudo)-Distance (CD) measures the squared distance
between each point in one set to its nearest neighbor in the
other set:

dCD S1, S2ð Þ ¼
X
x2S1

min
y2S2

kx� yk22 þ
X
y2S2

min
x2S1

kx� yk22 (26)

The CD is differentiable and compared with EMD more
efficient to compute. We will use both metrics to evaluate
the performance of the proposed DETONATE framework.

4.2 Ablation studies: Impact of DETONATE loss terms

We conduct an ablation study to investigate the performance
of the DETONATE model by removing certain loss terms,
which allows us to understand the contribution of the compo-
nent to the overall prediction performance. The overall goal
of the DETONATE framework is accurate forward and back-
ward predictions. Therefore, we cannot remove the forward
and backward loss (Lfwd,Lbwd) from our model. Additionally,

Table 2. Material settings utilized for simulation study.

Material setting Heterogeneous Input Data

Setting A:
Explosive: Thermobaric Explosive (TBE)
Shell: Carbon Steel (0.45%)

b0h, 1 ¼ 520; b1h, 1 ¼ 0:28; Xh, 1 ¼ 8480 m
s ; X h, 2 ¼ 0:5 kg; Xh, 3 ¼ 1 kg

Setting B:
Explosive: Thermobaric Explosive (TBE)
Shell: Copper

b0h, 1 ¼ 520; b1h, 1 ¼ 0:28; Xh, 1 ¼ 8480 m
s ; X h, 2 ¼ 1 kg; Xh, 3 ¼ 2:5 kg

Setting C:
Explosive: Trinitrotoluene (TNT)
Shell: Carbon Steel (0.45%)

b0h, 1 ¼ 400; b1h, 1 ¼ 0:2; Xh, 1 ¼ 6940 m
s ; X h, 2 ¼ 0:5 kg; Xh, 3 ¼ 1 kg

Setting D:
Explosive: Trinitrotoluene (TNT)
Shell: Copper

b0h, 1 ¼ 400; b1h, 1 ¼ 0:2; Xh, 1 ¼ 6940 m
s ; X h, 2 ¼ 1 kg; Xh, 3 ¼ 2:5 kg
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the reconstruction loss Lrec is required to obtain a low-dimen-
sional embedding that is utilized for the forward and back-
ward loss. Therefore, we investigate the impact of removing
the consistency loss Lcon and the heterogenous input data loss
Lh: In particular, we obtain three partial DETONATE
models:

1. Partial DETONATE Model 1: Without consistency loss
Lcon and heterogenous input data loss Lh

LPartial1 ¼ Lrec þ k1 � Lfwd þ k2 � Lbwd (27)

2. Partial DETONATE Model 2: Without consistency loss
Lcon

LPartial2 ¼ Lrec þ k1 � Lfwd þ k2 � Lbwd þ k4 � Lh (28)

3. Partial DETONATE Model 3: Without heterogenous
input data loss Lh

LPartial3 ¼ Lrec þ k1 � Lfwd þ k2 � Lbwd þ k3 � Lcon (29)

Note, that the first partial DETONATE Model can be
viewed as an AE benchmark since AEs are commonly used
for one-step-ahead predictions, and the partial model 1,
combines the AE-based reconstruction Lrec with the forward
and backward predictions.

The results of the ablation study are discussed in Sections
4.3 and 5.2 for the simulation and case study, respectively.

4.3 Simulation study prediction results

In this section, we will compare the proposed DETONATE
framework against the existing GraphRNN method. In each
case, we compare the proposed method based on the CD
and the EMD, which is also known as the Wasserstein dis-
tance. Table 3 reports the average and standard deviation of
the evaluation metrics average over both one-step forecasts
and backcasts via 10-fold cross-validation. The performance
in 10-fold cross-validation is evaluated on an unseen test set
(i.e., 4D blast explosions that were not used during training).
Since the scale of the point clouds changes significantly
across time steps, we normalize the point clouds to be able
to compare prediction results across time. Furthermore,
exemplary prediction results are visualized in Figure 6.

In Figure 6, the green points show the ground truth war-
head fragments. The blue points show the predictions of the

proposed DETONATE framework. The red points show the
predictions of the GraphRNN benchmark. We can see that
the DETONATE predictions match the shape of the ground
truth. The GraphRNN on the other hand exhibits a much
higher variance. To better evaluate the prediction perform-
ance, we also visualize horizontal and vertical slices (gray
planes in figures) of the predictions in Figure 6. Then, we
project the ground truth and the predictions along the cor-
responding axis into a 2D image plane. We can see that
DETONATE predictions are tightly clustered around the
ground truth fragments. The GraphRNN prediction exhibits
a large spatial dispersion. We note that scale changes along
the temporal dimension since the warhead blast is evolving
and getting bigger in radius. To better show the difference in
prediction, we added a magnification of the horizontal slice
for time step 10. We can still see the same qualitative predic-
tion behavior as in previous time steps: the DETONATE pre-
dictions closely match the ground truth, while GraphRNN
exhibits a large prediction variance.

