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In recent years, diversified measurements reflect the system dynamics from a more comprehensive 

perspective in system modeling and analysis, such as scalars, waveform signals, images, and 

structured point clouds. To handle such multimodal structured high-dimensional (SHD) data, 

combining a large amount of data from multiple sites is necessary (i) to reduce the inherent population 

bias from a single site and (ii) to increase the model accuracy. However, impeded by data 

management policies and storage costs, data could not be easily shared or directly exchanged among 

different sites. Instead of simplifying or facilitating the data query process, we propose a federated 

multiple tensor-on-tensor regression (FedMTOT) framework to train the individual system model 

locally using (i) its own data and (ii) data features (not data itself) from other sites. Specifically, 

federated computation is executed based on alternating direction method of multipliers (ADMM) to 

satisfy data-sharing requirements, while the individual model at each site can still benefit from feature 

knowledge from other sites to improve its own model accuracy. Finally, two simulations and two case 

studies validate the superiority of the proposed FedMTOT framework. 

Keywords: Federated Learning; Structured High-dimensional Data; Multimodal Data Fusion; Data-

Sharing Compliance 
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1 Introduction 

Complex systems generate multimodal data in various forms, such as scalars, waveform 

signals, images, and video signals. Such datasets are often collected by advanced sensing 

technologies, such as high sampling frequency sensors and high-resolution cameras that 

produce structured high-dimensional (SHD) data containing abundant system information. 

Data collected by one type of instrument is often referred as a data mode and the full dataset 

is called multimodal dataset (Gaw et al. 2022). For example, 𝑁𝑂𝑥 Storage Catalyst (NSC) is 

an emission control system, in which multiple sensors are installed to monitor both the 

combustion and the exhaust gas after the treatment process. By predicting the normalized 

relative fuel ratio of the NSC system from multichannel operation signals, engineers can test 

whether the system satisfies the environmental requirements (Gahrooei et al. 2021). As 

another example, electronic health records (EHR) are comprehensive repositories of diverse 

healthcare data sourced from various healthcare providers and medical devices. They 

encompass a wide range of information such as patients' diagnoses, laboratory test results, 

and medication usage. EHRs play a crucial role in supporting biomedical and clinical 

research, providing valuable data for analysis and investigation (Liu et al. 2022). 

Many statistical approaches have been proposed to model such multimodal SHD data and 

benefited numerous applications, including manufacturing processes (Shi 2023, Zhang et al. 

2023), structural health monitoring (Gordan et al. 2022), and neuroimaging data analysis 

(Zhou et al. 2013, Zhao et al. 2022). Particularly, SHD regression approaches are designed 

for developing predictive models that estimate an output given a set of inputs. For example, 

traditional regression methods, including penalized ordinary least square regression, have 

been applied to SHD data by considering each observation within an SHD data (e.g., each 

pixel within an image) as a covariate. However, these methods ignore the dependence among 

covariates. Consequently, they may result in severe overfitting and inaccurate predictions 

Acc
ep

te
d 

M
an

us
cr

ipt



4 

 

(Gahrooei et al. 2021). Principal component regression and partial least square regression 

methods have been used to reduce the data dimension, but they fail to fully exploit the spatial 

or temporal structure within the SHD data. In addition, functional regression models gained 

popularity in modeling waveform signals due to their capacity in capturing nonlinear 

correlation structure and built-in data reduction functionality. However, they require domain 

knowledge to create basis functions and are often very difficult and expensive to be extended 

to SHD data beyond waveform signals (Luo et al. 2017, Gahrooei et al. 2021). 

Recently, multi-dimensional analysis (a.k.a., tensor analysis) has been widely studied and 

showed promising results in many applications, such as process monitoring and modeling 

(Yan et al. 2015), neurological disorders (Zhou et al. 2013), network analysis (Orús 2019), 

and overlay error estimation in semiconductor industry (Zhong et al. 2023). Particularly, 

tensor analysis has been used in developing SHD regression modeling frameworks and 

involves multiple variations depending on the forms of inputs and output. For example, Zhao 

et al. (2012) and Fang et al. (2019) estimated a scalar response given a tensor input. Yan et al. 

(2019) predicted a tensor response from a set of scalar inputs. Furthermore, Lock (2018) used 

tensor analysis to propose a tensor-on-tensor regression that efficiently predicted a tensor 

output using a tensor input. However, this method only involves a single input and requires 

that the input and output hold the same rank, which is not appropriate in situations where 

multimodal input data is available. To overcome these limitations, Gahrooei et al. (2021) 

developed a multiple tensor-on-tensor (MTOT) regression, which provides a unified 

regression framework that estimates a scalar, curve, image, or structured point cloud output 

based on a multimodal set of SHD input variables (see Figure 1). The popularity of tensors 

for modeling multimodal SHD datasets relates to their capability of representing various data 

forms without breaking the data structure into vectors and preserving their inner correlation 

structure (Gahrooei et al. 2021, Lee et al. 2023). 
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Multimodal SHD datasets are often collected in a decentralized way. This involves various 

individual sites independently generating and storing similar datasets, which are then used 

locally to create local models, a process illustrated in Figure 1. However, this approach of in-

silo data modelling, where the modelling is done in isolation without incorporating or 

considering external data, limits the generalizability of the models. While one approach to 

address this limitation is that all sites share their datasets with a global server to create a 

global model as represented in Figure 2 (left), a few challenges make this approach 

unfavourable. First, data owners may not be willing to share their data due to data 

management concerns. Second, the demand to upload and store a vast amount of data to the 

global server incurs high costs. Even if the data transmission is feasible, training a model 

with moderately large, pooled dataset usually results in significant storage costs. To address 

these challenges and driven by the growing demand for scalability, resilience, and data-

sharing compliance, federated data analysis (FeDA) frameworks have been proposed lately. 

FeDA became a promising modeling paradigm for collaboratively extracting knowledge 

and conducting analysis without direct data sharing (Kontar et al. 2021). Consequently, local 

datasets are not required to be transferred to a global server; and the global server has no 

burden to store and to process immense amounts of data. In light of this novel paradigm, 

various techniques including FedAvg (Brendan McMahan et al. 2016), FedProx (Li et al. 

2018), FedDyn (Acar et al. 2021), FedSplit (Pathak et al. 2020), and FedLin (Yue et al. 2022) 

are developed. Specifically, Federated Averaging (FedAvg) is a practical method for 

federated learning based on iterative model averaging, in which a global server creates a 

global model by aggregating gradients of locally trained models in an iterative approach 

(Brendan McMahan et al. 2016). FedAvg degrades significantly when data across individual 

sites are heterogenous (McMahan et al. 2017). FedProx adds a quadratic regularizer term to 

the local objective, which enables to train the global model with heterogenous data (Li et al. 
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2018). Although FedProx can partially alleviate heterogeneity, it is inconsistent with local 

and global stationary solutions (Kontar et al. 2021). Similarly, FedDyn designed a dynamic 

regularization to address heterogeneity and to align gradients under partial participation (Acar 

et al. 2021). FedSplit applies Peaceman-Rachford splitting to formulate a constrained 

optimization problem (Pathak et al. 2020). Recently, Yue et al. (2022) proposed a federated 

treatment for linear regression by adopting a hierarchical modeling approach. While these 

methods have demonstrated the benefits of FeDA, they are not designed for tensor data. 

Recently, federated tensor decomposition techniques have been proposed to handle tensor 

data via passing features extracted from tenor decomposition. Feng et al. (2020) developed a 

privacy-preserving tensor decomposition method, which leverages properties of 

homomorphic encryption. Wang et al. (2022) proposed a personalized federated learning 

framework named TDPFed, in which tensorized local model and tensorized linear (or 

convolutional) layers are used to reduce the communication cost. However, these methods 

are for unsupervised learning and are not designed for multimodal SHD data. 

The goal of this article is to model multimodal SHD data distributed across multiple sites 

without directly sharing data with a centralized entity by proposing a federated multiple 

tensor-on-tensor regression (FedMTOT) framework. As shown in Figure 2 (right), a MTOT 

model is established for each individual site 𝑚 based on 𝐾 sources of multimodal SHD inputs 

and the corresponding output. Here, all the data are assumed to have the low-rank structure. 

To reduce the modeling costs and follow the data sharing constraints, we adopt Tucker 

decomposition to extract latent features of model parameters (i.e., core tensor, input bases, 

and output bases) that are transmitted to the aggregator instead of the raw data. Under the 

decentralized setting, input bases will be first learned from input tensors via the alternating 

direction method of multipliers (ADMM). Then, given input bases, the remaining features for 

regression coefficients are estimated iteratively in a federated fashion. Under the proposed 
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federated framework as shown in Figure 1 (right), we can construct personalized models at 

individual sites and an aggregated model by the aggregator. 

The rest of the paper is organized as follows: Section 2 introduces the notations and tensor 

algebra. Section 3 first discusses the problem background and MTOT models trained by 

pooled raw data. To handle challenges from distributed data, we propose the federated 

multiple tensor-on-tensor regression framework and discuss the hyperparameter settings. In 

Section 4, two sets of simulations are conducted to explore the robustness and applicability of 

the proposed framework. The first simulation study considers a combination of a functional 

curve and an image, while the second one considers a combination of two images with 

different sizes. In each simulation study, we compare federated models, i.e., aggregated 

model and personalized models, with non-federated global model and local models in terms 

of standardized prediction mean square errors (SPME) for response prediction or the inverse 

of the signal to noise ratio (ISNR) for image denoising. Two case studies are considered in 

Section 5. One case study is to predict the normalized relative fuel ratio from operating 

signals, and the other is to test the denoising performance of the federated approach. Section 

6 concludes the paper. 

2 Notations and Tensor Algebra 

In this section, we introduce the notations and basic tensor algebra used in this paper. 

Throughout the paper, a letter denotes a scalar, e.g., 𝑟 and 𝑅; a boldface letter denotes a 

vector (e.g., 𝐫) or a matrix (e.g., 𝐑); a calligraphic letter denotes a tensor, e.g., ℛ . For 

example, an order-𝑛 tensor is denoted by ℛ ∈ ℝ𝐼1×…×𝐼𝑛, where 𝐼𝑖 is the dimension of the 𝑖-th 

mode of tensor ℛ. The mode-𝑖 unfolding (matricization) of tensor ℛ is 𝐑(𝑖) ∈ ℝ𝐼𝑖×𝐼−𝑖, whose 

columns are the mode-𝑖 fibers of the corresponding tensor ℛ, and 𝐼−𝑖 = 𝐼1 × 𝐼2 × … × 𝐼𝑖−1 ×

𝐼𝑖+1 × … × 𝐼𝑛. A more general matricization of tensor ℛ ∈ ℝ𝑃1×…×𝑃𝐿×𝑄1×…×𝑄𝐷 can be defined 
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as follows: 𝐑 ∈ ℝ𝑃×𝑄  (𝑃 = ∏ 𝑃𝑙
𝐿
𝑙=1 ; 𝑄 = ∏ 𝑄𝑑

𝐷
𝑑=1 )  with 𝐑(𝑝, 𝑞) = ℛ𝑝1…𝑝𝐿𝑞1…𝑞𝐷

, where 

𝑝 = 1 + ∑ ∑ 𝑃𝑖(𝑝𝑖 − 1)𝑗
𝑖=1

𝑙
𝑗=1 , and 𝑞 = 1 + ∑ ∑ 𝑄𝑖(𝑞𝑖 − 1)𝑗

𝑖=1
𝑑
𝑗=1 . The tensor concatenation 

along the first (sample) mode is denoted by ⊕. For example, the concatenation of tensor 

ℛ1 ∈ ℝ𝑀×𝑃1×…×𝑃𝐿  and tensor ℛ2 ∈ ℝ𝑁×𝑃1×…×𝑃𝐿  is ℛ𝑐𝑜𝑛𝑐𝑎𝑡𝑒 ∈ ℝ(𝑀+𝑁)×𝑃1×…×𝑃𝐿 , i.e., 

ℛ𝑐𝑜𝑛𝑐𝑎𝑡𝑒 = ℛ1 ⊕ ℛ2. 

