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A Physics-Specific Change Point Detection Method
Using Torque Signals in Pipe Tightening Processes

Juan Du™, Member, IEEE, Xi Zhang~, Member, IEEE, and Jianjun Shi

Abstract— Change point detection in torque signals has widely
been adopted for quality inspection during pipe tightening
processes. Previous studies on the change point detection in this
process generally focus on directly detecting the change points
throughout torques without considering the underlying mech-
anism that generates various quasi-periodic nonlinear profiles,
thereby introducing a series of false change points and increasing
the risk of releasing defective pipes. To overcome this problem,
we propose a novel change-point detection approach by fully
considering the profile generating mechanism, and introduce a
similarity-weighted matrix with an integration of dynamic time
warping and tightening physics. Thus, the probability of false
detection of change points is reduced. A weighted regression
model is developed to determine the authentic change points by
introducing the tightening process constraints. The performance
of the proposed approach is demonstrated by both numerical
and real case studies, and results show that the proposed method
achieves a more effective detection power than the other existing
methods in the pipe tightening processes.

Note to Practitioners—This paper was motivated by the real
industrial needs of change point detection in torque signals
during pipe tightening processes. Identifying the change points
that substantially captures the tightening process conditions,
and thus assuring the quality of pipe connections, is of great
practical interest. A key challenge to this problem is that multiple
uncertainties exist in the pipe tightening process, thereby leading
to various nonlinear profiles with different lengths in torque
signal. This fact introduces a number of fake change points and
consequently mixes with the real change points regarding the
process conditions. To address this issue, we propose to generate a
“physical basis function” to adaptively assign the weights to those
nonlinear profiles that may produce the fake points, by using
dynamic time warping. To better use this method for change
point detection, two factors should be noted: 1) the generated
basis function should fully comply with the process physics and
2) this method can be widely used in torque signals with different
lengths and multiple nonlinear profiles.
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I. INTRODUCTION

N A production line, a single working process is usu-

ally designed with a series of critical phases to satisfy
product functional requirements. For example, pipe tightening
processes have three phases, namely, thread engagement, metal
surface sealing, and shoulder contact [1], which sequentially
and collectively form the whole tightening procedure. Any
violation to the process criteria under each phase might result
in serious product malfunction (e.g., leaking or loosing) or
even safety problems [2]. However, in current practice, exam-
ining the product conformity is mainly conducted by offline
inspection after the tightening process. This offline test has one
major weakness, which may enable the ineligible products to
pass through the remaining downstream processes before they
can be identified by postprocess inspection, thereby leading to
a large amount of waste in the production line. Furthermore,
more defective pipe joints may be produced due to the delay
of the offline defective joints detection.

Advancement of sensor technologies prompts the extensive
use of sensor data across assembly lines. The collected sensor
signals usually contain rich information that has potential to
be used to quantitatively characterize the process conditions
for product quality assurance. Specifically, in pipe tightening
processes, the torque signal can be used for process condition
monitoring by judging a pair of change point locations, which
should be in the acceptable ranges according to the standards
of the American Petroleum Institute (API) [24], [25]. As
shown in Fig. 1, a pair of change points A and B separate
the torque signal into three phases, and the torque values
of these two points in an eligible connection should be
simultaneously satisfied within a specified range as labeled by
horizontal dashed lines; otherwise, the connection is regarded
as defective. An inaccurate detection of the location of any
change point may cause a failure for identifying unqualified
pipe connections; these connections lead to product rework
or production wastes. In practice, the postinspection such as
hydrostatic testing will be the following step after the pipe
connection. The successful detection of nonconforming parts
via automatic change point detection during the pipe tightening
process might reduce the costs of hydrostatic testing as well
as the risk of nonconforming product releases. The annual loss
from the failure of oil pipes reaches half a billion dollars, with
two-third of these failures caused by pipe connections [3].
Therefore, a precise detection tool for change points is an
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Fig. 2. Sensor toque signals in the pipe tightening process. (a) Sample of
collected torque signals. (b) Samples of torque signals with varying lengths.

essential task for product quality assurance in pipe tightening
processes.

However, developing such an effective tool to detect a pair
of change points throughout torque signals is a challenging
task because various uncertainties occur in assembly systems
that are generally shown with multiple types of nonlinear
profiles in torque signals. Thus, these profiles due to uncer-
tainties would greatly affect the accuracy of the change point
detection. Generally, in addition to the common measurement
errors in the signal such as Gaussian noises, one type of
nonlinear profile widely exists, which contains a quasi-periodic
pattern with varying periods and lengths. To the best of
our knowledge, this condition mainly occurs because of the
inconsistency of upstream processes such as the misalignment
of pipes before connection and the unstraightness of pipes,
which is difficult to fully avert. Although this nonlinear profile
will not alert any ineligible connection signs, the occurrence
of this type of profile primarily conceals locations of change
points. Fig. 2(a) depicts an example of the torque signal
obtained from the real tightening process with a nonlinear
profile originated from the pipe misalignment. This process
produces pseudochange points (marked in dots) and sets a high
barrier to directly locate the authentic change points (marked
in diamonds) throughout the torque signal. Fig. 2(b) shows a
batch of samples of torque signals that are collected from a
single connection machine, and different lengths as well as
varying nonlinear patterns due to the inconsistent preassem-
bling processes in the upstream stage could be observed. This
condition also poses another challenge to accurately locate the
change points by traditional signal processing methods.