From Table 3, we can see that generally, the backward pre-
dictions fall short of the forward predictions, which is consist-
ent with the literature. One reason for this phenomenon is the
inherent nonlinearities of neural networks, which can pose
challenges in constraining both the forward and backward
models.

In our simulation studies, for the GraphRNN the backward
error is on average 9.3% (CD) higher than the forward error.
However, for (full) DETONATE this gap between forward
and backward predictions is much smaller (4.4%), due to the
consideration of the consistency error. The same pattern can
be observed for the standard deviation: the backcast standard
deviation of GraphRNN is 10.7% high than the forecast stand-
ard deviation, and for DETONATE the backcasts only have a
6.8% higher standard deviation. Therefore, the consistency
loss can effectively close the performance gap between fore-
casts and backcasts commonly observed when training tem-
poral deep learning models.

In all cases, the proposed DETONATE framework out-
performs the benchmark method GraphRNN, reflecting the
advantage of DETONATE on both clean and noisy systems,
with different levels of correlation between the 3D time ser-
ies and the heterogeneous input data. The performance
improvement is due to the following three reasons: (i) con-
sistent forecasting and backcasting, (ii) incorporation of

Figure 5. Example of a blast explosion over time.
(a) Simulation step 2; (b) Simulation step 5; (c) Simulation Step 10.
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heterogeneous input data, and (ii) efficient dimensionality
reduction and linearization via the Koopman framework.

An ablation study is a technique used to measure the
contribution of each component or feature of a model to its
overall predictive performance. For the DETONATE model,
this consists of removing individual components of the over-
all loss function such as the consistency and heterogeneous
input data loss. By conducting an ablation study on partial
DETONATE models, we can determine the importance of
each component in achieving high predictive accuracy. This
knowledge can then be used to optimize the model by
focusing on the most critical components and improving
their performance. From the results of the ablation study
(partial DETONATE models), we can see the effect of each
of the loss terms on the predictive performance. In particu-
lar, the performance gains due to the consistency loss and
heterogenous input data loss can be summarized in Table 4.
Since both metrics CD and EMD have different scales, we
first calculate the average percentage gain for each metric
and then average across metrics.

When adding the heterogenous input data loss, we see a
strong dependence on the simulation setting: for velocity
setting vi), which consisted of a linear increase in velocity
the addition of the heterogenous data loss leads to a small
performance improvement (1.86% for both forward and
backward predictions), since this behavior can easily be
learned from data. However, for velocity setting vii), which
consists of a varying temporal velocity according to a sine
wave, we can see a substantial performance gain (10.1% for
both forward and backward predictions). This result is
highly intuitive: if the 3D shape evolution is strongly influ-
enced by heterogeneous input sources, then integrating this
information into the model can yield significant perform-
ance improvements. Thus, when utilizing our DETONATE
framework for novel applications, we recommend analyzing

the 3D shape evolution from a systems perspective. This
entails incorporating all relevant parameters that have a sub-
stantial impact on the shape evolution into the DETONATE
model.

When adding the consistency loss (Partial DETONATE
model 3), we observe a modest performance improvement.
However, most importantly, the consistency loss is effective in
reducing the performance gap between forward and backward
predictions and the variance of the predictions. As mentioned
earlier, the consistency loss has a regularization effect which
can be interpreted as a relaxed version of strict reversibility
and stability constraints in physics-informed learning.
However, the regularization initially leads to a reduced repre-
sentation power of the neural network. This explains the
modest improvement in average prediction performance.

When all loss terms are combined into a unified frame-
work that is jointly optimized, we fully realize the benefits
of both consistency and heterogenous input data loss. In the
full DETONATE model, the heterogenous inputs can over-
come the reduced representation power of the consistency
regularization, and the consistency loss can close the per-
formance gap between forward and backward predictions
effectively.

We note that our partial DETONATE model 1 (AE
benchmark) demonstrates a performance that is comparable
to the GraphRNN benchmark. This similarity arises from
the fact that both models do not integrate any heteroge-
neous input data nor enforce forward-backward prediction
consistency. Moreover, the GraphRNN’s increased expressiv-
ity and incorporation of temporal dependence do not offer a
significant advantage over the AE model, due to the small
sample size and strong short-term dependence of the 3D
shape evolution problem.

Overall, the results of our ablation study provide valuable
insights into how the DETONATE model works and which

Figure 6. Visualization of prediction results in low noise and constant velocity setting.
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components are most essential for accurate predictions. This
knowledge can help researchers create more effective
DETONATE models for a wide range of applications.