The Frobenius norm of a tensor ℛ equals to the Frobenius norm of any unfolded format of 

ℛ, i.e., ‖ℛ‖𝐹
2 = ‖𝐑(𝑖)‖

𝐹

2
 with 𝑖 = 1, … , 𝑛. The mode-𝑖 product of a tensor ℛ1  by a matrix 

𝐑2 ∈ ℝ𝑀×𝐼𝑖  is defined as ℛ1 ×𝑖 𝐑2 ∈ ℝ𝐼1×…×𝐼𝑖−1×𝑀×𝐼𝑖+1×…×𝐼𝑛 . The contraction product 

(Einstein product) of two tensors ℛ1 ∈ ℝ𝑃1×…×𝑃𝐿 and ℛ2 ∈ ℝ𝑃1×…×𝑃𝐿×𝑄1×…×𝑄𝐷 is denoted as 

ℛ1 ∗ ℛ2 ∈ ℝ𝑄1×…×𝑄𝐷 . The Tucker decomposition of a tensor ℛ ∈ ℝ𝑃1×…×𝑃𝐿×𝑄1×…×𝑄𝐷 

decomposes the tensor into a core tensor 𝒞 ∈ ℝ𝑃̃1×…×𝑃̃𝐿×𝑄̃1×…×𝑄̃𝐷 , a set of bases 𝐔𝑙 ∈

ℝ𝑃𝑙×𝑃̃𝑙 , (𝑙 = 1, … , 𝐿) , and 𝐕𝑑 ∈ ℝ𝑄𝑑×𝑄̃𝑑 , (𝑑 = 1, … , 𝐷) , i.e., 

ℛ = 𝒞 ×1 𝐔1 ×2 … ×𝐿 𝐔𝐿 ×𝐿+1 𝐕1 ×𝐿+2 … ×𝐿+𝐷 𝐕𝐷 . The matricized version of this 

decomposition is written as 𝐑 = (𝐔𝐿 ⨂ … ⨂ 𝐔1)𝐂(𝐕𝐷 ⨂ … ⨂ 𝐕1)𝑇 , where 𝐂 ∈ ℝ𝑃̃×𝑄̃  is the 

unfolded core tensor 𝒞  with 𝑃̃ = ∏ 𝑃̃𝑙
𝐿
𝑙=1  and 𝑄̃ = ∏ 𝑄̃𝑑

𝐷
𝑑=1 , and 𝐑  is the general 

matricization of ℛ (Kolda et al. 2009). 

3 Federated Multiple Tensor-on-Tensor Regression Framework 

We consider 𝑀  sites that collaborate to construct a regression model given decentralized 

SHD data. We assume each site has access to 𝐾 sources of SHD data as inputs to predict an 

output tensor; all the data have the low-rank structure; and a specific source of input data (the 

same data modality) follows the same distribution across different sites. We denote the k-th 

input tensor in the m-th site by 𝒳𝑘
𝑚 ∈ ℝ𝑁𝑠

𝑚×𝑃𝑘,1×…×𝑃𝑘,𝐿𝑘 , and the output tensor by 𝒴𝑚 ∈
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ℝ𝑁𝑠
𝑚×𝑄1×…×𝑄𝐷, where 𝑁𝑠

𝑚 is the sample size, 𝑃𝑘,𝑙𝑘
 (𝑙𝑘 = 1, … , 𝐿𝑘) is the dimension of the 𝑙𝑘-

th mode of the tensor 𝒳𝑘
𝑚 and 𝑄𝑑 (𝑑 = 1, … , 𝐷) is the dimension of the 𝑑-th mode of 𝒴𝑚. 

3.1 Background: MTOT for Global and Local Model Construction 

Intuitively, each site (𝑚 = 1, … , 𝑀) may train a local model in silo based on the available 

data in their own database using the MTOT method proposed in (Gahrooei et al. 2021) as 

follows: 

𝒴𝑚 = ∑ 𝒳𝑘
𝑚 ∗ ℬ𝑘

𝑙,𝑚𝐾
𝑘=1 + ℰ𝑚, 𝑚 = 1, … , 𝑀; 𝑘 = 1, … , 𝐾, (1) 

where ℬ𝑘
𝑙,𝑚 ∈ ℝ𝑃𝑘,1×…×𝑃𝑘,𝐿𝑘

×𝑄1×…×𝑄𝐷 is the tensor of local model regression coefficient for 

the 𝑚 -th site, and ℰ𝑚 ∈ ℝ𝑁𝑠
𝑚×𝑄1×…×𝑄𝐷  is the error tensor for the 𝑚 -th site. The model 

parameters can be estimated by the individual site using the estimation procedure discussed 

in (Gahrooei et al. 2021). However, this approach results in models that may lack 

generalizability, particularly when 𝑁𝑠
𝑚 is small compared to number of model parameters. 

An alternative approach to create a generalizable regression model is to pool all raw data, 

i.e., {𝒳𝑘
𝑚} and {𝒴𝑚}, from all individual sites to a global server to train a global model by 

using the method proposed in (Gahrooei et al. 2021): 

𝒴 = ∑ 𝒳𝑘 ∗ ℬ𝑘
𝑔𝐾

𝑘=1 + ℰ, (2) 

where 𝒴 = 𝒴1 ⊕ … ⊕ 𝒴𝑚 ⊕ … ⊕ 𝒴𝑀 , 𝒳𝑘 = 𝒳𝑘
1 ⊕ … ⊕ 𝒳𝑘

𝑚 ⊕ … ⊕ 𝒳𝑘
𝑀 , ℰ ∈

ℝ𝑁𝑠×𝑄1×…×𝑄𝐷  with 𝑁𝑆 = ∑ 𝑁𝑠
𝑚𝑀

𝑚=1  is an error tensor whose elements are from a random 

process, and ℬ𝑘
𝑔

∈ ℝ𝑃𝑘,1×…×𝑃𝑘,𝐿𝑘
×𝑄1×…×𝑄𝐷 is the tensor of global regression coefficient to be 

estimated. However, the individual sites may not be willing to share the raw data with a 

global server, which makes the estimation procedure impossible. 

3.2 Federated Regression Framework 

To balance the generalization and personalization as well as ensuring compliance with data-

sharing constraints, we propose a federated multiple tensor-on-tensor (FedMTOT) regression 
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framework to conduct regression analysis between a structured high-dimensional (SHD) 

response and a set of multimodal input variables. Specifically, an aggregator moderates the 

model generation process by communicating with all individual sites to receive and send 

regression model features. At the end of the process, each individual site establishes a 

personalized model with the regression coefficient ℬ𝑘
𝑚 whose low-dimensional embedding 

is as follows: 

ℬ𝑘
𝑚 = 𝒞𝑘

𝑚 ×1 𝐔𝑘,1
𝑚 ×2 … ×𝐿𝑘

𝐔𝑘,𝐿𝑘

𝑚 ×𝐿𝑘+1 𝐕1
𝑚 ×𝐿𝑘+2 … ×𝐿𝑘+𝐷 𝐕𝐷

𝑚, (3) 

where 𝒞𝑘
𝑚 ∈ ℝ𝑃̃𝑘,1×…×𝑃̃𝑘,𝐿𝑘

×𝑄̃1×…×𝑄̃𝐷  is a core tensor with 𝑃̃𝑘,𝑙𝑘
≪ 𝑃𝑘,𝑙𝑘

 (𝑙𝑘 = 1, … , 𝐿𝑘; 𝑘 =

1, … , 𝐾) and 𝑄̃𝑑 ≪ 𝑄𝑑 (𝑑 = 1, … , 𝐷); {𝐔𝑘,𝑙𝑘

𝑚 ∈ ℝ𝑃𝑘,𝑙𝑘
×𝑃̃𝑘,𝑙𝑘 } is a set of bases that span the 𝑘-

th input space; and {𝐕𝑑
𝑚 ∈ ℝ𝑄𝑑×𝑄̃𝑑} is a set of bases that span the 𝑑-th output space. Please 

note that {𝑃̃𝑘,𝑙𝑘
}  and {𝑄̃𝑑}  are the ranks associated with this Tucker low-dimensional 

embeddings. 

Besides, the aggregator constructs an aggregated model with the regression coefficient 

ℬ𝑘 whose low-dimensional embedding is as follows: 

ℬ𝑘 = 𝒞𝑘 ×1 𝐔𝑘,1 ×2 … ×𝐿𝑘
𝐔𝑘,𝐿𝑘

×𝐿𝑘+1 𝐕1 ×𝐿𝑘+2 … ×𝐿𝑘+𝐷 𝐕𝐷 , (4) 

where 𝒞𝑘 ∈ ℝ𝑃̃𝑘,1×…×𝑃̃𝑘,𝐿𝑘
×𝑄̃1×…×𝑄̃𝐷, 𝐔𝑘,𝑙𝑘

∈ ℝ𝑃𝑘,𝑙𝑘
×𝑃̃𝑘,𝑙𝑘 , and 𝐕𝑑 ∈ ℝ𝑄𝑑×𝑄̃𝑑 are the aggregated 

model features constructed based on the communications with all individual sites. 

Under the proposed framework, each individual site constructs its personalized model, i.e., 

(3), instead of sharing the raw data, and transmits model features (i.e., site-specific core 

tensor {𝒞𝑘
𝑚}, site-specific input bases {𝐔𝑘,𝑙𝑘

𝑚 }, and site-specific output bases {𝐕𝑑
𝑚}) to an 

aggregator. These site-specific features will then be combined by the aggregator to construct 

an aggregated model (4) with corresponding features (i.e., aggregated core tensor {𝒞𝑘} , 

aggregated input bases {𝐔𝑘,𝑙𝑘
}, aggregated output bases {𝐕𝑑}). The aggregated features will 

then be broadcast back to each individual site. Each site then uses the aggregated features to 
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update their site-specific features. Therefore, our proposed FedMTOT constructs both 

personalized models at individual sites and an aggregated model by the aggregator. The 

personalized models benefit from the information in other sites through the aggregated 

model, which improves their generalizability compared to the models constructed in silo.  

In general, each site can potentially estimate the core tensors and the input and output 

bases together using an alternative approach. However, this approach may have a high 

computational complexity. As an alternative approach, estimating the input bases separately 

first and fixing them when estimating the core tensors and the output bases reduces the 

computational complexity of the estimation process with adequate model accuracy (Yan et al. 

2019, Gahrooei et al. 2021). Therefore, we propose a two-step federated estimation procedure 

as shown in Algorithm 1. First, learning the site-specific and aggregated input bases; and 

secondly, learning the site-specific and aggregated output bases and core tensors. 

Algorithm 1 Federated Multiple Tensor-on-Tensor Regression Algorithm. 

1: Inputs: {𝒴𝑚} and {𝒳𝑘
𝑚} stored at individual sites only. 

2: Input Basis Learning:  

Estimate {𝐔𝑘,𝑙𝑘
} and {𝐔𝑘,𝑙𝑘

𝑚 }. (Algorithm 2 in Section 3.2.1) 

3: Output Basis and Core Tensor Learning:  

Given {𝐔𝑘,𝑙𝑘
}, estimate {𝐕𝑑}, {𝐕𝑑

𝑚}, {𝒞𝑘}, and {𝒞𝑘
𝑚}. (Algorithm 4 in Section 3.2.2) 

Under the proposed federated framework, both Steps 2 and 3 can be conducted using 

consensus ADMM, which decomposes the federated model construction problem into two 

parts, i.e., (i) the site-specific optimization, and (ii) the aggregated optimization. The 

solution of Steps 2 and 3 in Algorithm 1 are explained in detail in Algorithm 2 of Section 

3.2.1 and Algorithm 4 of Section 3.2.2, respectively. Besides, we discuss the selection of 

involved hyperparameters and Tucker ranks in Section 3.3 and provided the convergence 

analysis in Part V of supplementary materials. 
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3.2.1 Learning the Site-Specific and Aggregated Input Bases 

This section discusses the estimation procedure of the site-specific and aggregated input 

bases, i.e., {𝐔𝑘,𝑙𝑘
} and {𝐔𝑘,𝑙𝑘

𝑚 } , directly from the input data located in each site. For this 

purpose, the aggregator and all sites collaborate to solve the following master optimization 

problem: 

min
{𝐔𝑘,𝑖,𝑙𝑘

𝑚 },{𝐔𝑘,𝑙𝑘
}

{∑ ∑ ∑ ‖𝒳𝑘,𝑖
𝑚 − 𝒟𝑘,𝑖

𝑚 ×1 𝐔𝑘,𝑖,1
𝑚 ×2 𝐔𝑘,𝑖,2

𝑚 ×3 … ×𝐿𝑘
𝐔𝑘,𝑖,𝐿𝑘

𝑚 ‖
𝐹

2𝑁𝑠
𝑚

𝑖=1

𝐾

𝑘=1

𝑀

𝑚=1

+
𝜆𝑢

2
∑ ∑ ‖𝐈𝑃̃𝑘

− 𝐔𝑘,𝑙𝑘

𝑇 𝐔𝑘,𝑙𝑘
‖

𝐹

2𝐿𝑘

𝑙𝑘=1

𝐾

𝑘=1
}, 

subject to 𝐔𝑘,𝑙𝑘
= 𝐔𝑘,𝑖,𝑙𝑘

𝑚 , ∀𝑙𝑘, ∀𝑘, ∀𝑚, ∀𝑖 ∈ {1, … , 𝑁𝑠
𝑚}, (5) 

where {𝒟𝑘,𝑖
𝑚 ∈ ℝ𝑃̃𝑘1×…×𝑃̃𝑘𝑙𝑘 }  are site-specific input core tensors, {𝐔𝑘,𝑖,𝑙𝑘

𝑚 ∈ ℝ𝑃𝑘,𝑙𝑘
×𝑃̃𝑘,𝑙𝑘 }  are 

site-specific input bases corresponding to the 𝑖 -th sample 𝒳𝑘,𝑖
𝑚  at the 𝑚 -th site, 𝜆𝑢  is a 

hyperparameter, 𝐈𝑃̃𝑘
 is an identity matrix of dimension 𝑃̃𝑘 × 𝑃̃𝑘 , and 𝒳𝑘,𝑖

𝑚 ∈ ℝ𝑃𝑘1×…×𝑃𝑘𝑙𝑘  is 

the 𝑖-th sample of 𝒳𝑘
𝑚. Here, 𝒳𝑘,𝑖

𝑚  has one mode less than 𝒳𝑘
𝑚. The first term in the objective 

function of (5) minimizes the overall error of inputs reconstruction by summing over all the 

samples and sites. The second term in the objective function of (5) aims to restrict the space 

of possible bases in the coefficient decomposition which can alleviate the identifiability and 

uniqueness issues related to the tensor decomposition (Gahrooei et al. 2021). The constraint 