In this paper, to overcome the challenges for change
point detection, we aim to eliminate the negative effect that
obscures the true change points produced from this type of
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quasi-periodic profiles with different patterns and propose an
innovative change point detection method by considering the
origin of the nonlinear profiles under different signal lengths.
Specifically, we consider encoding the mechanism that gener-
ates such profiles into a “physical basis function” and design
a similarity-weighted matrix via dynamic time warping to
quantify the similarity between the “physics” and underlying
profiles in the pipe tightening process. The similarity-weighted
matrix will be used to mitigate the negative effect generated
by these quasi-periodic profiles in the following procedure.
We first formulate the change detection problem as a sequen-
tial piecewise linear model following the physical mechanism
of the pipe tightening process, and an Fp,x test is used
to capture the potential change points. A selection proce-
dure is then proposed in light of the physical constraints to
shrink the set of pseudochange points. A weighted three-phase
regression model is finally established by incorporating the
similarity-weighted matrix to determine the true change points.

The contributions of this paper can be summarized as

follows.

1) We designed the “physical basis function” from the
domain knowledge to provide a measure for character-
izing multiple types of nonlinear profiles that are gen-
erated from underlying latent factors of the tightening
process.

2) We leveraged dynamic time warping to deal with the
unequal length characteristic of sensing signals and
physical basis function.

3) A similarity-weighted matrix is designed to measure
the deviation of sensor torque signals from the nominal
torque curve for authentic change point determination.

The rest of this paper is organized as follows. We first

briefly review the topics related to change point detection in
Section II. In Section III, we present our proposed method-
ology on change point detection. Section IV provides simula-
tion studies and sensitivity analysis of the proposed method.
In Section V, a real case study on pipe-tightening processes is
provided to validate our proposed approach. Finally, conclu-
sions are summarized in Section VL.

II. LITERATURE REVIEW

To ensure the quality of the connected pipes, a variety
of postprocess inspection methods have been developed for
quality evaluation, such as internal pressure leak detection,
external pressure leak detection, thermal cycling tests, and
make-up/break-out test. The detailed procedures and recom-
mended postprocess inspection practices for pipe connection
quality can be found in [4]. These tools are essential for final
product inspection but are typically used when the tightening
process is completed. Thus, the corrections or compensation to
the inappropriate working conditions may not be implemented
in a timely manner, which leads to many defective products
or material wastes. Alternatively, by harnessing the in-process
signals such as torque signals, developing such automatic
change point detection methods for in-process quality inspec-
tion elicits extensive attention in contemporary research.

Existing change point detection methods can be generally
divided into two lines of research, that is, data-driven methods
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and engineering-driven methods. Data-driven methods aim to
solve the change-point detection problem by statistical model-
ing as well as testing associated parameter changes. These
methods can be further categorized into three classes. The
first category conducts change point detection by identifying
distribution changes in the signals. Distribution change detec-
tion methods have been developed such as likelihood ratio
test methods [5], [6] or spectrum methods [7], [8]. Powerful
tools in process control including various categories of control
charts are conventional examples of this category. These types
of methods are adoptable when the data or extracted features
comply with the model assumptions or constraints. However,
they are not suitable in tightening processes because varia-
tions from existing nonlinear profiles in torques will enable
the distribution to change superficially, whereas the truth as
regards the process condition beneath the profiles is fixed.
Consequently, a series of pseudochange points will be selected.
The second category detects the change points by identifying
the changes of state variables in the established models.
These methods usually characterize the process condition by
using a state-space model and developing state estimation
algorithms to identify the changes. For example, the second-
order polynomial state-space model is proposed for endpoint
detection in the semiconductor manufacturing process [9].
These methods are more effective when the collected temporal
data originates from a discrete or discretized state space in
which the finite state transits following a definite pattern [10].
However, in a complex manufacturing process, state variables
and corresponding transition patterns may not always be
known. In addition, precise estimation of state variables may
not be obtained from signals with a variety of nonlinear
profiles. For example, the torque signals with quasi-periodic
profiles may cause an incorrect estimation of phase changes
during pipe tightening processes. The third category is signal-
segment-based approaches. These methods define signal seg-
mentation parameters in the model as the location of change
points to characterize process changes. These methods are
successfully implemented in this paper for mean shift change
point detection. For instance, a piecewise constant model is
established to detect multiple change points by testing the
mean of a new sequence with the old one [11]. Moreover,
analysis based on maximization of likelihood [12] or marginal-
likelihood [13] function of the segmented data is proposed
to estimate change points. The major limitation of existing
segmented methods is that the assumption of signal pattern
is stepwise signal. However, sensor signals from numerous
manufacturing processes may not be stepwise signals, such as
torque signals. Therefore, existing pure data-driven methods
cannot be directly adopted for change point detection in the
tightening process.