5. Case study – additive manufacturing

To study the DETONATE framework described above, we
conducted a real-world case study using fused filament fabri-
cation (FFF) of the 3D printing process for the fabrication of
Polylactic acid (PLA) specimens. The in-situ shape modeling
in additive manufacturing is an essential building block of in-
situ functional qualification. Therefore, the modeling of the
3D shape evolvement as a function of heterogeneous process
inputs solves a key problem hindering the application of addi-
tive manufacturing to safety-critical applications. Existing
work in the field of 3D shape modeling focuses on the static
case (Huang et al., 2020, Jin et al., 2020; Wang et al., 2022):
the 3D shape is modeled after it is finished printing to assess
the printing quality and informs batch-wise compensation
strategies. However, these approaches cannot account for spa-
tial-temporal shape evolvement during the printing process.
This information is critical for downstream tasks such as real-
time feedback control and process optimization.

5.1 Experimental setup

The specimens for the experiments have been printed using
a Prusa MK3S printer developed by Prusa Research. The
measurement setup is complemented by a FLIR T360
Thermal Imaging Infrared Camera with 1.3 MegaPixel reso-
lution and a FARO Quantum ScanArm with Laser Line
Probe. A microcomputer is used to log the nozzle and print
bed temperature. An acoustic sensor is installed to collect
acoustic emission signals of the process. The experimental
setup is visualized in Figure 7(a).

To capture the influence of process parameters on the
FDM printing process, a space-filling Latin Hypercube
design with N ¼ 100 is utilized. The corresponding process
parameter ranges are reported in Table 5.

When conducting the experiments, eight experiments failed
due to improper process parameter combinations, resulting in
92 samples in total. For each of those experiments, 3D point
cloud data is available for each of the L ¼ 20 printing layers
per part, modeling the layer-wise evolution of the printed
parts. Additionally, we recorded in-situ sensing data from six
heterogeneous data sources ranging from the three data types
tabular, functional curve, and image data. An example of an
infrared image obtained at each layer of the printing process is
visualized in Figure 7 (b). The heterogeneous data sources
along with their typical dimensions are listed in Table 6.

In terms of data preprocessing, the functional curves of the
nozzle and bed temperature are fixed to a length of 1000 using

dynamic time warping. The point clouds XðtÞ
S are up- or down-

sampled to a fixed-point number of Np ¼ 60, 000 resulting in a

Table 4. Ablation study with loss terms of DETONATE model: over Partial DETONATE model 1 (No consistency loss, no heterogenous input data loss).

Addition of Loss term
Performance Gain (%)
Forward Prediction

Performance Gain (%)
Backward Prediction

Addition of Heterogenous Input Data Loss (Partial DETONATE model 2) 7.17 6.61
Addition of Consistency Loss (Partial DETONATE model 3) 5.5 5.8
Both Consistency and Heterogenous Input Data Loss (Full DETONATE model) 31.01 27.57

Figure 7. Experimental setup and example of an infrared image.

Table 5. Parameter settings for design of experiments.

Process Setting Range

Printing speed 35-100mm/s
Fan speed 0-100%
Nozzle Temperature 190-240 �C
Print Bed Temperature 40-75 �C
Extrusion width 0.35-0.55mm

Table 6. Heterogeneous input data description.

Heterogenous Data Source Data Type Data Dimension

Process settings (not monitored):
� Fan Speed: Xh, 1
� Extrusion width: X h, 2
� Printing Speed: Xh, 3

Tabular R
3

Nozzle Temperature: XðtÞ
h, 4

Functional Curve R
1000�L

Print Bed Temperature: XðtÞ
h, 5

Functional Curve R
1000�L

Infrared Image: XðtÞ
h, 6

Image 320� 240� L
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data dimension R
60, 000�3�L for each sample. We determine the

number of points based on the following procedure:

1. Determine the minimal point number Nmin
p

We utilize a point cloud version of the random sample
consensus algorithm (Schnabel et al. 2007), which aims
to recover a given shape by randomly drawing a min-
imal set Nmin

p of points. A minimal set is the smallest
number of points required to uniquely define a given
type of geometry. The resulting candidate shapes are
tested against all points in the sample to determine how
many points are well approximated.

2. Obtain a conservative number of points Np

Then we obtain a conservative number as the fixed-
point number Np ¼ 2 � nmin

p

l m
, where �d e denotes the

rounding operation to the next 10,000 increments.
3. Afterward, all the point cloud data are normalized to

improve computational efficiency and make it invariant
to scaling.

The multistage process (layer-by-layer) of additive manufac-
turing is dependent on process parameters and in-situ meas-
urements, which provide insight into the physical process of
3D printing. The process parameters, such as nozzle tempera-
ture and feed rate, determine the melting, solidification, and
cooling of each layer. Therefore, in-situ measurements of
these parameters are crucial for understanding the evolution
of the 3D shape. The G-code only reflects the desired shape
and not the actual process conditions. Previous research has
shown that actual process measurements can differ signifi-
cantly from the G-code settings (Anderegg et al., 2019). As
such, relying solely on G-code cannot accurately predict the
final shape of the printed part. Moreover, the G-code is static
for each part and does not consider manufacturing variability.
Therefore, it cannot be used for in-situ compensation and
control of the 3D printing process.