𝐔𝑘,𝑙𝑘
= 𝐔𝑘,𝑖,𝑙𝑘

𝑚  ensures that the individual sites and the aggregator eventually achieve the 

same set of bases. If all the data were centralized, one could directly solve (5) by replacing 

𝐔𝑘,𝑖,𝑙𝑘

𝑚  with 𝐔𝑘,𝑙𝑘
 and performing Tucker decomposition on all the input data. Nevertheless, 

this is not possible under the data sharing constraint because all the data is not accessible by 

other entities when solving the problem. Therefore, the problem will be solved locally by 

each individual site and then by the aggregator in an iterative fashion until a consensus is 

achieved according to the constraint 𝐔𝑘,𝑙𝑘
= 𝐔𝑘,𝑖,𝑙𝑘

𝑚 . 
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Under the federated framework, each individual site minimizes ∑ ∑ ‖𝒳𝑘,𝑖
𝑚 −

𝑁𝑠
𝑚

𝑖=1
𝐾
𝑘=1

𝒟𝑘,𝑖
𝑚 ×1 𝐔𝑘,𝑖,1

𝑚 ×2 𝐔𝑘,𝑖,2
𝑚 ×3 … ×𝐿𝑘

𝐔𝑘,𝑖,𝐿𝑘

𝑚 ‖
𝐹

2
 based on its own data {𝒳𝑘𝑖

𝑚} parallelly. Then, the 

aggregator works on its task to minimize ∑ ∑ ‖𝐈𝑃̃𝑘
− 𝐔𝑘,𝑙𝑘

𝑇 𝐔𝑘,𝑙𝑘
‖

𝐹

2𝐿𝑘
𝑙𝑘=1

𝐾
𝑘=1  based on the 

transferred features and by imposing the equality constraint 𝐔𝑘,𝑙𝑘
= 𝐔𝑘,𝑖,𝑙𝑘

𝑚  to further update 

its aggregated input bases. Next, the aggregator broadcasts the aggregated input bases to all 

individual sites. Here, the equality constraint 𝐔𝑘,𝑙𝑘
= 𝐔𝑘,𝑖,𝑙𝑘

𝑚  is the only bridge to 

communicate feature information among individual sites and the aggregator, which achieves 

the goal of avoiding data sharing but encouraging the collaboration. 

In order to solve (5) and to achieve a closed-form solution, we first use the term ‖𝐈𝑃̃𝑘
−

𝐔𝑘,𝑙𝑘

𝐴𝑇
𝐔𝑘,𝑙𝑘

𝐵 ‖
𝐹

2

 with equality constraints 𝐔𝑘,𝑙𝑘

𝐵 = 𝐔𝑘,𝑙𝑘

𝐴  to replace the quadratic term ‖𝐈𝑃̃𝑘
−

𝐔𝑘,𝑙𝑘

𝑇 𝐔𝑘,𝑙𝑘
‖

𝐹

2
. That is, we write (5) as follows: 

min
{𝐔𝑘,𝑖,𝑙𝑘

𝑚 },{𝐔𝑘,𝑙𝑘
𝐴 },{𝐔𝑘,𝑙𝑘

𝐵 }
{∑ ∑ ∑ ‖𝒳𝑘,𝑖

𝑚 − 𝒟𝑘,𝑖
𝑚 ×1 𝐔𝑘,𝑖,1

𝑚 ×2 𝐔𝑘,𝑖,2
𝑚 ×3 … ×𝐿𝑘

𝐔𝑘,𝑖,𝐿𝑘

𝑚 ‖
𝐹

2𝑁𝑠
𝑚

𝑖=1

𝐾

𝑘=1

𝑀

𝑚=1

+
𝜆𝑢

2
∑ ∑ ‖𝐈𝑃̃𝑘

− 𝐔𝑘,𝑙𝑘

𝐴𝑇
𝐔𝑘,𝑙𝑘

𝐵 ‖
𝐹

2𝐿𝑘

𝑙𝑘=1

𝐾

𝑘=1
}, 

subject to 𝐔𝑘,𝑙𝑘

𝐵 = 𝐔𝑘,𝑙𝑘

𝐴 , 𝐔𝑘,𝑙𝑘

𝐴 = 𝐔𝑘,𝑖,𝑙𝑘

𝑚 , ∀𝑙𝑘, ∀𝑘, ∀𝑚, ∀𝑖 ∈ {1, … , 𝑁𝑠
𝑚}. (6) 

where {𝐔𝑘,𝑙𝑘

𝐴 } and {𝐔𝑘,𝑙𝑘

𝐵 } are duplicated aggregated input bases. Please note that the equality 

constraint 𝐔𝑘,𝑙𝑘

𝐵 = 𝐔𝑘,𝑙𝑘

𝐴  only assists to provide the closed-form solution. Since 𝐔𝑘,𝑙𝑘

𝐴  and 𝐔𝑘,𝑙𝑘

𝐵  

play the same role, we select 𝐔𝑘,𝑙𝑘

𝐴  to be transferred to individual sites where the equality 

constraint 𝐔𝑘,𝑙𝑘

𝐴 = 𝐔𝑘,𝑖,𝑙𝑘

𝑚  allows individual sites and the aggregator to reach a consensus over 

several iterations and communications. To solve (6), we use an ADMM algorithm and write 

the augmented Lagrangian function ℒ𝑈 of (6) as follows: 

ℒ𝑈 =

∑ ∑ ∑ ‖𝒳𝑘,𝑖
𝑚 − 𝒟𝑘,𝑖

𝑚 ×1 𝐔𝑘,𝑖,1
𝑚 ×2 𝐔𝑘,𝑖,2

𝑚 ×3 … ×𝐿𝑘
𝐔𝑘,𝑖,𝐿𝑘

𝑚 ‖
𝐹

2𝑁𝑠
𝑚

𝑖=1
𝐾
𝑘=1

𝑀
𝑚=1 +

𝜆𝑢

2
∑ ∑ ‖𝐈𝑃̃𝑘

−
𝐿𝑘
𝑙𝑘=1

𝐾
𝑘=1
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𝐔𝑘,𝑙𝑘

𝐴𝑇
𝐔𝑘,𝑙𝑘

𝐵 ‖
𝐹

2

+ ∑ ∑ ∑ ∑ (𝐖𝑘,𝑖,𝑙𝑘

𝑚𝑇
(𝐔𝑘,𝑙𝑘

𝐴 − 𝐔𝑘,𝑖,𝑙𝑘

𝑚 ) +
𝜌𝑢

2
‖𝐔𝑘,𝑙𝑘

𝐴 − 𝐔𝑘,𝑖,𝑙𝑘

𝑚 ‖
𝐹

2
)

𝐿𝑘
𝑙𝑘=1

𝑁𝑠
𝑚

𝑖=1
𝐾
𝑘=1

𝑀
𝑚=1 +

∑ ∑ (𝐒𝑘,𝑙𝑘

𝑇 (𝐔𝑘,𝑙𝑘

𝐵 − 𝐔𝑘,𝑙𝑘

𝐴 ) +
𝜇𝑢

2
‖𝐔𝑘,𝑙𝑘

𝐵 − 𝐔𝑘,𝑙𝑘

𝐴 ‖
𝐹

2
)

𝐿𝑘
𝑙𝑘=1

𝐾
𝑘=1 , (7) 

where 𝐖𝑘,𝑖,𝑙𝑘

𝑚  and 𝐒𝑘,𝑙𝑘
 are the site-specific and aggregated Lagrangian multipliers, 

respectively. Although 𝐖𝑘,𝑖,𝑙𝑘

𝑚  and 𝐒𝑘,𝑙𝑘
 are all Lagrangian multipliers, they play different 

roles in the optimization. Specifically, 𝐖𝑘,𝑖,𝑙𝑘

𝑚  assists 𝐔𝑘,𝑖,𝑙𝑘

𝑚  to integrate the feature 

information from 𝐔𝑘,𝑙𝑘

𝐴 ; while 𝐒𝑘,𝑙𝑘
 helps the aggregator to handle the equality constraint 

𝐔𝑘,𝑙𝑘

𝐵 = 𝐔𝑘,𝑙𝑘

𝐴 . The penalty terms that are multiplied by parameter 𝜌𝑢  and 𝜇𝑢  help ℒ𝑈  to 

enhance the convergence property within the federated framework. 

In the following sections, we will discuss how to distribute the problem of minimizing (7) 

to individual sites and the aggregator, and how to solve this problem. 

3.2.1.1 Site-Specific Optimization 

Under the proposed federated framework, each individual site 𝑚 updates site-specific input 

core tensors {𝒟𝑘,𝑖
𝑚 } and the input bases {𝐔𝑘,𝑖,𝑙𝑘

𝑚 } by solving the following subproblem (the 

objective function is a subpart of (7)), assuming that the aggregated feature 𝐔𝑘,𝑙𝑘

𝐴  is known 

(i.e., provided by the aggregator): 

min
{𝒟𝑘,𝑖

𝑚 },{𝐔𝑘,𝑖,𝑙𝑘
𝑚 }

{‖𝒳𝑘,𝑖
𝑚 − 𝒟𝑘,𝑖

𝑚 ×1 𝐔𝑘,𝑖,1
𝑚 ×2 𝐔𝑘,𝑖,2

𝑚 ×3 … ×𝐿𝑘
𝐔𝑘,𝑖,𝐿𝑘

𝑚 ‖
𝐹

2
+ 𝐖𝑘𝑖,𝑙𝑘

𝑚𝑇
(𝐔𝑘,𝑙𝑘

𝐴 −

𝐔𝑘,𝑖,𝑙𝑘

𝑚 ) +
𝜌𝑢

2
‖𝐔𝑘,𝑙𝑘

𝐴 − 𝐔𝑘,𝑖,𝑙𝑘

𝑚 ‖
𝐹

2
} , (8) 

by using the alternative least square approach. Notably, although {𝒟𝑘,𝑖
𝑚 } are estimated when 

performing the Tucker decomposition on {𝒳𝑘,𝑖
𝑚 }, they are not used in estimating the model 

parameters {ℬ𝑘
𝑚} . More specifically, the site-specific input core tensors {𝒟𝑘,𝑖

𝑚 }  is first 

estimated given the input bases {𝐔𝑘,𝑙𝑘

𝑚 } as follows: 

𝒟𝑘,𝑖
𝑚 = 𝒳𝑘,𝑖

𝑚 ×1 (𝐔𝑘,𝑖,1
𝑚𝑇

𝐔𝑘,𝑖,1
𝑚 )

−1

𝐔𝑘,𝑖,1
𝑚𝑇

×2 … ×𝐿𝑘
(𝐔𝑘,𝑖,𝐿𝑘

𝑚𝑇
𝐔𝑘,𝑖,𝐿𝑘

𝑚 )
−1

𝐔𝑘,𝑖,𝐿𝑘

𝑚𝑇
, ∀𝑘, ∀𝑖. (9) 
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Here, {𝐔𝑘,𝑖,𝑙𝑘

𝑚 } are orthonormal and nonsingular. When {𝐔𝑘,𝑖,𝑙𝑘

𝑚 } become orthonormal, (9) is 

equivalent to 𝒟𝑘,𝑖
𝑚 = 𝒳𝑘,𝑖

𝑚 ×1 𝐔𝑘,𝑖,1
𝑚𝑇

×2 𝐔𝑘,𝑖,2
𝑚𝑇

×3 … ×𝐿𝑘
𝐔𝑘,𝑖,𝐿𝑘

𝑚𝑇
. 