Engineering-driven methods incorporate engineering
domain knowledge of manufacturing process into statistical
modeling for change point detection. Such methods have
been successfully applied in many manufacturing processes,
including nanomanufacturing process [14] and progressive
stamping process [15]. Specifically in the tightening process,
two empirical methods are developed for shoulder point
detection by considering the piecewise linear structure of
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Fig. 3. Framework of the proposed methodology.

the nominal torque curve. These two empirical methods
use simple “derivative” of torque curve to calculate the
slope of the segment piece and set a threshold for shoulder
point identification [2], [16]. However, these methods
occasionally identify false change points because the
collected torque signals consistently have multiple nonlinear
profiles. In addition, these two methods can only identify
shoulder point. To address these problems, in our previous
work, a sequential piecewise linear model was proposed by
considering the linear relationship between screwing turns
and torques based on the principle of elastic mechanics [17].
To provide a more accurate detection result, a three-phase
state-space model was developed for the pairwise change
point detection by investigating the phase changes during
the tightening process [18]. These two methods show a
satisfactory detection power on the torque signals with
few simple nonlinear profiles (e.g., a single quasi-periodic
profile exists in the torque). However, they cannot effectively
identify multiple change points in torque signals with various
nonlinear profiles (e.g., multiple quasi-periodic profiles with
varying periods and lengths) because of the lack of complete
investigation in the generation mechanism of signal profiles.
Therefore, the existing engineering-driven methods cannot
meet the requirements of multiple change point detection
when different types of nonlinear profiles exist in torque
signals. It is desirable to develop an alternative approach
that considers the generation mechanism of signal profiles
and mitigates the negative effect of quasi-periodic profile for
change point detection in the tightening process.

III. RESEARCH METHODOLOGY
A. Overview

Fig. 3 shows the framework of the proposed method. Based
on the physical analysis of nonlinear patterns in torque signals,
the “physical basis function” is first designed to capture the
nonlinear patterns of torque signals. Considering the varying
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periods of the nonlinear patterns and lengths of the signal
pieces, we adopt dynamic time warping to measure the sim-
ilarity between torque signals and “physical basis function”
to provide a similarity-weighted matrix. A pool of potential
change points can be identified by the developed sequential
change point detection and selection method. A weighted
three-phase regression model is finally proposed to obtain a
pair of change points from this potential change point pool by
incorporating the similarity-weighted matrix derived from the
dynamic time warping.

Based on the fundamental physical analysis [19], [20] of
torque signals during tightening processes, a three piecewise
linear curve, with a pair of change points, could fully represent
the three-phase pipe tightening, as shown in Fig. 1. Thus,
guided by physical interpretations, the basic assumption in this
paper is that a pair of change points coexists within the torque
signal, and consequently three segments exist.

The remainder of this paper is organized as follows. Section
III-B provides details on the “physical basis function” and
similarity-weighted matrix generated through a dynamic time
warping method. Section III-C presents the details on acquir-
ing a set of potential change points through the established
prior information from the similarity-weighted matrix. This
section also serves as the input for the optimal pair of change
points in Section III-D.

B. “Physical Basis Function” and Similarity-Weighted
Matrix Design

Given a variety of latent factors including misalignment
and unstraightness in the tightening process, quasi-periodic
profile in the torque signal frequently emerges with varying
periodic lengths. This underlying pattern can be characterized
by a physical function, and by using such a function, this
type of nonlinear pattern is expected to be fully characterized.
Considering the varying lengths of the quasi-periodic profiles
and length of the torque signal, the static physical function is
incapable of capturing all patterns generated by those latent
factors. To efficiently evaluate the similarity between such
profiles and the designed physical function, dynamic time
warping is adopted to measure the distance between torque
signals and “physical basis function.”

Dynamic time warping [26] is initially designed for time-
series similarity measurement by aligning two time series
with the minimum mapping distance. The major advantage
of dynamic time warping over traditional distance calculation
is that the lengths of two series applied by this technique may
vary. The details of dynamic time warping are provided in the
Appendix.

Multiple quasi-periodic profiles mainly exist in the thread
engagement phase, and certain nonlinear profiles cause the
accurate change-point detection to be challenging. To mitigate
the negative effect generated by these quasi-periodic profiles
to avoid the false detection of change points, we propose
the “physical basis function” to capture the quasi-periodic
patterns of torque signals. Specifically, the warping distance
Di(i = 1,...,N) between the “physical basis function”
and torque series from the first torque point i = 1) to
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the ith(( = 1,...,N) torque point is sequentially calcu-
lated by dynamic time warping to quantify the influence
of the quasi-periodic patterns. Here, N is the time index
that corresponds to the maximum torque of the signal. The
warping distance characterizes the similarity between the
“physical basis function” and torque signals, and the large
distance indicates that the corresponding torque sequence is
not inclined to match the quasi-periodic pattern. The small
distance indicates the similarity to the quasi-periodic patterns
and is slightly important for change-point detection. The
shortest warping distance indicates that the torque signals
consist of quasi-periodical patterns that mainly occur in a
thread engagement phase in the tightening process. The two
change points are located behind the engagement phase, which
introduces the prior information for the subsequent sequential
change-point detection in Section III-C. Thus, the sequential
warping distances between the “physical basis function” and
torque sequences can be regarded as a similarity-weighted
matrix, that is, S = diag(D;),i = 1, ..., N, which can be used
for the final change-point detection described in Section III-D.