To model the heterogenous input data, we use the follow-
ing data-type-specific feature extractors: for the tabular data,
we do not employ feature extractors and directly utilize Xh, 1,

Xh, 2 and Xh, 3: For the two functional curves (i.e., XðtÞ
h, 4,

XðtÞ
h, 5), we utilize the deep convolutional neural network archi-

tecture proposed by Yang et al. (2015) in an AE setting. As

the feature extractor for the infrared images XðtÞ
h, 6, we utilize

a convolutional AE structure proposed by Valdarrama (2021).
The DOE (design of experiments) produced samples with

varying quality, even though the process limits were chosen
within reasonable engineering limits.

5.2 Case study prediction results

We perform one-step-ahead predictions and utilize 10-fold
Cross-validation to calculate evaluation metrics. The qualitative
prediction results for our method compared to both bench-
marks for different layer heights and two different samples
with varying quality are visualized in Figure 8. In Figure 8, the
green points show the ground-truth printed shape acquired via
the FARO laser scanner. The blue points show the predictions
of the proposed DETONATE framework. The red points show
the predictions of the GraphRNN benchmark. In the first row,
we visualize Sample 1, which very closely matched the optimal
CAD design of the printed part. We can see that the
DETONATE predictions match the shape of the ground truth
for different layer heights (i.e., 10 and 20). The GraphRNN on
the other hand exhibits a much higher variance. Also, note that
the ground-truth consists of an inner and outer wall boundary
and the space in between them consists of solid material form-
ing the wall thickness. To better show this structure of the 3D
point clouds, we have added additional illustrations in the 2D
projection plot of Sample 2, Layer 10 (bottom right quadrant).

However, the predictions of DETONATE are especially
useful for in-process quality improvement methodologies

Figure 8. Visualization of prediction results compared to the ground-truth 3D shape.
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(Shi, 2022) and related downstream tasks (e.g., compensation
and control), if we can predict accurate shapes for a wide
range of manufacturing quality levels. Therefore, in the
second row, we visualize Sample 2, which exhibited a large
shape distortion (i.e., bad printing quality). We can see that
even for large distortions, the DETONATE predictions closely
match the ground-truth shape profile. The GraphRNN on the
other hand exhibits a large variance. Even though subsequent
layer shapes are determined by previous layers’ shapes, the
benchmark method fails to capture the accurate 3D shape
profiles of the printed samples for both small (Sample 1) and
large (Sample 2) shape distortion.

To measure prediction quality, we utilize the CD and the
EMD, to measure the point cloud-to-point cloud distance
between ground-truth 3D shapes and predicted 3D shapes.
The predicted results calculated using 10-fold cross-validation
are summarized in Table 7. The total sample size was 92 parts.
Therefore, the results from cross-validation are the average of
the test set (nine parts) for 10 non-overlapping folds (an aver-
age of 90 parts in total). The point clouds are normalized
making them invariant of the changing scaling across time.

For all evaluation metrics, the proposed DETONATE
framework outperforms the Graph-RNN baseline. It is worth
noting that the modeling of the consistent forward and
backward dynamic significantly improves the prediction
accuracy compared to the Graph-RNN. When modeling
only the forward dynamics in the presence of small sample
sizes, the 3D shape predictions of the Graph-RNN behave
more like a global sample average prediction rather than
modeling the exact shape of each sample. DETONATE dem-
onstrates a better preservation of the spatial structure over
time. This is a direct effect of the consistent forward and
backward dynamics as well as its ability to consider hetero-
geneous data inputs.

Through an ablation study on partial DETONATE models,
we can gain insights into the impact of each model component
on the predictive performance. In particular, we can summar-
ize the performance gains resulting from the consistency loss
and heterogeneous input data loss as show in Table 8.

By comparing the performance of different partial
DETONATE models, we can observe that the inclusion of
heterogeneous input data in partial DETONATE model 2
leads to a significant performance gain. The 3D shape evolu-
tion of the next layer is directly influenced by the current

process conditions and bonding with the previous layers,
and the heterogeneous input data is strongly correlated with
this evolution. Although the addition of the consistency loss
is also beneficial, its impact is less pronounced compared to
the heterogeneous input data.

However, the combination of both loss terms in the full
DETONATE model results in a significant advantage over
partial DETONATE model 1, which only includes the for-
ward, backward, and reconstruction losses. This highlights the
importance of incorporating both heterogeneous input data
and consistency loss for achieving optimal performance.

In particular, the full potential of the consistency loss is
more apparent in the full DETONATE model, as it enables
bi-directional learning and leads to remarkable performance
gains. This underscores the importance of considering both
the heterogenous input data and temporal consistency in the
DETONATE model design for achieving the best predictive
accuracy.

6. Conclusion

In this article, we proposed a novel framework for the mod-
eling of nonlinear dynamically evolving 3D shape profiles.
Our framework is based on Koopman operator theory as we
approximate the nonlinear dynamical system via linear
evolvement matrices. It allows the end-to-end learning of
dynamic, unstructured 3D point clouds and accurate predic-
tions for future as well as past temporal observations. Key to
our approach is the integration of heterogeneous input data
in a holistic framework and the consideration of forward
and backward dynamics while requiring temporal consist-
ency. We evaluate our method on challenging datasets and
compare our approach with a state-of-the-art point cloud
prediction network.