Next, given the raw data 𝒳𝑘,𝑖
𝑚 , the site-specific input core tensor 𝒟𝑘,𝑖

𝑚 , the site-specific 

Lagrangian multipler 𝐖𝑘,𝑖,𝑙𝑘

𝑚 , and other site-specific input bases {𝐔
𝑘,𝑖,𝑙𝑘

′
𝑚 } (𝑙𝑘

′ ≠ 𝑙𝑘) , the 

individual site can obtain a closed-form solution for 𝐔𝑘,𝑖,𝑙𝑘

𝑚  as follows: 

𝐔𝑘,𝑖,𝑙𝑘

𝑚 = (𝜌𝑢𝐔𝑘,𝑙𝑘

𝐴 + 𝐖𝑘,𝑖,𝑙𝑘

𝑚 + 2𝐗𝑘,𝑖(𝑙𝑘)
𝑚 𝐑𝑘,𝑖

𝑚𝑇
) (2𝐑𝑘,𝑖

𝑚 𝐑𝑘,𝑖
𝑚𝑇

+ 𝜌𝑢𝐈𝑃̃𝑘
)

−1

, (10) 

where 𝐃𝑘,𝑖(𝑙𝑘)
𝑚  is the mode- 𝑙𝑘  matricization of 𝒟𝑘,𝑖

𝑚 , 𝐑𝑘,𝑖
𝑚 = 𝐃𝑘,𝑖(𝑙𝑘)

𝑚 (𝐔
𝑘,𝑖,𝑙𝑘

+
𝑚 ⨂𝐔𝑘,𝑖,𝑙𝑘

−
𝑚 )

𝑇

, 

𝐔
𝑘,𝑖,𝑙𝑘

+
𝑚 = 𝐔𝑘,𝑖,𝐿𝑘

𝑚 ⨂ … ⨂𝐔𝑘,𝑖,(𝑙𝑘+1)
𝑚 , and 𝐔𝑘,𝑖,𝑙𝑘

−
𝑚 = 𝐔𝑘,𝑖,(𝑙𝑘−1)

𝑚 ⨂ … ⨂𝐔𝑘,𝑖,1
𝑚 . If the input is a 

functional curve, i.e., 𝐿𝑘 = 1, we have 𝐔𝑘,𝑖,1
𝑚 = (2𝐗𝑘,𝑖

𝑚𝑇
𝐃𝑘,𝑖

𝑚 + 𝐖𝑘,𝑖,1
𝑚 + 𝜌𝑢𝐔𝑘,1

𝐴 ) (2𝐃𝑘,𝑖
𝑚𝑇

𝐃𝑘,𝑖
𝑚 +

𝜌𝑢𝐈𝑃̃𝑘
)

−1

. The details of the derivation can be found in Part II of supplementary materials. 

Once individual sites solve (8), they send their updated site-specific features together with 

the site-specific Lagrangian multipliers (which have not been updated) to the aggregator. 

After the aggregator solves the aggregated optimization, individual site 𝑚  receives the 

updated aggregated features and then updates their site-specific Lagrangian multipliers to 

adjust the gap between site-specific and aggregated input bases: 

𝐖𝑘,𝑖,𝑙𝑘

𝑚 ← 𝐖𝑘,𝑖,𝑙𝑘

𝑚 + 𝜌𝑢(𝐔𝑘,𝑙𝑘

𝐴 − 𝐔𝑘,𝑖,𝑙𝑘

𝑚 ), ∀𝑘, ∀𝑙𝑘, ∀𝑖, ∀𝑚. (11) 

Please note that the site-specific Lagrangian multipliers are not updated immediately after 

solving (8) but updated after individual sites receive the updated aggregated features from the 

aggregator. It is because such a design not only follows the ADMM convention, but also can 

save computation resources by only updating Lagrangian multipliers once after individual 

sites and the aggregator has completed their own tasks at one run. 
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3.2.1.2 Aggregated Optimization 

By pooling all site-specific input bases {𝐔𝑘,𝑙𝑘

𝑚 } and Lagrangian multipliers {𝐖𝑘,𝑖,𝑙𝑘

𝑚 } from all 

individual sites, the aggregator estimates the aggregated input bases {𝐔𝑘,𝑙𝑘

𝐴 }, {𝐔𝑘,𝑙𝑘

𝐵 } and the 

Lagrangian multipliers {𝐒𝑘,𝑙𝑘

𝑇 }  by minimizing (7), in an iterative manner. First, assuming 

𝐔𝑘,𝑙𝑘

𝐵  and 𝐒𝑘,𝑙𝑘

𝑇  are given, 𝐔𝑘,𝑙𝑘

𝐴  is estimated by solving the following subproblem: 

min𝐔𝑘,𝑙𝑘
𝐴 {

𝜆𝑢

2
‖𝐈𝑃̃𝑘

− 𝐔𝑘,𝑙𝑘

𝐴𝑇
𝐔𝑘,𝑙𝑘

𝐵 ‖
𝐹

2

+ ∑ ∑ (𝐖𝑘,𝑖,𝑙𝑘

𝑚𝑇
(𝐔𝑘,𝑙𝑘

𝐴 − 𝐔𝑘,𝑖,𝑙𝑘

𝑚 ) +
𝜌𝑢

2
‖𝐔𝑘,𝑙𝑘

𝐴 −
𝑁𝑠

𝑚

𝑖=1
𝑀
𝑚=1

𝐔𝑘,𝑖,𝑙𝑘

𝑚 ‖
𝐹

2
) + 𝐒𝑘,𝑙𝑘

𝑇 (𝐔𝑘,𝑙𝑘

𝐵 − 𝐔𝑘,𝑙𝑘

𝐴 ) +
𝜇𝑢

2
‖𝐔𝑘,𝑙𝑘

𝐵 − 𝐔𝑘,𝑙𝑘

𝐴 ‖
𝐹

2
}, (12) 

which has a closed-form solution as follows: 

𝐔𝑘,𝑙𝑘

𝐴 =

(𝜆𝑢𝐔𝑘,𝑙𝑘

𝐵 𝐔𝑘,𝑙𝑘

𝐵𝑇
+ (𝑀𝑁𝑠

𝑚𝜌𝑢 + 𝜇𝑢)𝐈𝑃̃𝑘
)

−1

((𝜆𝑢 + 𝜇𝑢)𝐔𝑘,𝑙𝑘

𝐵 + 𝐒𝑘,𝑙𝑘
+ ∑ ∑ (𝜌𝑢𝐔𝑘,𝑖,𝑙𝑘

𝑚 −
𝑁𝑠

𝑚

𝑖=1
𝑀
𝑚=1

𝐖𝑘,𝑖,𝑙𝑘

𝑚 )). (13) 

Next, assuming 𝐔𝑘,𝑙𝑘

𝐴  and 𝐒𝑘,𝑙𝑘

𝑇  are given, 𝐔𝑘,𝑙𝑘

𝐵  is estimated by solving the following 

minimization problem: 

min𝐔𝑘,𝑙𝑘
𝐵 {

𝜆𝑢

2
‖𝐈𝑃̃𝑘

− 𝐔𝑘,𝑙𝑘

𝐴𝑇
𝐔𝑘,𝑙𝑘

𝐵 ‖
𝐹

2

+ 𝐒𝑘,𝑙𝑘

𝑇 (𝐔𝑘,𝑙𝑘

𝐵 − 𝐔𝑘,𝑙𝑘

𝐴 ) +
𝜇𝑢

2
‖𝐔𝑘,𝑙𝑘

𝐵 − 𝐔𝑘,𝑙𝑘

𝐴 ‖
𝐹

2
}, (14) 

which results in the following closed-form solution:  

𝐔𝑘,𝑙𝑘

𝐵 = (𝜆𝑢𝐔𝑘,𝑙𝑘

𝐴 𝐔𝑘,𝑙𝑘

𝐴𝑇
+ 𝜇𝑢𝐈𝑃̃𝑘

)
−1

((𝜆𝑢 + 𝜇𝑢)𝐔𝑘,𝑙𝑘

𝐴 − 𝐒𝑘,𝑙𝑘
). (15) 

Finally, the aggregated Lagrangian multipliers are updated by the aggregator to adjust the 

gap between the duplicated aggregated input bases as follows: 

𝐒𝑘,𝑙𝑘
← 𝐒𝑘,𝑙𝑘

+ 𝜇𝑢(𝐔𝑘,𝑙𝑘

𝐵 − 𝐔𝑘,𝑙𝑘

𝐴 ), ∀𝑘, ∀𝑙𝑘. (16) 

To summarize, the entire algorithm for updating input bases is shown in Algorithm 2 and 

Figure 1 of Part I in supplementary materials. The aggregator and individual sites repeat this 

procedure until the minimization problem of (7) converges. During the procedure, the 

aggregated input bases and the site-specific ones reach a consensus without directly accessing 
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the raw data. The degree to which the aggregated and site-specific bases match, depends on 

the stopping criteria used in the algorithm that is explained next.  

Algorithm 2 Input Basis Learning. 

1: Inputs: {𝒳𝑘,𝑖
𝑚 }. 

2: Initialize 𝐔𝑘,𝑖,𝑙𝑘

𝑚 , 𝐖𝑘,𝑖,𝑙𝑘

𝑚  using Tucker decomposition of {𝒳𝑘,𝑖
𝑚 }, ∀𝑘, ∀𝑙𝑘, ∀𝑖, ∀𝑚. 

3: Initialize 𝐔𝑘,𝑙𝑘

𝐵 = 𝐔𝑘,𝑙𝑘

𝐴 = 𝐒𝑘,𝑙𝑘
= 𝐔𝑘,1,𝑙𝑘

1 , ∀𝑘, ∀𝑙. 

4: Loop 

5:  Update {𝒟𝑘,𝑖
𝑚 } using (9), ∀𝑖, ∀𝑘, ∀𝑚. 

6:  For 𝑘 ∈ {1, … , 𝐾}, 𝑙𝑘 ∈ {1, … , 𝐿𝑘} 

7:    Update 𝐔𝑘,𝑖,𝑙𝑘

𝑚  using (10), ∀𝑖, ∀𝑚. 

8:    Update 𝐔𝑘,𝑙𝑘

𝐴  using (13) and update 𝐔𝑘,𝑙𝑘

𝐵  using (15). 

9:    Update 𝐒𝑘,𝑙𝑘
 using (16). 

10:    Update 𝐖𝑘,𝑖,𝑙𝑘

𝑚  using (11), ∀𝑖, ∀𝑚. 

11:  End for 

12: End Until Convergence 

The stopping criteria for the convergence include whether the iteration number reaches the 

predefined maximal value, 𝑟𝐴𝑚
𝑢 ≤ 𝜖𝑟 , 𝑟𝐵𝐴

𝑢 ≤ 𝜖𝑟 , 𝑠𝐴𝑚
𝑢 ≤ 𝜖𝑠 , 𝑠𝐵𝐴

𝑢 ≤ 𝜖𝑠 , and 

∑ ∑ ∑ ‖𝒳𝑘,𝑖
𝑚 − 𝒟𝑘,𝑖

𝑚 ×1 𝐔𝑘,𝑖,1
𝑚 ×2 𝐔𝑘,𝑖,2

𝑚 ×3 … ×𝐿𝑘
𝐔𝑘,𝑖,𝐿𝑘

𝑚 ‖
𝐹

2𝑁𝑠
𝑚

𝑖=1
𝐾
𝑘=1

𝑀
𝑚=1 ≤ 𝜖𝒳 , where 𝑟𝐴𝑚

𝑢 =

∑ ∑ ∑ ∑ ‖𝐔𝑘,𝑙𝑘

𝐴 − 𝐔𝑘,𝑖,𝑙𝑘

𝑚 ‖
𝐹

2𝐿𝑘
𝑙𝑘=1

𝑁𝑠
𝑚

𝑖=1
𝐾
𝑘=1

𝑀
𝑚=1  and 𝑟𝐵𝐴

𝑢 = ∑ ∑ ‖𝐔𝑘,𝑙𝑘

𝐵 − 𝐔𝑘,𝑙𝑘

𝐴 ‖
𝐿𝑘
𝑙𝑘=1

𝐾
𝑘=1

𝐹

2
 evaluate the 

satisfaction of the equality constraints 𝐔𝑘,𝑙𝑘

𝐵 = 𝐔𝑘,𝑙𝑘

𝐴 , 𝐔𝑘,𝑙𝑘

𝐴 = 𝐔𝑘,𝑖,𝑙𝑘

𝑚  in (6); 𝑠𝐴𝑚
𝑢 =

∑ ∑ ∑ ∑ ‖𝐔𝑘,𝑖,𝑙𝑘

𝑚(𝑡+1)
− 𝐔𝑘,𝑖,𝑙𝑘

𝑚(𝑡)
‖

𝐹

2
𝐿𝑘
𝑙𝑘=1

𝑁𝑠
𝑚

𝑖=1
𝐾
𝑘=1

𝑀
𝑚=1  and 𝑠𝐵𝐴

𝑢 = ∑ ∑ ‖𝐔𝑘,𝑙𝑘

𝐴(𝑡+1)
− 𝐔𝑘,𝑙𝑘

𝐴(𝑡)
‖

𝐹

2
𝐿𝑘
𝑙𝑘=1

𝐾
𝑘=1  with 

𝑡  representing the 𝑡 -th iteration monitor the algorithm convergence; the last criterion 

evaluates data fitness; and 𝜖𝒳 , 𝜖𝑟 , 𝜖𝑠 are predefined thresholds depending on the availability 

of computation resources and the accuracy requirement for data fitting. 