C. Sequential Change Point Detection and Selection

Given the model assumption that the torque curve is piece-
wise linear and the change point is located at the slope
change of two sequential linear segments, a two-phase regres-
sion model is proposed for potential change point detection,
as follows:

_JoutBixkter 0<xk<co )
az + Paxi + ek co < xp <xN

where xp, vk, and e represent screwing turn observation,
torque observation, and Gaussian noise at time k, respectively.
Parameter ¢y denotes the location of potential change point
in x-axis (screwing turns) in which the slope experiences a
significant change; (a;, f;) is the coefficient of the two-phase
regression (i = 1,2); and xy is the turn that corresponds to
the maximal torque of the torque signal.

Based on the two-phase regression model, the detection of
the potential change points is converted into the detection of
the slope change, that is, f1 # f>. Thus, the null hypothesis
is Hy : f1 = p2, a1 = az. The Fy statistic for change time
Ko € {1,..., N} can be used for the following hypothesis
test:

_ (SSEy — SSE})/2

Fy= 2
O~ TSSE;/(N —4) ° @
where
N
SSEg = > (3 — a0 — fox)’,
k=1
a1 =a2 =09, p1=pr=po 3)
Ko N
SSE1 = > (e —a1 —pix)*+ D (o — o2 — faxp)™.
k=1 k=Ko+1
“4)
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The parameters in (3) and (4) can be estimated from the least
squares. The inference of K is provided by

max Fp. (5)
1<Ko<N

Fmax =

In practice, Fpax is obtained by searching throughout the
torque signal to determine the point that maximizes Fy. For
example, the Fpax percentile can be borrowed to test the
significance of the statistic [21].

The traditional Fp.x test for two-phase regression model
can only detect one change point for a given sequence.
Considering that the number of the potential change points
is unknown, we develop a sequential change point detection
method to identify all potential change points based on the
two-phase regression model and Fpax test. The flowchart
of our proposed sequential change point detection is shown
in Fig. 4. The prior information from Section III-B provides
the initial point where the sequential change-point detection
begins. The slope and intercept are first estimated on the
basis of the torque sequence from the first point to the initial
point. Potential change points are sequentially identified by
using the Fiax test when subsequent sampled torque points are
obtained. The torque sequence is segmented at the point where
the corresponding F,x statistic is significant at the specific
confidence level. This procedure is repeated until all torque
points before the points at the maximal torque are tested.
Therefore, the number of two-phase regressions is equal to
the number of torque points starting from the initial point
obtained from Section III-B to the point with the maximal
torque. A change point set Q, which includes all the potential
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change points of the torque signals, can be finally obtained
after this procedure.

To achieve in-process change point detection, the pool of
potential change points can be shrunk by studying the process
in an engineering design perspective. Specifically, in the
tightening process, upper and lower specification limits from
engineering design can be considered to obtain a shrunken set
of potential change points. On one hand, a designed lower
and upper specification limits 4; and hy of screwing turn
distance occurs between two change points A and B (Fig. 2),
thereby indicating that the screwing turn distance between
these two change points is larger than /| and smaller than /5.
On the other hand, an upper specification limit 43 exists on
the deformation of shoulder contact, thereby indicating that
the screwing turn distance between the second change point
and the point at the maximal torque value is smaller than /3.
We set a zero lower limit for the second change-point detection
because the location of the second change point is near the
point with the maximum torque, and the physical turn distance
is relatively short in the shoulder contact phase. In practice,
the engineering specification limits &1, hp, and h3 can be
obtained from the product design phase.

The flowchart of the change point selection based on the
engineering geometric constraints is shown in Fig. 5. The
selection approach gives two smaller potential change point
sets ya,; and yp for the first change point and the second
change point, respectively,

xa;={cilhi=cj—ci<hy,cjeyp,cieQ}, j=1,2,....M
(6)

)(BZ{Cj|O<)CN—Cj <h3,Cj€Q} (7)

where M is the number of points in yp set. ¢; and c;
denote the locations of one potential first and second change
points in x-axis (screwing turns). Given one potential second
change point ¢; in yp, a set ya; exists, which contains
the corresponding potential first change points. Thus, a final
determination is needed to determine the optimal combinations
of a pair of change points in torque signals.
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D. Determination of Pair of Change Points

The nominal torque curve under the torque signal from a
physical mechanism analysis is piecewise linear. Owing to the
pool of potential change points, we must select the optimal
points along the collected torque signals on the basis of the
estimated nominal piecewise linear curves. To achieve this
process, we estimate the slope and intercept by minimizing
weighted least squares, that is, weighted residual sum of
squares, where the weight is obtained from the dynamic time
warping distance.

According to the model assumption, a pair of change
points segments the torque signals into three pieces, and the
torque value beneath each piece should be proportional to the
screwing turns. Thus, a three piecewise linear regression model
can be built to characterize the pipe tightening process

ar +bixg + e
a +baxp+ey ¢ <xp=c2, (8)
az +byxp+ez ¢ <xp <xpy

0<xx <c

Yk =

where ¢; and ¢, denote the locations of the first and the second
change points in the x-axis (screwing turns) and ¢; (i = 1, 2, 3)
is Gaussian noise. The identified change point must be on the
observed torque signals based on the API regulation. Thus,
we ignore the constraint in which the segments are connected
at the identified change points. The change points can be
determined by minimizing the following weighted residual
sum of squares:

min MWRSS, ©)
1,02
s.t.c1 € xa;, €2 € XB, Vi=1,2,..., M. (10)
Here
MWRSS = mianRSS, i=1,2,3,
ai,oj
K
WRSS = Zwk(yk —aj — bl)ck)2
k=1
K>
+ D ok — a2 —bhaxy)?
k=K+1
N
+ D> obw—az—bixp)’, (1)
k=Ky+1

where wy is the weight of the torque point at time &, and K
and K> are the sampling points that correspond to ¢; and c».
The proposed similarity-weighted matrix S in Section III-B
implies that the underlying quasi-periodic patterns in torque
signals can be adopted as the weight matrix, thereby indicating
that @y is proportional to the warping distance Dy, and
i1 ok =1,