A limitation of the current framework is the limited ability
to capture complex geometric and boundary conditions. Our
model does not have explicit physics priors; it learns approxi-
mate physics knowledge directly from data. This generally
prevents it from learning exact physical laws. Furthermore, if
the 3D profiles are extremely discontinuous, the model may
fail to capture those dynamics. In this case, multiple models
for different temporal segments may be necessary. Existing
works on physics-informed Koopman models could serve as

Table 8. Ablation study with loss terms of DETONATE model: over Partial DETONATE model 1 (No consistency loss, no heterogenous input data loss).

Addition of Loss term
Performance Gain (%)
Forward Prediction

Performance Gain (%)
Backward Prediction

Addition of Heterogenous Input Data Loss (Partial DETONATE model 2) 29.4 35.7
Addition of Consistency Loss (Partial DETONATE model 3) 14.8 22.2
Both Consistency and Heterogenous Input Data Loss (Full DETONATE model) 36.7 47.2

Table 7. Case study prediction results (Standard deviation in brackets (), best method in bold).

Method/Metric Forward CD Forward EMD Backward CD Backward CD

Partial DETONATE 1 (no Lcon , no LhÞ 3867.41 (851.62) 2.817 (0.57) 3923.39 (788.99) 2.979 (0.652)
Partial DETONATE 2 (no Lcon , with LhÞ 2654.15 (498.98) 1.811 (0.36) 2842.89 (566.02) 1.913 (0.375)
Partial DETONATE 3 (no Lh , with Lcon) 3285.52 (496.77) 2.219 (0.35) 3346.65 (506.68) 2.281 (0.386)
DETONATE (ours) 2394.25 (483.40) 1.468 (0.18) 2539.04 (498.16) 1.590 (0.19)
Graph-RNN (Benchmark) 3798.25 (694.32) 2.235 (0.32) 3945.02 (744.03) 2.813 (0.41)
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a starting point to extend DETONATE to incorporate bound-
ary and geometric constraints.

We believe our work can be extended in many ways, from
a methodology and application perspective. Specifically, our
work has the potential to be extended to several areas: (i) pro-
cess monitoring for 3D shape quality, (ii) root-cause analysis,
(iii) Uncertainty quantification of the DETONATE model,
(iv) in-process control and compensation of 3D profiles, (v)
manufacturing process design for variation reduction, and
(vi) multi-step ahead prediction that consider both short- and
long-term dependencies.

Acknowledgments

We would like to express our gratitude to the three anonymous refer-
ees whose insightful comments and suggestions have significantly
enhanced the quality of our manuscript.

Funding

We acknowledge the generous support provided by the National
Science Foundation (NSF) under Award Number 2019378.

Notes on contributors

Michael Biehler received his BS and MS degrees in industrial engineer-
ing with a major in production engineering from the Karlsruhe
Institute of Technology (KIT) in 2017 and 2020, respectively. He is
currently pursuing a PhD degree with the H. Milton Stewart School of
Industrial and Systems Engineering, Georgia Institute of Technology.
His research rests at the interface between 3D machine learning and
cyber-physical security, where he aims to develop methods for moni-
toring, prognostics, and control.

Daniel Lin is a junior at Walton High School in Marietta, GA. He is
interested in applying machine learning to a wide range of applications
such as advanced manufacturing and biology and plans to pursue a
career in science or engineering in the future.

Dr. Jianjun Shi received the BS and MS degrees in automation from
the Beijing Institute of Technology in 1984 and 1987, respectively, and
the PhD degree in mechanical engineering from the University of
Michigan in 1992. Currently, he is the Carolyn J. Stewart Chair and a
Professor at the H. Milton Stewart School of Industrial and Systems
Engineering, Georgia Institute of Technology. His research interests
include the fusion of advanced statistical and domain knowledge to
develop methodologies for modeling, monitoring, diagnosis, and con-
trol of complex manufacturing systems. He is a fellow of four profes-
sional societies, including ASME, IISE, INFORMS, and SME, an
Elected Member of the International Statistics Institute (ISI), a Life
Member of ASA, an Academician of the International Academy for
Quality (IAQ), and a member of the National Academy of Engineers
(NAE).

References

Abraham, I. and Murphey, T.D. (2019) Active learning of dynamics for
data-driven control using Koopman operators. IEEE Transactions on
Robotics, 35(5), 1071–1083.

Anderegg, D.A., Bryant, H.A., Ruffin, D.C., Skrip Jr, S.M. Fallon, J.J.,
Gilmer, E.L. and Bortner, M.J. (2019) In-situ monitoring of polymer
flow temperature and pressure in extrusion based additive manufac-
turing. Additive Manufacturing, 26, 76–83.