3.2.2 Federated Core Tensor and Output Basis Learning 

This section discusses the estimation of the core tensors and the output tensors assuming that 

the site-specific and the aggregated input bases are known or estimated through the procedure 

discussed in Section 4.1. Given {𝐔𝑘,𝑙𝑘
}  obtained from Algorithm 2, the aggregator 
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coordinates with all individual sites to update core tensors and output bases by solving the 

following master optimization problem: 

min
{𝐕𝑑

𝑚},{𝒞𝑘
𝑚},{𝐕𝑑},{𝒞𝑘}

{∑ ‖𝒴𝑚 − ∑ 𝒳𝑘
𝑚 ∗ ℬ𝑘

𝑚
𝐾

𝑘=1
‖

𝐹

2𝑀

𝑚=1
+

𝜆𝑣

2
∑ ‖𝐈𝑄̃ − 𝐕𝑑

𝑇𝐕𝑑‖
𝐹

2𝐷

𝑑=1

+
𝜇𝑣

2
∑ ∑ ‖𝐕𝑑 − 𝐕𝑑

𝑚‖𝐹
2

𝐷

𝑑=1

𝑀

𝑚=1
+ ∑ ∑

𝛾𝑐

2
‖𝐂𝑘

𝑚 − 𝐂𝑘‖𝐹
2

𝐾

𝑘=1

𝑀

𝑚=1
}, 

subject to ℬ𝑘
𝑚 = 𝒞𝑘

𝑚 ×1 𝐔𝑘,1 ×2 … ×𝐿𝑘
𝐔𝑘,𝐿𝑘

×𝐿𝑘+1 𝐕1
𝑚 ×𝐿𝑘+2 … ×𝐿𝑘+𝐷 𝐕𝐷

𝑚, (17) 

where 𝜆𝑣, 𝜇𝑣, 𝛾𝑐 are hyperparameters, and 𝐈𝑄̃ is an identity matrix of dimension 𝑄̃ × 𝑄̃. Please 

note that unlike Section 4.1, we need to share the site-specific core tensors {𝒞𝑘
𝑚} with the 

aggregator to enhance the collaboration and eventually the generalizability of the models. 

By employing the federated ADMM framework similar to the discussion in the previous 

section, individual site 𝑚 handles ‖𝒴𝑚 − ∑ 𝒳𝑘
𝑚 ∗ ℬ𝑘

𝑚𝐾
𝑘=1 ‖𝐹

2  and the aggregator handles the 

orthogonality term ∑ ‖𝐈𝑄̃ − 𝐕𝑑
𝑇𝐕𝑑‖

𝐹

2𝐷
𝑑=1 . To reserve the modeling flexibility, we allow the 

deviation of site-specific output bases and core tensors from the aggregated ones. That is, we 

consider proximity penalties ‖𝐕𝑑 − 𝐕𝑑
𝑚‖𝐹

2  and ‖𝐂𝑘
𝑚 − 𝐂𝑘‖𝐹

2  instead of equality constraints. 

This will allow the models at each individual site to be more flexible and deviate from the 

aggregated model. 

When solving (17), we first introduce duplicated aggregated output bases {𝐕𝑑
𝐴} and {𝐕𝑑

𝐵} 

and rewrite (17) as follows: 

min
{𝐕𝑑

𝑚},{𝒞𝑘
𝑚},{𝐕𝑑

𝐴},{𝐕𝑑
𝐵},{𝒞𝑘}

{∑ ‖𝒴𝑚 − ∑ 𝒳𝑘
𝑚 ∗ ℬ𝑘

𝑚
𝐾

𝑘=1
‖

𝐹

2𝑀

𝑚=1
+

𝜇𝑣

2
∑ ∑ ‖𝐕𝑑

𝐴 − 𝐕𝑑
𝑚‖

𝐹

2𝐷

𝑑=1

𝑀

𝑚=1

+
𝜆𝑣

2
∑ ‖𝐈𝑄̃ − 𝐕𝑑

𝐴𝑇
𝐕𝑑

𝐵‖
𝐹

2𝐷

𝑑=1
+ ∑ ∑

𝛾𝑐

2
‖𝐂𝑘

𝑚 − 𝐂𝑘‖𝐹
2

𝐾

𝑘=1

𝑀

𝑚=1
}, 

subject to ℬ𝑘
𝑚 = 𝒞𝑘

𝑚 ×1 𝐔𝑘,1 ×2 … ×𝐿𝑘
𝐔𝑘,𝐿𝑘

×𝐿𝑘+1 𝐕1
𝑚 ×𝐿𝑘+2 … ×𝐿𝑘+𝐷 𝐕𝐷

𝑚, 𝐕𝑑
𝐵 = 𝐕𝑑

𝐴, ∀𝑑, 

(18) 

where 𝜆𝑣 is a hyperparameter. Accordingly, the augmented Lagrangian function ℒ𝑉  can be 

written as 

Acc
ep

te
d 

M
an

us
cr

ipt



19 

 

ℒ𝑉 = ∑ ‖𝒴𝑚 − ∑ 𝒳𝑘
𝑚 ∗ ℬ𝑘

𝑚𝐾
𝑘=1 ‖𝐹

2𝑀
𝑚=1 +

𝜇𝑣

2
∑ ∑ ‖𝐕𝑑

𝐴 − 𝐕𝑑
𝑚‖

𝐹

2𝐷
𝑑=1

𝑀
𝑚=1 +

𝜆𝑣

2
∑ ‖𝐈𝑄̃ −𝐷

𝑑=1

𝐕𝑑
𝐴𝑇

𝐕𝑑
𝐵‖

𝐹

2

+ ∑ (𝐇𝑑
𝑇(𝐕𝑑

𝐴 − 𝐕𝑑
𝐵) +

𝜌𝑣

2
‖𝐕𝑑

𝐴 − 𝐕𝑑
𝐵‖

𝐹

2
)𝐷

𝑑=1 + ∑ ∑
𝛾𝑐

2
‖𝐂𝑘

𝑚 − 𝐂𝑘‖𝐹
2𝐾

𝑘=1
𝑀
𝑚=1 , (19) 

where 𝐇𝑑  is the aggregated Lagrangian multipliers, and 𝜌𝑣  is a hyperparameter. In the 

following sections, we distribute the optimization of (19) into individual sites and the 

aggregator and further discuss its solutions. 

3.2.2.1 Site-Specific Optimization 

Assuming that the aggregator provides 𝐕𝑑
𝐴 and 𝐕𝑑

𝐵 , each individual site estimates the site-

specific core tensors and output bases by minimizing (19). Specifically, by following the 

ADMM framework, the output bases 𝐕𝑑
𝑚 are estimated by solving the following subproblem:  

min𝐕𝑑
𝑚 {‖𝒴𝑚 − ∑ 𝒳𝑘

𝑚 ∗ ℬ𝑘
𝑚𝐾

𝑘=1 ‖𝐹
2 +

𝜇𝑣

2
‖𝐕𝑑

𝐴 − 𝐕𝑑
𝑚‖

𝐹

2
}. (20) 

Given aggregated input bases {𝐔𝑘,𝑙𝑘
}, the raw data 𝒴𝑚, {𝒳𝑘

𝑚}, site-specific core tensors 

{𝒞𝑘
𝑚}, and remaining site-specific output bases {𝐕𝑑′

𝑚} (𝑑′ ≠ 𝑑), site 𝑚 can set the gradient of 

(20) to be zero and update 𝐕𝑑
𝑚 as follows: 

𝐕𝑑
𝑚 = (𝜇𝑣𝐕𝑑

𝐴 + 2𝐘(𝑑+1)
𝑚 𝐀𝑚𝑇)(2𝐀𝑚𝐀𝑚𝑇 + 𝜇𝑣𝐈𝑄̃)

−1
. (21) 

where 𝐀𝑚 = ∑ 𝐀𝑘
𝑚𝐾

𝑘=1 , 𝐀𝑘
𝑚 = 𝐂𝑘(𝐿𝑘+𝑑)

𝑚 (𝐕𝑑+
𝑚 ⨂𝐕𝑑−

𝑚 ⨂𝐙𝑘
𝑚)

𝑇
, 𝐕𝑑+

𝑚 = 𝐕𝐷
𝑚 ⨂ … ⨂ 𝐕𝑑+1

𝑚 , 𝐕𝑑−
𝑚 =

𝐕𝑑−1
𝑚 ⨂ … ⨂ 𝐕1

𝑚, and 𝐙𝑘
𝑚 = 𝐗𝑘(1)

𝑚 (𝐔𝑘,𝐿𝑘
⨂ … ⨂ 𝐔𝑘,1). The derivation details are summarized 

in Part III of supplementary materials. 

By rewriting (20) regarding 𝒞𝑘
𝑚, we can get the following subproblem for updating 𝒞𝑘

𝑚: 

argminvec(𝒞𝑘
𝑚) {‖vec(𝐘(1)

𝑚 ) − ∑ (𝐕𝐷
𝑚⨂ … ⨂𝐕1

𝑚⨂𝐙𝑟
𝑚)vec(𝒞𝑟

𝑚)𝐾
𝑟=1,𝑟≠𝑘 −

(𝐕𝐷
𝑚⨂ … ⨂𝐕1

𝑚⨂𝐙𝑘
𝑚)vec(𝒞𝑘

𝑚)‖
𝐹

2
+

𝛾𝑣

2
‖𝐂𝑘 − 𝐂𝑘

𝑚‖𝐹
2}. (22) 

By setting the gradient of (22) to be zero, we update 𝒞𝑘
𝑚 as follows:  

vec(𝒞𝑘
𝑚) = (2(𝐕𝐷

𝑚⨂ … ⨂𝐕1
𝑚⨂𝐙𝑘

𝑚)𝑇(𝐕𝐷
𝑚⨂ … ⨂𝐕1

𝑚⨂𝐙𝑘
𝑚) + 𝛾𝑣𝐈𝑄̃)

−1
(𝛾𝑣vec(𝒞𝑘) +

2(𝐕𝐷
𝑚⨂ … ⨂𝐕1

𝑚⨂𝐙𝑘
𝑚)𝑇(vec(𝐘(1)

𝑚 ) − ∑ (𝐕𝐷
𝑚⨂ … ⨂𝐕1

𝑚⨂𝐙𝑟
𝑚)vec(𝒞𝑟

𝑚)𝐾
𝑟=1,𝑟≠𝑘 )). (23) 
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After individual sites update their site-specific core tensor and output bases, they will send 

their site features to the aggregator. 

3.2.2.2 Aggregated Optimization 

By initializing aggregated output bases {𝐕𝑑
𝐴} , {𝐕𝑑

𝐵} , and their aggregated Lagrangian 

multipliers {𝐇𝑑} using personalized output bases, the aggregator adopts ADMM to handle the 

equality constraint 𝐕𝑑
𝐵 = 𝐕𝑑

𝐴  to update 𝐕𝑑
𝐴 , 𝐕𝑑

𝐵 , and 𝐇𝑑  as summarized in Algorithm 3. 

Specifically, 𝐕𝑑
𝐴 (𝐕𝑑

𝐵) can be updated via (19) by assuming that other variables are given. The 

derivation details can be found in Part IV of supplementary materials. 

Algorithm 3 Update Aggregated Output Bases. 

1: Initialize 𝐕𝑑
𝐵 = 𝐕𝑑

𝐴 = 𝐇𝑑 = 𝐕𝑑
1, ∀𝑑. 

2: Loop 

3:  
𝐕𝑑

𝐴 = (𝜆𝑣𝐕𝑑
𝐵𝐕𝑑

𝐵𝑇
+ (𝑀𝜇𝑣 + 𝜌𝑣)𝐈𝑄̃)

−1

((𝜆𝑣 + 𝜌𝑣)𝐕𝑑
𝐵 + 𝜇𝑣 ∑ 𝐕𝑑

𝑚𝑀
𝑚=1 − 𝐇𝑑).  

4:  
𝐕𝑑

𝐵 = (𝜆𝑣𝐕𝑑
𝐴𝐕𝑑

𝐴𝑇
+ 𝜌𝑣𝐈𝑄̃)

−1

((𝜆𝑣 + 𝜌𝑣)𝐕𝑑
𝐴 + 𝐇𝑑).  

5:  𝐇𝑑 ← 𝐇𝑑 + 𝜌𝑣(𝐕𝑑
𝐴 − 𝐕𝑑

𝐵).  

6: End Until Convergence 

Apart from updating aggregated output bases, the aggregator pools all site-specific core 

tensors {𝒞𝑘
𝑚}, the aggregated core tensor {𝒞𝑘} and then update the aggregated core tensor 𝒞𝑘 

by assuming that other terms are given from (19): 

min𝐂𝑘
{∑

𝛾𝑐

2
‖𝐂𝑘

𝑚 − 𝐂𝑘‖𝐹
2𝑀

𝑚=1 } (24) 

By setting the gradient of (24) to be zero, we get 

𝐂𝑘 =
1

𝑀
∑ 𝐂𝑘

𝑚𝑀
𝑚=1 . (25) 

The entire algorithm for output basis and core tensor learning is summarized in Algorithm 

4 and Figure 1 of Part I in supplementary materials. 