Given a potential second change point ¢ € yp, and the
corresponding first change point ¢; € xa;, the coefficient
Ai = (ai,b;) can be estimated by di o= (XZ-TW,-X,-)_1
XiT W;Y;,i = 1,2, 3. The derivation of :1,- can be found in the
Appendix. Once 7 is obtained, the MWRSS can be calculated.
The pair of change points is finally determined by minimizing
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MWRSS. The flowchart of the determination of change points
is shown in Fig. 6.

IV. SIMULATION STUDIES

In this section, our change point detection method is
validated from both numerical studies and sensitivity analysis.
To implement the proposed method, “physical basis function”
g(x) should be first investigated. Here, we use g(x) as a sinu-
soidal function with one cycle of screwing turn by considering
pipe misalignment to mitigate the negative effect induced by
the quasi-periodic pattern for a precise change point detection.
The peak of g(x) is the signal amplitude in the first screwing
turn period.

A. Numerical Studies

In the numerical studies, signals are generated from different
nonlinear functions and noises. Based on our model assump-
tion, the torque signal is piecewise linear with a pair of change
points. Thus, piecewise linear function should be chosen as
the main function. Based on this piecewise linear function,
three other oscillating functions are superposed, namely, sine
function, sawtooth function, and sampling function, as shown
in Table L.

In the tightening process, we have limited knowledge of
the system operating status. Thus, in the simulation section,
we simulate different types of noises to emulate the tightening
system. According to [27], time series model can be used to
mimic the manufacturing system, so we use autoregressive
models, namely, no autocorrelation [AR(0)], first-order autore-
gressive correlation [AR(1)] and second-order autoregressive
correlation [AR(2)] in simulation studies, as shown in Table II.
Meanwhile, such simulation studies are also widely used in
current literature, such as [28] and [29].
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TABLE I TABLE III
FOUR TYPES OF SIGNALS USED FOR NUMERICAL STUDY SDR (%) AND SDES FOR FIRST AND SECOND CHANGE POINTS
Signal Function for y, Signal SDR (%) SDE
Piecewise ET;"' k=1,..,T, ¢y c; c; &  SDE; SDE24
linear 1 c, (X107
Vi = 52::1 (k—T)+E, k=T, +1,..,T, Piecewise AR(0) 93.00 98.00 91.67 0.0033 4.1551
E;,E; linear AR(1) 9233 9933 91.67 0.0033 3.7571
G, k=T + By k =Ty +1,..,T; AR(2) 9133 98.67 9033 00042 45405
Sine+ BE L, (), k=1,..,T, Sinet  AR(0) 93.67 9800 91.67 0.0033 42020
Piecewise 71 Piecewise AR(1) 92.67 97.00 90.67 0.0126 6.1383
linear Vi = %(k —T)+E +2,(T), k=T, +1,..,T, linear AR(2) 9567 9733 9376 00116  6.0585
_ Sawtooth+  AR(0) 99.67 98.33 98.00 0.0012 4.5133
E3—E;
G k=T + B+ 2, (T), k=T, +1,..,T; Piecewise ~AR(1) 99.00 98.67 97.67 0.0014  4.1712
_ . k . k linear AR(2) 99.67 97.00 96.67 0.0058 47110
k)=E —+E E, -
a) = E, |Sm(‘”1ﬂ(n +E))| + B |Sm(“’2”(n + Samplingt  AR(0) 9533 97.67 93.00 00025 42521
E7))| Piecewise AR(1) 9733 97.00 94.67 0.0025 4.4022
Sawtooth+ (B4 ), k=11, linar  AR(2) 9433 9733 9200 0.0050 52568
Piecewise I ek
linear Vi = Tj_Tll (k—T)+E +2,(T), k=T, +1,..,T,
(B2 —T) + B, +2,(T), k=T, +1,..,T,
— .
z,(k) = E |saw(w n(i +E ))| A total of 300 replications are generated for each type of
2 — 8 3 9 . . . . .
Sampling+ Yo = T2 signal under three different noise correlations. Fig. 7 shows
Piccewise ( Bk LK), * k=1,.,T, the detection results from a number of typical examples. The
linear n true locations of change points in the x-axis are ¢; = 2.00

4 iz_fl (k=T) +E +2(Ty), k=T, +1,..,T,
2=
Erg_:z (k—=T))+E;+2z3(T), k=T, +1,..,Ts
—12
k
z3(k) = EyoSa(ws - + Evy)

TABLE 11
THREE TYPES OF CORRELATED NOISES AND RELATED PARAMETERS

Noise Type Formulae Parameters
AR(0) ¢ =€ e~N(0,0%)
AR(1) k= €+mydr_y m; = 0.05
AR(2) P =€+mypy_ + Map_, my, =-0.25my; =05

In accordance with engineering practice, we generate the
signal of x; with noise via the following formula:

Erk
— + e, kzl,...,T4
_ 4

" =1E3-En

—————(k—Ty)+En+e, k=Ts+1,...,T3

T —1T3
&~ N(O,af) (12)

where E;, i = 1,2,...,13, is a scaling parameter. We set
the parameters 737 = 350,7, = 450, T3 = 500,
T, = 350, oy = 70, and oo = 0.005 in our
numerical study. E; = 300,E, = 800, and E3 =

2000 are set for the main piecewise linear function.