Arbabi, H. and Mezic, I. (2017) Ergodic theory, dynamic mode decompos-
ition, and computation of spectral properties of the Koopman operator.
SIAM Journal on Applied Dynamical Systems, 16(4), 2096–2126.

Azencot, O., Erichson, N.B., Lin, V. and Mahoney, M. (2020) Forecasting
sequential data using consistent Koopman autoencoders, in
International Conference on Machine Learning, pp. 475–485.

Azencot, O., Yin, W. and Bertozzi, A. (2019) Consistent dynamic mode
decomposition. SIAM Journal on Applied Dynamical Systems, 18(3),
1565–1585.

Bevanda, P., Sosnowski, S. and Hirche, S. (2021) Koopman operator
dynamical models: Learning, analysis and control. Annual Reviews
in Control, 52, 197–212.

Biehler, M., Yan, H. and Shi, J. (2022) ANTLER: Bayesian nonlinear
tensor learning and modeler for unstructured, varying-size point
cloud data. IEEE Transactions on Automation Science and
Engineering, 1–14

Bot, R.I. and Csetnek, E.R. (2016) Second order forward-backward
dynamical systems for monotone inclusion problems. SIAM Journal
on Control and Optimization, 54(3), 1423–1443.

Brunton, S.L., Brunton, B.W., Proctor, J.L. and Kutz, J.N. (2016)
Koopman invariant subspaces and finite linear representations of
nonlinear dynamical systems for control. PloS One, 11(2), 1–19.

Brunton, S.L., Budi�si�c, M., Kaiser, E. and Kutz, J.N. (2021) Modern
Koopman theory for dynamical systems. arXiv preprint arXiv:
2102.12086, pp.1–110.

Chen, R., Yang, D. and Zhang, C.-H. (2022) Factor models for high-
dimensional tensor time series. Journal of the American Statistical
Association, 117(537), 94–116.

Dogra, A.S. and Redman, W. (2020) Optimizing neural networks via
Koopman operator theory. Advances in Neural Information
Processing Systems, 33, 2087–2097.

Dunford, N. and Schwartz, J.T. (1971) Linear Operators Part I, Volume
VII of Pure and Applied Mathematics, Interscience Publishers,
Geneva, Switzerland.

Durbin, J. and Koopman, S.J. (2012) Time Series Analysis by State
Space Methods, Oxford University Press (OUP), Oxford, UK.

Eisner, T., Farkas, B., Haase, M. and Nagel, R. (2015) Operator
Theoretic Aspects of Ergodic Theory, Springer, Cham.

Elman, J.L. (1990) Finding structure in time. Cognitive Science, 14(2),
179–211.

Fan, H., Su H. and Guibas, L.J. (2017) A point set generation network
for 3d object reconstruction from a single image, in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
IEEE Press, Piscataway, NJ, pp. 605–613.

Fan, H. and Yang, Y. (2019) PointRNN: Point recurrent neural net-
work for moving point cloud processing. arXiv preprint arXiv:
1910.08287.

Gahrooei, M.R., Yan, H., Paynabar, K. and Shi, J. (2021) Multiple ten-
sor-on-tensor regression: An approach for modeling processes with
heterogeneous sources of data. Technometrics, 63(2), 147–159.

Gardini, L., Hommes, C., Tramontana, F. and De Vilder, R. (2009)
Forward and backward dynamics in implicitly defined overlapping
generations models. Journal of Economic Behavior & Organization,
71(2), 110–129.

Girgis, A.M., Seo, H., Park, J., Bennis, M. and Choi, J. (2022)
Predictive closed-loop remote control over wireless two-way split
Koopman autoencoder. IEEE Internet of Things Journal, 9(23),
23285–23301.

Gomes, P., Rossi, S. and Toni, L. (2021) Spatio-temporal graph-RNN
for point cloud prediction, in 2021 IEEE International Conference on
Image Processing (ICIP), IEEE Press, Piscataway, NJ, pp. 3428–3432.

Guo, Y., Shi, H., Kumar, A., Grauman, K., Rosing, T. and Feris, R.
(2019) Spottune: transfer learning through adaptive fine-tuning, in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, IEEE Press, Piscataway, NJ, pp. 4805–4814.

Gurney, R.W. (1943) The initial velocities of fragments from bombs,
shell and grenades, Army Ballistic Research Lab (BRL), Aberdeen
Proving Ground, Maryland, pp. 1–10

Han, Y., Hao, W. and Vaidya, U. (2020) Deep learning of Koopman
representation for control, in 2020 59th IEEE Conference on Decision
and Control (CDC), IEEE Press, Piscataway, NJ, pp. 1890–1895.

Haseli, M. and Cort�es, J. (2019) Approximating the Koopman operator
using noisy data: Noise-resilient extended dynamic mode

IISE TRANSACTIONS 557



decomposition, in 2019 American Control Conference (ACC), IEEE
Press, Piscataway, NJ, pp. 5499–5504.