Algorithm 4 Update Core Tensors and Output Bases. 

1: Inputs: {𝒴𝑚}, {𝒳𝑘
𝑚}, and {𝐔𝑘,𝑙𝑘

}. 

2: Initialize 𝐕𝑑
𝑚 using Tucker decomposition of 𝒴𝑚, ∀𝑚.  

3: Initialize 𝐕𝑑
𝐵 = 𝐕𝑑

𝐴 = 𝐇𝑑 = 𝐕𝑑
1, ∀𝑑. 

4: Loop 

5:  For 𝑘 ∈ {1, … , 𝐾} 
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6:   Loop 

8:    For 𝑚 ∈ {1, … , 𝑀} 

9:     For 𝑑 ∈ {1, … , 𝐷} 

10:      Update 𝐕𝑑
𝑚 using (21).  

11:      Algorithm 3. 

12:     End for 

13:     Update 𝒞𝑘
𝑚 using (23). 

14:    End For 

16:    Update 𝒞𝑘 using (25). 

19:   End Until Convergence 

20:  End for  

21: End Until Convergence 

The stopping criteria for this algorithm include whether the iteration number reaches the 

predefined maximal value, 𝑟𝐴𝑚
𝑣 ≤ 𝜖𝑟 , 𝑟𝐵𝐴

𝑣 ≤ 𝜖𝑟 , 𝑠𝐴𝑚
𝑣 ≤ 𝜖𝑠 , 𝑠𝐵𝐴

𝑣 ≤ 𝜖𝑠 , and ∑ ‖𝒴𝑚 −𝑀
𝑚=1

∑ 𝒳𝑘
𝑚 ∗ ℬ𝑘

𝑚𝐾
𝑘=1 ‖𝐹

2 ≤ 𝜖𝒴, where 𝑟𝐴𝑚
𝑣 = ∑ ∑ ‖𝐕𝑑

𝐴 − 𝐕𝑑
𝑚‖

𝐹

2𝐷
𝑑=1

𝑀
𝑚=1  controls the deviation of site-

specific features from the aggregate features; 𝑟𝐵𝐴
𝑣 = ∑ ‖𝐕𝑑

𝐵 − 𝐕𝑑
𝐴‖𝐷

𝑑=1 𝐹

2
 evaluates the 

satisfaction level of the equality constraint 𝐕𝑑
𝐵 = 𝐕𝑑

𝐴 in (18); 𝑠𝐴𝑚
𝑣 = ∑ ∑ ‖𝐕𝑑

𝑚(𝑡+1)
−𝐷

𝑑=1
𝑀
𝑚=1

𝐕𝑑
𝑚(𝑡)

‖
𝐹

2

 and 𝑠𝐵𝐴
𝑣 = ∑ ‖𝐕𝑑

𝐴(𝑡+1)
− 𝐕𝑑

𝐴(𝑡)
‖

𝐹

2
𝐷
𝑑=1  with 𝑡  representing the 𝑡 -th iteration help to 

monitor the algorithm convergence; the last criterion evaluates the model fitness; and 

𝜖𝒴, 𝜖𝑟 , 𝜖𝑠  are predefined thresholds determined by computation capability and fitness 

requirement. 

3.3 Determining Hyperparameters and Tucker Ranks 

In the proposed federated framework, tuning a set of hyperparameters (i.e., 𝜆𝑢, 𝜆𝑣, 𝜌𝑢, 𝜌𝑣 , 

and 𝜇𝑢 ) are essential. The hyperparameters 𝜆𝑢  and 𝜆𝑣  are tied to the orthonormality 

constraints, while 𝜌𝑢, 𝜌𝑣, and 𝜇𝑢 are associated with the Lagrangian multipliers. We conduct 

empirical experiments for selecting these values to ensure feasible solutions. Alternatively, 

we can initialize these values and incrementally adjust them across algorithm iterations, 

enhancing the solution’s feasibility as suggested by Lee et al. (2023). Additionally, the 
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hyperparameters 𝜇𝑣  and 𝛾𝑐  regulate proximity penalties, maintaining the local models’ 

alignment with the aggregated model while allowing for necessary flexibility. High values for 

these hyperparameters promote uniformity in estimating site-specific models, which is 

beneficial when sites are homogeneous. Conversely, smaller values afford more flexibility, 

enabling deviation when individual sites have heterogeneous models. Thus, these 

hyperparameters should be chosen based on domain expertise and empirical experimentation 

tailored to the specific application (Konyar et al. 2023). 

Next, we determine how to select the Tucker ranks under each hyperparameter setting. 

Specifically, each individual site will first apply singular value decomposition (SVD) to the 

matricizated raw data 𝐘(𝑑+1)
𝑚  and {𝐗𝑘𝑖(𝑙𝑘)

𝑚 }. Based on the top-𝑟 singular values which explain 

most of the variance (for example, 80%), we determine the Tucker ranks {𝑃̃𝑘,𝑙𝑘
} and {𝑄̃𝑑} and 

then share the estimated ranks to the aggregator. Based on the values of estimated Tucker 

ranks, the aggregator will first rank them from the lowest to the highest and then 

communicate with all individual sites to test each rank set in sequence. Specifically, the 

aggregator will assign each rank set to all individual sites and then start the proposed 

federated framework. After the algorithm stops, each individual site calculates the following 

Akaike Information Criterion 𝐴𝐼𝐶𝑚 (Roy et al. 2022, Lee et al. 2023) and then sends it back 

to the aggregator: 

𝐴𝐼𝐶𝑚 = 2 ∑ ∑ 𝑙𝑘
𝐿𝑘
𝑙𝑘=1

𝐾
𝑘=1 + 2 ∑ 𝑑𝐷

𝑑=1 − 2 ∑ ‖𝒴𝑚 − ∑ 𝒳𝑘
𝑚 ∗ ℬ𝑘

𝑚𝐾
𝑘=1 ‖𝐹

2𝑁𝑠
𝑚

𝑖=1 . (27) 

The aggregator sums up all 𝐴𝐼𝐶𝑚, i.e., 𝐴𝐼𝐶 = ∑ 𝐴𝐼𝐶𝑚
𝑀
𝑚=1 , and selects the rank set which 

results in the lowest 𝐴𝐼𝐶 . Thus, for each hyperparameter setting, we can determine its 

corresponding best Tucker rank set.  

By selecting the lowest 𝐴𝐼𝐶 from the hyperparameter setting and associated best Tucker 

rank set, we finalize the selection of both hyperparameters and Tucker ranks. 
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4 Performance Evaluation Using Simulation Studies 

In this section, we conduct two sets of simulation studies to evaluate the performance of the 

proposed method, considering two scenarios: (i) the inputs are a functional curve and an 

image, and (ii) the inputs are two images. Using the proposed framework, we obtain two 

types of models: aggregated model (3), and personalized models (4). Specifically, we first 

run Algorithm 2 to learn input bases, i.e., site-specific input bases {𝐔𝑘,𝑖,𝑙𝑘

𝑚 } and aggregated 

input bases {𝐔𝑘,𝑙𝑘
}. Since we have the equality constraint 𝐔𝑘,𝑙𝑘

= 𝐔𝑘,𝑖,𝑙𝑘

𝑚  in (6), {𝐔𝑘,𝑖,𝑙𝑘

𝑚 } and 

{𝐔𝑘,𝑙𝑘
} share the same information, which does not require for further personalization among 

individual sites. However, for (17), we allow the deviations of site-specific features (i.e., 

{𝒞𝑘
𝑚}, and {𝐕𝑑

𝑚}) from the aggregated features (i.e., {𝒞𝑘}, and {𝐕𝑑}) by adding penalty terms 

(instead of equality constraints) to capture the heterogeneity among sites (Li et al. 2018). 

When Algorithm 4 converges after 𝑇  iterations, we obtain the aggregated model with 

parameter tensors {ℬ𝑘} constructed from the aggregated features. Then, to emphasize the 

differences among individual sites and achieve a better local fitting, we further personalize 

output bases {𝐕𝑑
𝑚} and core tensors {𝒞𝑘

𝑚} at each site by running an additional site-specific 

optimization in Section 3.2.2.1, which results in personalized output bases {𝐕𝑑
𝑚} and core 

tensors {𝒞𝑘
𝑚}  locally. Finally, each site constructs a personalized model based on these 

personalized features. 

We consider three types of models as benchmarks: (i) local models (1), i.e., models trained 

locally using MTOT based on data from each individual site; (ii) a global model (2), i.e., a 

model trained using MTOT based on the pooled data from all individual sites; and (iii) 

FedAvg (Brendan McMahan et al. 2016). The core concept of FedAvg is to average the 

individual features from each individual site, producing an aggregated feature at the 

aggregator level. However, this approach is not inherently designed for regression modeling 

for multimodal high-dimensional data sources. To gauge its efficacy, we adapted its central 
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principle: each individual site updates its features by running MTOT independently, but 

subsequently sends their own features to the aggregator every 𝜓 local updates (𝜓 = 5 in 

simulations). The aggregator then computes the average of these features and dispatches them 

back to the sites. These averaged features as used by individual sites to continue their local 

updates. Specifically, it is expected that the global model outperforms others since it learns 

model from the pooled raw data (Kim et al. 2017). The standardized prediction mean square 

error (SPME) is used as the evaluation metric, which is defined by SPME = ‖𝒴 − 𝒴̂‖
𝐹

/

‖𝒴‖𝐹. 

4.1 Simulation Setting 

We simulate waveform surfaces 𝒴𝑚 based on two input tensors, 𝒳1
𝑚 ∈ ℝ𝑁𝑠

𝑚×𝑃1,1×…×𝑃1,𝐿1  and 

𝒳2
𝑚 ∈ ℝ𝑁𝑠

𝑚×𝑃2,1×…×𝑃2,𝐿2 , where 𝑁𝑠
𝑚 is the sample size of the 𝑚-th site. Accordingly, we have 

𝒴𝑚 = ∑ 𝒳𝑘
𝑚 ∗ ℬ𝑘

𝑚
2

𝑘=1
+ 𝜏ℰ𝑚, 

ℬ𝑘
𝑚 = 𝒞𝑘

𝑚 ×1 𝐔𝑘,1
𝑚 ×2 … ×𝐿𝑘

𝐔𝑘,𝐿𝑘

𝑚 ×𝐿𝑘+1 𝐕1
𝑚 ×𝐿𝑘+2 … ×𝐿𝑘+𝐷 𝐕𝐷

𝑚, 

where 𝜏 is the noise level, and ℰ𝑚 is the error tensor. More simulation details can be found in 

Part VI of supplementary materials. 

In Scenario 1, we assume that each individual site has 𝑁𝑠
𝑚 = 80 samples. The input is a 

combination of two types of images, i.e., 𝒳1𝑖
𝑚 ∈ ℝ80×25×20, 𝒳2𝑖

𝑚 ∈ ℝ80×20×15, and the output 

is 𝒴𝑚 ∈ ℝ80×15×15 . We set 𝑃̃1,1 = 𝑃̃1,2 = 6, 𝑃̃2,1 = 𝑃̃2,2 = 5, 𝑄̃1 = 𝑄̃2 = 5. It implies that 

𝒞1
𝑚 ∈ ℝ6×6×5×5  and 𝒞2

𝑚 ∈ ℝ5×5×5×5 . In Scenario 2, we generate a response from a 

functional curve and an image signal. Assuming that each individual site has 𝑁𝑠
𝑚 = 60 

samples, we simulate 𝒳1𝑖
𝑚 ∈ ℝ60×20 , 𝒳2𝑖

𝑚 ∈ ℝ60×20×15 , and 𝒴𝑚 ∈ ℝ60×15×15  with 𝑃̃1,1 =

20, 𝑃̃2,1 = 𝑃̃2,2 = 6, 𝑄̃1 = 𝑄̃2 = 5, which implies that 𝒞1
𝑚 ∈ ℝ20×5×5 and 𝒞2

𝑚 ∈ ℝ6×6×5×5. 

Besides, we randomly select 80% of data in each individual site for model training and use 

the remaining data for performance testing. We train the model using the training set and then 
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calculate the SPME based on the test data. We replicate this process 30 times for each 

experimental setting to compute the mean and standard deviation of the performance metric. 

4.2 Performance Evaluation: Impact of Noise 

To test the model robustness, we evaluate the model performance under varying noise levels, 

i.e., 𝜏 to be four levels as 0.0001, 0.001, 0.01, and 0.1. Here, we keep models across different 

sites to be homogeneous, i.e., the distributions of {ℬ𝑘
𝑚} are the same among individual sites. 