E, = 300, Es = 0,Es = 200,E; = O,
w1 = 3, and wy = 1.75 are set for the sinusoidal function.
Eg = 300, E9 = 0.07, and w3 = 6 are set for the sawtooth
function. Ej9 = 300, E;; = —5, and w4 = 10 are set for

the sampling function. Ejp = 2 and Ej3 = 2.5 are set for
X. Other model parameters are set as h1 = 0.2, hp = 2, and
h3 = 0.2. To achieve a small type I error of Fpax test of
change point detection in Section III-C, the significance level
is set as 0.01.

and ¢ = 2.33, respectively. The points marked by stars are
the two change points identified by our proposed method, and
all the change points have been successfully determined with
minor differences.

To further evaluate the detection power of our proposed
method, we define the range of x; to be [—0.1, 0.1] and
[—0.05, 0.05] as the criterion for the successful detection by
considering the engineering requirements, thereby indicating
that the tolerances of the successful detections of the change
points should be within the given ranges. The successful detec-
tion rate (SDR) is defined as the percentage of successfully
detected samples over the entire testing samples. To measure
the differences between the detected locations of change points
by our proposed method and authentic change point locations,
we define the standard detection error (SDE) as

SDE; = (13)

1 N
N Z(él — Ci)zi = 1, 2.
i=1

The SDR and SDEs of the detected two change points by
our proposed algorithm are listed in Table III. As shown
Table III, our proposed method achieves an effective detection
power in terms of SDR and SDE. Although we use the sine
function as the “physical basis function,” the detection remains
powerful for the nonsine function and multiple sine function
combinations.

B. Sensitivity Analysis

Without loss of generality, as one type of factor that induces
quasi-periodic profiles, pipe misalignment is considered for
this sensitivity analysis. Equation (14) is established to char-
acterize the profiles of torque signals caused by pipe misalign-
ment in the threaded engagement phase, which contains both
the quasi-periodic pattern and linear trend between turns xj
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Fig. 7. Some change point detection results by our proposed method. Piecewise linear function with (a) AR(0) noise, (b) AR(1) noise, and (c) AR(2) noise.
Combination of piecewise linear function and sine function with (d) AR(0) noise, (e) AR(1) noise, and (f) AR(2) noise. Combination of piecewise linear
function and sawtooth function with (g) AR(0) noise, (h) AR(1) noise, and (i) AR(2) noise. Combination of piecewise linear function and sampling function

with (j) AR(0) noise, (k) AR(1) noise, and (I) AR(2) noise.

Fig. 8. Schematic of thread engagement structure.

and torques & (xy)

h(xp)=s1(xx X PXT +5 x f(a) x T x P x |sin(xg x7)|)
(14)

where P and T are pitch (as shown in Fig. 8) and taper of
the threaded pipe, s and s; are scaling parameters, and a is
the misalignment angle between centerlines of threaded pipe
and casing, as shown in Fig. 9. f(a) is a monotonic function
that characterizes the deformation change with respect to the
change of a. Generally, o is extremely small; otherwise,
the threaded pipe cannot be coupled. Thus, we assume that
f(a) can be approximated by a linear function of a. Note-
worthy, other latent factors that induce the quasi-periodic
profiles such as pipe unstraightness can be equivalent to pipe
misalignment based on error equivalence theory [22].

In this sensitivity analysis, we vary a from 0.1° to 1.5°.
Signals in the thread engagement phase are generated from

Fig. 9. Schematic of pipe misalignment.

(14) and y; can be represented as

h(Xk)—{—{//, kzl,...,Kl

stk —c1) +h(c)+w, k=Ki+1,...,K>

s3(k — c2) + s2(c2 — c1) + h(c) + v,
k=Ky+1,...,T

5)

where y is Gaussian noise, which follows normal distrib-
ution N (0,032). x; can be represented as xx = ssk + ¥,
¥ ~ N(@,07). We set s = 100, T = (1/16), p = 5.6,
s1 = 300, s = 2000, s3 = 4000, s4 = 0.002,03 = 80,
and o4 = 0.003, respectively, and the change point locations
on x; are c; = 3.3, ¢ = 3.7 in this sensitivity analysis.
A total of 1000 replications are conducted for each varied a.
Fig. 10 shows the detection results of three random examples
by our proposed method under o 0.5°, 1°, and 1.5°,
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Fig. 10. Examples of change point detection in sensitivity analysis under
(Left) o = 0.5°, (Middle) o = 1°, and (Right) a = 1.5°.
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Fig. 11. SDRs of ¢ and ¢ under o from 0.1° to 1.5° with an interval of
0.1°. SDR of both (Left) ¢ and ¢, (Middle) cq, and (Right) c;.
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Fig. 12. SDEs of (Left) ¢ and (Right) ¢ under o from 0.1° to 1.5° with
an interval of 0.1°.

respectively. Although the detected locations of change points
in the x-axis are not exactly the same as the actual setting
locations, the differences between our detected change points
are remarkably small and meet the requirement in practice,
thereby indicating that our proposed method can accurately
identify change points under different misalignment situations.