Haseli, M. and Cort�es, J. (2022) Temporal forward–backward consistency,
not residual error, measures the prediction accuracy of extended dynamic
mode decomposition. IEEE Control Systems Letters, 7, 649–654.

He, L. and Zhang, L. (2013) Dynamic priority rule-based forward-backward
heuristic algorithm for resource levelling problem in construction project.
Journal of the Operational Research Society, 64(8), 1106–1117.

Hoffman, J., Tzeng, E., Park,T., Zhu, J.Y., Isola, P., Saenko, K., Efros, A.
and Darrell, T. (2018) Cycada: Cycle-consistent adversarial domain
adaptation, in International Conference on Machine Learning,
Proceedings of Machine Learning Research (PMLR), Stockholm,
Sweden, pp. 1989–1998.

Huang, Q., Wang, F. and Guibas, L. (2014) Functional map networks
for analyzing and exploring large shape collections. ACM
Transactions on Graphics (ToG), 33(4), 1–11.

Huang, Q., Wang, Y., Lyu, M. and Lin, W. (2020) Shape deviation gen-
erator—a convolution framework for learning and predicting 3-D
printing shape accuracy. IEEE Transactions on Automation Science
and Engineering, 17(3), 1486–1500.

Jin, Y., Qin, S.J. and Huang, Q. (2020) Modeling inter-layer interac-
tions for out-of-plane shape deviation reduction in additive manu-
facturing. IISE Transactions, 52(7), 721–731.

Jones, D.R. (2001) A taxonomy of global optimization methods based on
response surfaces. Journal of Global Optimization, 21(4), 345–383.

Koopman, B.O. (1931) Hamiltonian systems and transformation in
Hilbert space. Proceedings of the National Academy of Sciences,
17(5), 315–318.

Krim, H. and Yezzi, A.J. (2006) Statistics and Analysis of Shapes,
Birkh€auser, Boston, USA.

Landrieu, L. and Simonovsky, M. (2018) Large-scale point cloud
semantic segmentation with superpoint graphs, in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, IEEE
Press, Piscataway, NJ, pp. 4558–4567.

Lange, H., Brunton, S.L. and Kutz, J.N. (2021) From Fourier to
Koopman: Spectral methods for long-term time series prediction.
Journal of Machine Learning Research, 22(41), 1–38.

Le Clainche, S. and Vega, J.M. (2017) Higher order dynamic mode decom-
position. SIAM Journal on Applied Dynamical Systems, 16(2), 882–925.

Lusch, B., Kutz, J.N. and Brunton, S.L. (2018) Deep learning for
universal linear embeddings of nonlinear dynamics. Nature
Communications, 9(1), 1–10.

Moahmed, T.A., Gayar, N.E. and Atiya, A.F. (2014) Forward and back-
ward forecasting ensembles for the estimation of time series missing
data, in IAPR Workshop on Artificial Neural Networks in Pattern
Recognition, Springer, Montreal, Canada, pp. 93–104.

Mulekar, O.S., Bevilacqua, R., Jerome, E.L. and Hatch-Aguilar, T.J.
(2021) Transfer function to predict warhead fragmentation in-flight
behavior from static data. AIAA Journal, 59(11), 4777–4793.

Nayak, I., Teixeira, F.L. and Kumar, M. (2021) Koopman autoencoder
architecture for current density modeling in kinetic plasma simula-
tions, in 2021 International Applied Computational Electromagnetics
Society Symposium (ACES), IEEE Press, Piscataway, NJ, pp. 1–3.

Otto, S.E. and Rowley, C.W. (2019) Linearly recurrent autoencoder
networks for learning dynamics. SIAM Journal on Applied
Dynamical Systems, 18(1), 558–593.

Pan, S., Arnold-Medabalimi, N. and Duraisamy, K. (2021) Sparsity-pro-
moting algorithms for the discovery of informative Koopman-invari-
ant subspaces. Journal of Fluid Mechanics, 917, 1–49.

Qi, C.R., Su, H., Mo, K. and Guibas, L.J. (2017) Pointnet: Deep learn-
ing on point sets for 3d classification and segmentation, in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, IEEE Press, Piscataway, NJ, pp. 652–660.

Rubner, Y., Tomasi, C. and Guibas, L.J. (2000) The earth mover’s dis-
tance as a metric for image retrieval. International Journal of
Computer Vision, 40(2), 99–121.

Salova, A., Emenheiser, J., Rupe, A., Crutchfield, J.P. and D’Souza,
R.M. (2019) Koopman operator and its approximations for systems
with symmetries. Chaos: An Interdisciplinary Journal of Nonlinear
Science, 29(9), 1–16.

Schmid, P.J. (2010) Dynamic mode decomposition of numerical and
experimental data. Journal of Fluid Mechanics, 656, 5–28.

Schnabel, R., Wahl, R. and Klein, R. (2007) Efficient RANSAC for point-
cloud shape detection. Computer Graphics Forum, 26(2), 214–226.