The SPME results are reported in Table 1 (Scenario 1) and Table 2 (Scenario 2). The 

visualizations are provided in Figure 2 of Part I in supplementary materials. As it is presented 

in the tables, the personalized, aggregated, and global models significantly outperform the 

local models and models developed by FedAvg. Besides, personalized and aggregated 

models achieve a comparable prediction accuracy compared to the global model under 

relatively low noise levels. For example, as it is reported in Table 1, when 𝜏 = 0.01, the 

mean SPME of the personalized and aggregated model are 0.0142 and 0.0142, respectively, 

which are significantly smaller than the mean SPME of the local model (0.155). This 

example further demonstrates the benefit of collaboration in model construction. 

Moreover, federated models have a stable performance under relatively low noise levels. 

However, when the noise level increases, the global model achieves better performance 

compared to the federated models. This superior performance is because the global model 

pools all raw data directly and learn from the raw data while the federated models learn the 

information of transferred features. The increasing noise disturbs the information 

transmission and poses a challenge for federated models, which exhibits the importance of 

sample size to model robustness. 
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4.3 Performance Evaluation: Impact of Number of Sites and Model Heterogeneity 

To assess the impact of number of sites and model heterogeneity, where the distributions of 

{ℬ𝑘
𝑚} vary across different sites, we evaluate the model performance in both homogeneous 

and heterogeneous settings across 𝑀 sites (𝑀 = 2,3,4) under the noise level 𝜏 = 0.0001. In 

the homogeneous setting, {ℬ𝑘
𝑚} is generated following Section 4.2. For the heterogeneous 

setting, we use {𝒞𝑘
𝑚} from Section 4.2 as an initial value. To this, we add an additional 

random value drawn from a distribution of 0.001 ∗ 𝒩(0,1). This random addition to the 

initial value introduces heterogeneity to {ℬ𝑘
𝑚} across different sites. Tables 3 and 4 provide a 

summary of the SPME results for Scenarios 1 and 2. Both personalized and aggregated 

models still present comparable performance to the global model, and they significantly 

outperform the local model and the model constructed by FedAvg. 

In the homogeneous settings, we observe that both personalized and aggregated models 

offer the similar prediction accuracy for Scenario 1 under different site numbers. However, 

for Scenario 2, the personalized model outperforms the aggregated model. For example, as it 

is reported in Table 4, when 𝑀 = 4, the mean SPME of the personalized and aggregated 

model is 8.06 × 10−4 and 2.91 × 10−3, respectively. This result underscores the significance 

of personalization, particularly when the system utilizes multimodal input types. Specifically, 

in Scenario 2, the inputs are a functional curve and an image, whereas Scenario 1 utilizes has 

two different-sized images. 

In the heterogeneous setting, we find that the personalized model achieves much better 

performance than aggregated model, local model, and FedAvg, which further magnifies the 

necessity of personalization when model heterogeneity exists. For instance, when 𝑀 = 2, the 

mean SPME of the personalized and aggregated model is 2.05 × 10−2  and 2.94 × 10−2 

respectively when models are heterogeneous across sites, while the mean SPME is the same 

(3.63 × 10−4)  under the homogeneous setting. Moreover, Figure 3 in Part I of 
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supplementary materials illustrates the performance metrics for each site across a range of 

site number 𝑀. While the personalized approach generally outperforms the aggregated model, 

the extent of performance enhancement is inconsistent across various sites. This variation 

could be attributed to the level of model heterogeneity, wherein the addition of new involved 

sites might exert either beneficial or detrimental effects on the model construction. 

Since the local model has obviously worse performance and the aggregated model 

achieves the comparable result as the personalized model, we only show the personalized 

model and the global model in Figure 4 of Part I in supplementary materials to have a closer 

comparison. As it is shown from Figure 4 of Part I in supplementary materials, when the 

number of sites increases, the performance fluctuation of the global model is smaller than the 

personalized model. It further demonstrates the importance of sample size for model 

construction. 

5 Case Studies 

In this section, we conduct two case studies. The first case is to predict relative fuel ratio 

from operating signals in vehicle catalyst system. The second one is to evaluate the 

performance of the proposed method in collaborative image recovery. 

5.1 Case I: Catalyst Stoichiometry Prediction 

In this section, we consider that smart vehicles collaborate in the processing of sensor data to 

assist in safe navigation, pollution control, and traffic management. Specifically, we consider 

two onboard catalyst systems from different vehicles collaborate in the data processing, but 

the system owners are not willing to share their data directly. Here, the catalyst system 

designed to treat the exhaust gas produced by vehicles, i.e., 𝑁𝑂𝑥 Storage Catalyst (NSC). The 

NSC process has two alternating stages: (i) absorption, i.e., 𝑁𝑂𝑥 molecules are absorbed by 

zeolites coated converter support; and (ii) regeneration: i.e., the stored 𝑁𝑂𝑥 is reduced by 
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catalyst when the absorber is saturated. Typically, the optimal combustion is required to 

ensure the ideal conversion rate of the catalytic converter for the second stage. Besides, NSC 

only works efficiently at stoichiometric status, which requires combustion in a rich-air-to-fuel 

condition. To indicate whether the regeneration stage is in good condition, we use the relative 

fuel ratio normalized by stoichiometry, which is measured runtime by a sensor upstream of 

the NSC. Thus, it is worth developing a generalizable model that could provide a good 

estimation of the stoichiometry signal based on the operation signals collected by onboard 

sensors, such as rotational speed and inner torque. 

Each system performs 171 experiments to gather 171 sample pairs, containing five 

operating signals as inputs and one stoichiometry signal as the model response (Gahrooei et 

al. 2019, Gahrooei et al. 2021). Figure 5 in Part I of supplementary materials illustrates the 

sample of the real data. Specifically, each system collects one measurement for each signal 

every 2 second and has 203 measurements in total for each signal. For each site, we randomly 

select 136 samples as the training set and the remaining samples are used for model testing. 

Based on the training set, we estimate the model parameters and then calculate the SPME 

using the test data. 

Table 5 reports that the personalized model achieves a comparable performance as the 

global model while improving the performance by around 68.5% compared with the local 

model. Besides, since the data are collected from two real operating systems and the systems 

could not be identical, the personalized model has relatively better performance than the 

aggregated model under the federated framework, which again validates the importance of 

personalization in the real model construction. 

5.2 Case II: Image Denoising 

In this section, we conduct experiments to validate the image denoising application of our 

proposed method motivated by Zhou et al. (2013). In this application, we assume two 
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individual sites collaborate to recover two corrupted images. We denote the 𝑘-th noisy image 

at the 𝑚 -th site by 𝐼𝑚,𝑘
𝑛 ∈ ℝ𝑃𝑘,1×𝑃𝑘,2 . To apply our method in the image recovering 

application, we perform the following procedure in each site. First, each site 𝑚 generates a 

set of random observation tensor (with sample size 𝑁𝑠
𝑚), denoted as 𝒳𝑘

𝑚 ∈ ℝ𝑃𝑘,1×𝑃𝑘,2, for the 

𝑘-th image and then combines the weighted observation 𝒳𝑘
𝑚 ∗ 𝐼𝑚,𝑘

𝑛 , 𝑘 ∈ {1,2}, and noise 

𝜏ℰ𝑚, ℰ𝑚~𝒩(0,1), to produce 𝒴𝑚 as follows,  

𝒴𝑚 = ∑ 𝒳𝑘
𝑚 ∗ 𝐼𝑚,𝑘

𝑛
2

𝑘=1
+ 𝜏ℰ𝑚, 𝑚 = {1,2}. 

Each observation tensor 𝒳𝑘
𝑚  is generated as follows: the core tensor is generated from 

𝒩(0,1) and bases {𝐔𝑘,𝑙𝑘

𝑚 } are learned from the Tucker decomposition of 𝐼𝑚,𝑘
𝑛 . Given 𝑁𝑠 pairs 

of observations and response tensors (𝒴𝑚, {𝒳𝑘
𝑚}), each individual site aims to recover the 

𝐼𝑚,𝑘
𝑛  by applying the proposed method. 

The denoising problem can be formulated as a learning problem that can be solved by 

MTOT whose estimated parameters are the recovered version of the clean image 𝐼𝑘 . We 

denote the 𝑘 -th denoised image at site 𝑚  based on the global model, local model, 

personalized model, aggregated model by 𝐼𝑘
𝑔

, 𝐼𝑚,𝑘
𝑙 , 𝐼𝑚,𝑘

𝑝
, and 𝐼𝑚,𝑘

𝑎 , respectively. To test 

denoising effects, we use the inverse of the signal to noise ratio (ISNR), i.e., 𝐼𝑆𝑁𝑅 =

∑ ∑
‖𝐼𝑚,𝑘

𝑛 −𝐼𝑘‖
𝐹

‖𝐼𝑘‖𝐹

𝐾
𝑘=1

𝑀
𝑚=1 , to be the evaluation metric.  

We consider two scenarios of different types of 𝐼𝑚,𝑘
𝑛  as shown in Figure 6 of Part I in 

supplementary materials. The noise level 𝜏  is 0.00002 and 0.00003 for site 1 and 2, 

respectively. We assume that each individual site has 50 and 80 samples in Scenarios 1 and 2, 

respectively. By applying the proposed framework and benchmark methods, we estimate the 

model parameters (i.e., the recovered images). The ISNR results are summarized in Table 6 

and denoised images are illustrated in Figures 7 and 8 of Part I in supplementary materials. 

As it is reported, the proposed personalized model significantly outperforms local models and 
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achieves comparable performance to the global model in denoising images. As shown in 

Figures 7 and 8 of Part I in supplementary materials, local models fail to learn the 

background under the red rectangular, while the personalized model can address the issue due 

to the collaboration under the proposed federated framework. 

6 Conclusion 

This paper proposes a federated multiple tensor-on-tensor regression (FedMTOT) framework 

to follow the data management policies and decrease data storage costs. In the proposed 

framework, the input bases, core tensor, and output bases from multimodal data sources are 

learned iteratively in a federated fashion to avoid direct data sharing but still maintain a 

similar model performance. Finally, we use two sets of simulations and two case studies to 

test the model effectiveness in both response prediction and image denoising. Our results 

show that the personalized model under the federated setting outperforms the model trained 

only using local data via MTOT, which validates the superiority of the proposed framework. 

Several future directions can be envisioned. First, this paper assumes all the local sites have 

access to all data modalities which allows them to construct the same models to be 

aggregated. However, missing data modality and samples is possible and requires further 

investigations. Furthermore, the proposed method is an offline method. However often data is 

continuously generated and can be used to improve the model. Developing the online 

versions of the proposed method should be investigated in future research. Finally, the 

positive and negative impact of each involved site in collaboratively constructing an 

aggregated model should be quantified as a future direction of research. 

Supplementary Materials 

PDF supplement: In the online supplementary materials of this paper, we provide a PDF file 

that contain further simulation and case study results, detailed derivations of variable updates, 
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and convergence analysis of the proposed algorithm. Matlab code: We provide Matlab 

implementation of the proposed algorithm for reproducing Figure 7 in this paper. 

Acknowledgements 

We would like to thank the editor, associate editor, and the referees for their constructive 

comments and suggestions that considerably improved the paper. 

Funding 

This work has been partially supported by the National Science Foundation (NSF) award 

2212878. 

Disclosure Statement 

The authors report there are no competing interests to declare. 

Reference 

Acar, D. A. E., Zhao, Y., Navarro, R. M., Mattina, M., Whatmough, P. N., Saligrama, V. 

(2021), “Federated learning based on dynamic regularization,” arXiv:2111.04263. 

Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J. (2011), “Distributed optimization and 

statistical learning via the alternating direction method of multipliers,” Foundations and 

Trends
®

 in Machine learning, 3(1), 1-122. 

Brendan McMahan, H., Moore, E., Ramage, D., Hampson, S., Arcas, B. A. Y. (2016), 

“Communication-efficient learning of deep networks from decentralized data,” 

arXiv:1602.05629. 

Fang, X., Paynabar, K., and Gebraeel, N. (2019), “Image-based prognostics using penalized 

tensor regression,” Technometrics, 61(3), 369-394. 

Feng, J., Yang, L. T., Zhu, Q., Choo, K. R. (2020), “Privacy-preserving tensor decomposition 

over encrypted data in a federated cloud environment,” IEEE Transactions on 

Dependable and Secure Computing, 17(4), 857-868. 

Gaw, N., Yousefi, S., Gahrooei, M. R. (2022), “Multimodal data fusion for systems 

Acc
ep

te
d 

M
an

us
cr

ipt



32 

 

improvement: a review,” IISE Transactions, 54(11), 1098-1116. 

Gahrooei, M. R., Paynabar, K., Pacella, M., Shi, J. (2019), “Process modeling and prediction 

with large number of high-dimensional variables using functional regression,” IEEE 

Transactions on Automation Science and Engineering, 17(2), 684-696. 

Gahrooei, M. R., Yan, H., Paynabar, K., Shi, J. (2021), “Multiple tensor-on-tensor regression: 

an approach for modeling processes with heterogeneous sources of data,” Technometrics, 

63(2), 147-159. 