To further show how the proposed method performs under
different misalignment situations, in this sensitivity analysis,
we use the same evaluation criteria from the aforementioned
simulation studies. Figs. 11 and 12 show the detection results.
The SDRs and SDEs of change point detection are consistent
over the misalignment angle changes.

V. REAL CASE STUDY

Our proposed method has been applied in change point
detection of real torque signals collected from one steel pipe
plant. We obtain 84 samples with a pair of change points
labeled by the technical engineers in the plant. All these
signals have various nonlinear profiles, unequal lengths, and
horizontal oscillations. The sampling frequency is 20 Hz.

We will first show the performance of our proposed
method on this real data set, and then compare our proposed
method with other existing methods including three-phase
regression method [21], state-space model-based method [18],
and sequential piecewise linear approach [17]. The engineer-
ing specifications &y, hp, and h3 in sequential change point

(2.14,5579.48)

torque
g
warping distance
torque

04 o5 05 07 0 g T s
turns turns turns

Fig. 13. Illustrations of our proposed method for one random sample. (Left)
Physical basis function. (Middle) Warping distance between “physical basis
function” and torque sequence. (Right) Detection results.

selection are 0.126, 0.802, and 0.126 in terms of engineering
design requirements.

Fig. 13 illustrates our proposed method by one example
of pipe tightening, including physical basis function, warping
distance, and detected change points over torques. We also
show eight typical examples with various nonlinear profiles
from our 84 samples. As shown in Fig. 14, the signal lengths
range from 1.24 to 5.68 screwing turns, and a variety of torque
profiles can be observed. The change points that separate
the critical phases of the tightening process are accurately
identified from various nonlinear profiles in the torque signals
by our proposed method. Owing to unequal lengths of torque
signals, the speed of our proposed method depends on the
length of torque signals. The calculation time for the largest
length sample is 78.08 s by using MATLAB R2013a on a
computer with Intel Core-i5-4210U @ 2.40 GHz processor,
4 GB of RAM, which satisfies the requirements of in-line
process monitoring.

Given that the sampling frequency of the torque signal is
20 Hz, a range of screwing turns [—0.3, 0.3] for the first
change point and [—0.04, 0.03] for the second change point
are defined as the criteria for the detection power to meet the
engineering requirements, thereby indicating that the tolerance
of the successful detections of the two change points should
be within the given two ranges, respectively. The detection
results are listed in Table IV, where our proposed method
achieves 100% SDR for the first change point, 98.81% SDR
for the second change point, and 98.81% SDR for a pair of
change points. In addition, our proposed method achieves a
small SDE for each change point, which are 0.0728 for the
first change point and 0.0103 for the second change point.

We first compare our proposed method with an empirical
method [2], which is widely used in steel pipe plants at
present. This method can only identify the second change
point from torque signals. This empirical method calculates
the “derivative” of torque signals and regards the first point
whose slope is over the given threshold as the second change
point. We use the same data set and evaluation criteria to test
this method, and the detection results are listed in Table IV.
The SDR of the second change point is 5.95%, which is much
lower than the proposed method.

We also compare our method with three other popular
change detection methods, which are three-phase regres-
sion model based on Fpax test [21], state-space model-
based method [18], and two-stage sequential piecewise linear
approach [17], respectively. The same data set and evaluation
criteria are applied to test these methods, and the detection
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Fig. 14. Examples of change point detection in torque signals with diverse nonlinear patterns.

TABLE IV

CHANGE POINT DETECTION RESULTS OF OUR PROPOSED METHOD AND
OTHER EXISTING METHODS ON THE COLLECTED TORQUE
SIGNAL DATA SET FROM STEEL PLANT

Methods SDR (%) SDE
cq cy ci&c, SDE,; SDE,

Our Proposed 100.00 98.81 98.81 0.0728  0.0103
Method
VAM method [2] - 5.95 - - 0.0814
Three-phase 32.14 95.24 30.59 0.9477  0.0564
Regression [21]
State-space model 46.43 59.52 28.57 0.8414 0.4022
(18]
Sequential 66.67 94.05 60.71  0.2609  0.0224

Piecewise Linear
[17]

b (2.31,5348.63)

o (2.30,5133.59
- (1.88,2964.26)
o

(0.72,1411.58)

turns turns

Fig. 15. Comparisons between (Left) our proposed method and (Right) three
phase regression method for change point detection.

results are also listed in Table IV. Specifically, we can conclude
that the SDRs of our proposed method are much higher than
others for the first change point, second change point, and both
the first and second change points, respectively. Figs. 15-17
show comparisons between our proposed method and the
others, which indicate our proposed method is more effective
for change point detection from multiple nonlinear profiles in

(5.65,4592.84)

torque

(4.85,1528.58) (2.44,1041.59)

(4.50,1389.44) |

7 s 6 0 g 2 5 : s ®
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Fig. 16. Comparisons between (Left) our proposed model and (Right) method
in [18] of one example in pipe tightening process.
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torque

15 2 25

1
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Fig. 17. Comparisons between (Left) our proposed model and (Right) method
in [17] for change point detection in torque signals.

torque signals than the other three existing change detection
methods.