Shi, J. (2022) In-process quality improvement: Concepts, methodolo-
gies, and applications. IISE Transactions, 55(1), 2–21

Shi, Q., Yin, J., Cai, J., Cichocki, A., Yokota, T., Chen, L., Yuan, M.
and Zeng, J. (2020) Block Hankel tensor ARIMA for multiple short
time series forecasting. Proceedings of the AAAI Conference on
Artificial Intelligence, 34(4), pp. 5758–5766.

Singh, R.K. and Manhas, J.S.(1993) Composition Operators on Function
Spaces, Elsevier, Amsterdam, The Netherlands.

Snoek, J., Larochelle, H. and Adams, R.P. (2012) Practical Bayesian
optimization of machine learning algorithms. Advances in Neural
Information Processing Systems, 25, 1–9.

Surana, A. (2020) Koopman operator framework for time series model-
ing and analysis. Journal of Nonlinear Science, 30(5), 1973–2006.

Takeishi, N., Kawahara, Y. and Yairi, T. (2017) Learning Koopman
invariant subspaces for dynamic mode decomposition. Advances in
Neural Information Processing Systems, 30, 1–11.

Tu, J.H., Rowley, C.W., Kutz, J.N. and Shang, J.K. (2014) Spectral ana-
lysis of fluid flows using sub-Nyquist-rate PIV data. Experiments in
Fluids, 55(9), 1–13.

Valdarrama, S. (2021) Convolutional autoencoder for image denoising from
https://keras.io/examples/vision/autoencoder/, (accessed 1 January 2023).

Wang, D., Zheng, Y., Lian, H. and Li, G. (2021) High-dimensional vec-
tor autoregressive time series modeling via tensor decomposition.
Journal of the American Statistical Association, 117(539), 1338–1356.

Wang, H., Bai, C., Feng, C., Xue, K. and Zhu, X. (2019) An efficient
CDEM-based method to calculate full-scale fragment field of war-
head. International Journal of Impact Engineering, 133, 1–16.

Wang, Y., Ruiz, C. and Huang, Q. (2022) Learning and predicting shape
deviations of smooth and non-smooth 3D geometries through math-
ematical decomposition of additive manufacturing. IEEE Transactions
on Automation Science and Engineering, Early Access, 1–12.

Williams, M.O., Kevrekidis, I.G. and Rowley, C.W. (2015) A data–driven
approximation of the Koopman operator: Extending dynamic mode
decomposition. Journal of Nonlinear Science, 25(6), 1307–1346.

Yan, S., Yang, Z., Li, H., Guan, L., Kang, H., Hua, G. and Huang, Q.
(2022) Implicit autoencoder for point cloud self-supervised repre-
sentation learning. arXiv preprint arXiv:2201.00785.

Yang, J., Nguyen, M.N., San, P.P., Li, X.L. and Krishnaswamy, S.
(2015) Deep convolutional neural networks on multichannel time
series for human activity recognition, in Twenty-fourth International
Joint Conference on Artificial Intelligence, AAAI Press, Buenos Aires,
Argentina, pp. 3995–4001.

Yang, Y., Feng, C., Shen, Y. and Tian, D. (2018) Foldingnet: Point
cloud auto-encoder via deep grid deformation, in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, IEEE
Press, Piscataway, NJ, pp. 206–215.

Zhao, Y., Ye, L., Li, Z., Song, X., Lang, Y. Su, J. (2016) A novel bidirec-
tional mechanism based on time series model for wind power fore-
casting. Applied Energy, 177, 793–803.

Zheng, Y. and Cheng, G. (2021) Finite-time analysis of vector autoregres-
sive models under linear restrictions. Biometrika, 108(2), 469–489.

Zhou, Y. and Tuzel, O. (2018) Voxelnet: End-to-end learning for point
cloud based 3d object detection, in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, IEEE Press,
Piscataway, NJ, pp.4490–4499.

Zhu, J.-Y., Park, T., Isola, P. and Efros, A.A. (2017) Unpaired image-
to-image translation using cycle-consistent adversarial networks, in
Proceedings of the IEEE International Conference on Computer
Vision, IEEE Press, Piscataway, NJ, pp. 2223–2232.

558 M. BIEHLER ET AL.

https://keras.io/examples/vision/autoencoder/

	Abstract
	Introduction
	Literature review
	Tensor-based methods for 3D time series modeling
	Deep-learning-based methods for 3D point cloud time series modeling
	Forward and backward temporal modeling
	Data-driven Koopman frameworks

	DETONATE methodology
	Problem setup using Koopman operator theory
	Latent encoding via 3D autoencoders
	Backward dynamics
	Consistent dynamics
	Heterogeneous input data sources
	Unified DETONATE framework
	Tuning parameter selection

	Simulation studies – 4D warhead detonations
	Benchmark methods and evaluation metrics
	Ablation studies: Impact of DETONATE loss terms
	Simulation study prediction results

	Case study – additive manufacturing
	Experimental setup
	Case study prediction results

	Conclusion
	Acknowledgments
	Funding
	References