Gordan, M., Sabbagh-Yazdi, S., Ismail, Z., Ghaedi, K., Carroll, P., McCrum, D., Samali, B. 

(2022), “State-of-the-art review on advantages of data mining in structural health 

monitoring,” Measurement, 193, 110939. 

Hong, M., Luo, Z. Q., Razaviyayn, M. (2016), “Convergence analysis of alternating direction 

method of multipliers for a family of nonconvex problems,” SIAM Journal on 

Optimization, 26(1), 337-364. 

Kolda, T. G., Bader, B. W. (2009), “Tensor decompositions and applications,” SIAM Review, 

51(3), 455-500. 

Kontar, R., Shi, N., Yue, X., Chung, S., Byon, E., Chowdhury, M., Jin, J., Kontar, W., 

Masoud, N., Nouiehed, M., Okwudire, C.E. (2021), “The internet of federated things 

(IoFT),” IEEE Access, 9, 156071-156113. 

Konyar, E., Reisi Gahrooei, M. (2023), “Federated generalized scalar-on-tensor regression,” 

Journal of Quality Technology, DOI: 10.1080/00224065.2023.2246600 

Kim, Y., Sun, J., Yu, H., and Jiang, X. (2017), “Federated tensor factorization for 

computational phenotyping,” Proceedings of the 23rd ACM SIGKDD International 

Conference on Knowledge Discovery and Data Mining, 887-895. 

Acc
ep

te
d 

M
an

us
cr

ipt



33 

 

Lee, H. Y., Reisi Gahrooei, M., Liu, H., Pacella, M. (2023), “Robust tensor-on-tensor 

regression for multidimensional data modelling,” IISE Transactions, DOI: 

10.1080/24725854.2023.2183440 

Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V. (2018), “Federated 

optimization in heterogeneous networks,” arXiv:1812.06127. 

Liu, X., Duan, R., Luo, C., Ogdie, A., Moore, J. H., Kranzler, H. R., Bian, J., Chen, Y. 

(2022), “Multisite learning of high-dimensional heterogeneous data with applications to 

opioid use disorder study of 15,000 patients across 5 clinical sites,” Science Report, 12, 

11073. 

Lock, E. F. (2018), “Tensor-on-tensor regression,” Journal of Computational and Graphical 

Statistics, 27(3), 638-647. 

Luo, R., and Qi, X. (2017), “Function-on-Function Linear Regression by Signal 

Compression,” Journal of the American Statistical Association, 112, 690–705. 

McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B. A. Y. (2017), 

‘‘Communication-efficient learning of deep networks from decentralized data,’’ 

Artificial Intelligence and Statistics, arXiv:1602.05629. 

Orús, R. (2019), “Tensor networks for complex quantum systems,” Nature Reviews Physics, 

1(9), 538-550. 

Pathak, R., Wainwright, M. J. (2020), “FedSplit: An algorithmic framework for fast federated 

optimization,” Advances in Neural Information Processing Systems, 33, 7057-7066. 

Roy, Samrat, and George Michailidis (2022), “Regularized high dimension low tubal-rank 

tensor regression,” Electronic Journal of Statistics, 16(1), 2683-2723. 

Shi, J. (2023), “In-process quality improvement: concepts, methodologies, and applications,” 

IISE Transactions, 55(1). 

Acc
ep

te
d 

M
an

us
cr

ipt



34 

 

Wang, Q., Jin, J., Liu, X., Zong, H., Shao, Y., Li, Y. (2022), “Tensor decomposition based 

personalized federated learning,” arXiv:2208.12959 

Wirsich, J., Jorge, J., Iannotti, G. R., Shamshiri, E. A., Grouiller, F., Abreu, R., Lazeyras, F., 

Giraud, A. L., Gruetter, R., Sadaghiani, S., Vulliémoz, S. (2021), “The relationship 

between EEG and fMRI connectomes is reproducible across simultaneous EEG-fMRI 

studies from 1.5T to 7T”, NeuroImage, 231, 117864. 

Yan, H., Paynabar, K., Shi, J. (2015), “Image-based process monitoring using low-rank 

tensor decomposition,” IEEE Transactions on Automation Science and Engineering, 

12(1), 216-227. 

Yan, H., Paynabar, K., Pacella, M. (2019), “Structured point cloud data analysis via 

regularized tensor regression for process modeling and optimization,” Technometrics, 

61(3), 385-395. 

Yue, X., Kontar, R. A., Gómez, A. M. E. (2022), “Federated Data Analytics: A Study on 

Linear Models,” IISE Transactions, DOI: 10.1080/24725854.2022.2157912 

Zhao, M., Reisi Gahrooei, M., Gaw, N. (2022), “Robust coupled tensor decomposition and 

feature extraction for multimodal medical data,” IISE Transactions on Healthcare 

Systems Engineering, DOI: 10.1080/24725579.2022.2141929 

Zhao, Q., Caiafa, C. F., Mandic, D. P., Chao, Z. C., Nagasaka, Y., Fujii, N., Zhang, L., and 

Cichocki, A. (2012), “Higher order partial least squares (HOPLS): a generalized multi- 

linear regression method,” IEEE Transactions on Pattern Analysis and Machine 

Intelligence, 35(7), 1660-1673. 

Zhang, Z., Mou, S., Paynabar, K., Shi, J. (2023), “Tensor-based temporal control for partially 

observed high-dimensional streaming data,” Technometrics, DOI: 

10.1080/00401706.2023.2271060 

Acc
ep

te
d 

M
an

us
cr

ipt



35 

 

Zhou, H., Li, L., Zhu, H. (2013), “Tensor regression with applications in neuroimaging data 

analysis,” Journal of the American Statistical Association, 108(502), 540-552. 

  

Acc
ep

te
d 

M
an

us
cr

ipt



36 

 

𝒳1
𝑚

 𝒳2
𝑚

 𝒳𝐾
𝑚

 𝒴𝑚
 

... ...

sample Ns

...

sample 1

∑ 𝒳𝑘
𝑚 ∗ ℬ𝑘

𝑚

𝐾

𝑘=1

→ 𝒴𝑚
 extract low-dimensional features via 

Tucker Decomposition

the m-th site

multimodal structured high-dimensional data modeling for an individual site

construct
predictive model

...

save to the m-th database

 

Figure 1. Each site 𝑚  stores its own multimodal structured high-dimensional data and 

constructs a predictive model with coefficient sets {ℬ𝑘
𝑚} based on 𝐾 input data sources {𝒳𝑘

𝑚} 

and one response 𝒴𝑚. 

 

aggregator

Direct Data-Sharing

site 1 site m site M

... ...

global 
server

... ...

site 1 site m site M
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global 
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aggregated 
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Figure 2. Overview: (left) conventional MTOT models where participating sites directly 

share their data to a server which creates an MTOT model based on the pooled data; (right) 

the proposed FedMTOT framework and associated federated models, where each site 

constructs a site-specific MTOT model and shares the model features with an aggregator. 
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Table 1. Testing errors in Scenario 1 under different noise levels. (Variance in the bracket) 

𝜏 Personalized Aggregated Local Global FedAvg 

0.0001 
3.63E-4 

(2.92E-8) 

3.63E-4 

(2.92E-8) 

1.51E-1 

(6.59E-3) 

1.81E-4 

(7.29E-9) 

1.84E0 

(3.53E-3) 

0.001 
1.51E-3 

(4.08E-9) 

1.51E-4 

(4.14E-9) 

1.38E-1 

(5.74E-3) 

7.53E-4 

(1.03E-9) 

1.85E0 

(4.35E-3) 

0.01 
1.42E-2 

(8.98E-8) 

1.42E-2 

(8.51E-8) 

1.55E-1 

(8.79E-3) 

7.08E-3 

(1.95E-8) 

1.85E0 

(3.45E-3) 

0.1 
1.45E-1 

(8.68E-6) 

1.45E-1 

(8.85E-6) 

2.99E-1 

(3.32E-3) 

7.22E-2 

(2.16E-6) 

1.84E0 

(3.51E-3) 

 

Table 2. Testing errors in Scenario 2 under different noise levels. (Variance in the bracket) 

𝜏 Personalized Aggregated Local Global FedAvg 

0.0001 
8.26E-4 

(2.71E-7) 

9.43E-4 

(2.77E-7) 

2.12E0 

(2.89E-2) 

4.01E-4 

(6.94E-8) 

1.87E0 

(6.61E-3) 

0.001 
1.67E-3 

(2.31E-8) 

1.75E-3 

(4.00E-8) 

2.12E0 

(4.08E-2) 

8.25E-4 

(6.03E-9) 

2.90E0 

(1.97E-3) 

0.01 
1.52E-2 

(1.72E-7) 

1.52E-2 

(1.77E-7) 

2.09E0 

(2.74E-2) 

7.55E-3 

(4.48E-8) 

3.91E0 

(8.35E-4) 

0.1 
1.50E-1 

(1.46E-5) 

1.50E-1 

(1.49E-5) 

2.10E0 

(3.46E-2) 

7.44E-2 

(4.29E-6) 

1.87E0 

(4.15E-3) 

 

Table 3. Testing errors in Scenario 1 under varying site numbers. (Variance in the bracket) 

𝑀 
Model 

Heterogeneity 
Personalized Aggregated Local Global FedAvg 

2 
homogeneous 

3.63E-4 

(2.92E-8) 

3.63E-4 

(2.92E-8) 

1.51E-1 

(6.59E-3) 

1.81E-4 

(7.29E-9) 

1.84E0 

(3.53E-3) 

heterogeneous 
2.05E-2 

(4.30E-5) 
2.94E-2 

(1.17E-4) 
1.62E-1 

(7.45E-3) 
1.78E-2 

(5.17E-5) 
1.84E0 

(4.07E-3) 

3 
homogeneous 

5.67E-4 

(7.47E-8) 

5.66E-4 

(7.47E-8) 

2.34E-1 

(1.07E-2) 

1.88E-4 

(8.27E-9) 

2.90E0 

(2.34E-3) 

heterogeneous 
3.87E-2 

(1.06E-4) 
5.56E-2 

(1.55E-4) 
2.90E-1 

(1.10E-2) 
2.14E-2 

(2.63E-5) 
2.90E0 

(2.10E-3) 

4 
homogeneous 

5.28E-4 

(3.29E-8) 

5.28E-4 

(3.29E-8) 

3.18E-1 

(1.08E-2) 

1.32E-4 

(2.04E-9) 

3.94E0 

(6.37E-4) 

heterogeneous 
4.39E-2 

(1.56E-4) 
6.35E-2 

(2.75E-4) 
3.68E-1 

(1.94E-2) 
1.83E-2 

(2.37E-5) 
3.95E0 

(5.43E-4) 
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Table 4. Testing errors in Scenario 2 under varying site numbers. (Variance in the bracket) 

𝑀 
Model 

Heterogeneity 
Personalized Aggregated Local Global FedAvg 

2 
homogeneous 

8.26E-4 

(2.71E-7) 

9.43E-4 

(2.77E-7) 

2.12E0 

(2.89E-2) 

4.01E-4 

(6.94E-8) 

1.87E0 

(6.61E-3) 

heterogeneous 
2.90E-2 

(4.98E-4) 

4.36E-2 

(4.39E-4) 

2.12E0 

(3.26E-2) 

2.65E-2 

(1.36E-4) 

1.89E0 

(2.65E-3) 

3 
homogeneous 

4.02E-4 

(9.80E-9) 

1.29E-3 

(4.72E-8) 

3.2E0 

(1.14E-1) 

1.18E-4 

(1.40E-9) 

1.87E0 

(3.87E-3) 

heterogeneous 
3.44E-2 

(1.46E-4) 

5.88E-2 

(2.01E-4) 

3.15E0 

(9.98E-2) 

2.44E-2 

(3.84E-5) 

2.90E0 

(1.65E-3) 

4 
homogeneous 

8.06E-4 

(9.24E-8) 

2.91E-3 

(2.97E-7) 

4.34E0 

(1.11E-1) 

1.80E-4 

(6.79E-9) 

1.88E0 

(4.93E-3) 

heterogeneous 
4.98E-2 

(2.04E-4) 

8.80E-2 

(3.51E-4) 

4.37E0 

(1.14E-1) 

2.59E-2 

(4.52E-5) 

3.91E0 

(6.22E-4) 

 

Table 5. SPME results for catalyst stoichiometry prediction. (Variance in the bracket) 

Personalized Aggregated Local Global FedAvg 

5.96E-1 

(8.76E-4) 

5.95E-1 

(9.87E-4) 

2.43E0 

(1.20E-4) 

4.04E-1 

(6.20E-4) 

6.25E0 

(1.96E-4) 

 

Table 6. ISNR results for image denoising and reconstruction. 

Model 

Scenario  
Personalized Global Local FedAvg Noisy 

1 1.33E-1 1.16E-1 1.10E0 2.00E0 2.59E0 

2 1.74E-1 1.70E-1 1.46E0 1.91E0 2.59E0 
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