To better illustrate the detection results of our method and
other existing methods on the same real data set, we provide
a short discussion in this paragraph. As shown in Table IV,
the state-space model in our previous work does not perform
well in this real data set. Owing to the linear structure in
the state-space model, the performance of the state estimation
may be greatly deteriorated if various nonlinear profiles with
similar slope as the nominal curve has. In practice, since
the process condition in upstream work stage is not always
stable, this leads to a large number of nonlinear profiles in the
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torque signals during the connection procedure. This method
shows a satisfactory detection power on the torque signals
with few simple nonlinear profiles (e.g., a single quasi-periodic
profile exists in the torque), but cannot effectively identify
multiple change points in torque signals with various nonlinear
profiles (e.g., multiple quasi-periodic profiles with varying
periods and lengths). The three-phase regression method and
sequential piecewise linear method perform well for the second
change point but fail for the detection of sealing point. The
reason is that the disastrous nonlinear profiles (especially,
the quasi-periodic profiles) primarily dominate in the thread
engagement phase and almost mask the sealing point, and
these methods lack investigation in the generation mechanism
of signal profiles.

VI. CONCLUSION

This paper develops a novel change point detection method
for tightening process by using torque signals collected from
the tightening processes. Owing to a large variety of uncer-
tainties during the tightening process, the measured torque sig-
nals usually contain multiple quasi-periodic nonlinear profiles,
thereby resulting in a considerable challenge for the accurate
detection of change points in torque signals. To address this
challenge, we consider engineering knowledge and propose
a similarity-weighted matrix to reduce the negative effects
induced by the multiple nonlinear profiles.

The numerical studies, sensitivity analysis, and real case
study show that our proposed method achieves high detection
power for change point detection from multiple nonlinear pro-
files in torque signals in terms of SDR and SDE. Furthermore,
our proposed method outperforms other existing methods
for change point detection, especially for the first change
point detection. Notably, although the proposed method is
demonstrated for the tightening process, the entire framework
on change point detection can be extended or modified for
applications in other manufacturing processes.

APPENDIX
A. Introduction of Dynamic Time Warping
We assume two time series Q and C, with the lengths n
and m, respectively, where
(16)
a7

0=q,90,. ..
C=ci,0c,...

»5]i»~-~»5In

5Cjseees Cme

To best align these two sequences using dynamic time warp-
ing, an n-by-m matrix is designed, where the (ith, jth) element
of the matrix is obtained by Euclidean distance as the local
distance between two elements g; and c;, that is, d(g;, cj) =
(gi—c j)z. Subsequently, a warping path Wy, which is defined
as a matching index between series Q and C with a contiguous
set of matrix elements, can be represented as

Wa=wi, w2, ...,wy,...,wp,max(m,n)<F <m+n—1

(18)

where F is the length of the warping path. The fth element
in Wy is wy = (i, j), which represents the mapping point
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between the ith element of time series Q and the jth element
of time series C.

Three constraints are placed on the warping path. First, the
warping path should begin at the start of each time series
and complete at the end of these two time series, that is,
the condition that w; = (1,1) and wr = (m, n) should be
satisfied concurrently. Second, permissible steps are required
to adjacent cells along the warping path. Here, the diagonal
cell is also included in the adjacent cells. Specifically, if w =
(a,b) and wy_1 = (a’, '), then the relationship between a
and a’, b and b’ should satisfy a —a’ < 1 and b — D" < 1.
Third, the point indices in the warping path W; should be
monotonically increasing. Generally, an exponential number
of warping paths satisfy the aforementioned three conditions,
and the one which minimizes the warping cost is the optimal
warping path. The cost is defined by

DI d(wf))

7 19)

DTW(Q, C) = min(
Wa
The solution of the optimal warping path can be addressed
by dynamic programing, which evaluates the recurrence of
the cumulative distance y (i, j) in the adjacent elements as
follows:

y@—1,j-1)

B. Derivation of i in Section III-D

Denote W = diag(w1, ..., @¢), Y1 =
(yl,...,ycl)T,Wz = diag(®14cis - -» 0cy), Y2 =
(y1+cw ~'~a)’cz)T, Wi = diag(CUlJrcz’wan)a Y; =
(y1+cz; cees Yn)T,

T T
X, =( Lol ) | XF( Lol ) |
xl»"'»-xCl -xl-‘rC];"'»-sz
T
X3=( Lol ) |
-x1+C25"'9-xn
A = (a;,b)T,i = 1,2, 3, then WRSS in (16) can be written
as WRSS = 21'3:1(Yi — XiA)TW;(Y; — X;A;). Assume that

there is a symmetric matrix C such that W; = CTC = CCT,
then

WRSS(4;) = (¥; — XiZi) ' CTC(¥; — Xi2)
= [C(Y;i — X;ia)IT[C(Yi — XiAi)].
Let ¥; = CY; X; = CX;, then
WRSS(4;) = (¥; = X;2)" (Vi = Xi2)
= &%) XTF=(xTcTex) ' xIcTey,
= (XTwix;)) ' xXIwiyi, i=1,2,3.

The last equation is from the ordinary least squares in linear
regression [23]. Notably, in our case, W; forms the diagonal
matrix with positive elements, so matrix C always exists. For

example, C = diag(J/®y, . .., J@,).
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