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ABSTRACT  

Raman mapping technique has been used to perform in-line quality inspections of 

nanomanufacturing processes.  In such an application, massive high-dimensional Raman 

mapping data with mixed effects is generated. In general, fixed effects and random effects in the 

multi-array Raman data are associated with different quality characteristics such as fabrication 

consistency, uniformity, defects, et al.  The existing tensor decomposition methods cannot 

separate mixed effects, and existing mixed effects model can only handle matrix data but not 

high-dimensional multi-array data. In this paper, we propose a tensor mixed effects (TME) 

model to analyze massive high-dimensional Raman mapping data with complex structure. The 

proposed TME model can (i) separate fixed effects and random effects in a tensor domain; (ii) 

explore the correlations along different dimensions; and (iii) realize efficient parameter 

estimation by a proposed iterative double Flip-Flop algorithm. We also investigate the properties 

of the TME model, existence and identifiability of parameter estimation. The numerical analysis 

demonstrates the efficiency and accuracy of the parameter estimation in the TME model. 

Convergence and asymptotic properties are discussed in the simulation and surrogate data 

analysis. The case study shows an application of the TME model in quantifying the influence of 
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alignment on carbon nanotubes buckypaper. Moreover, the TME model can be applied to 

provide potential solutions for a family of tensor data analytics problems with mixed effects.  

 

Keywords: Mixed effects model, Tensor, Random effects, Multidimensional array, Raman 

mapping 

1. Introduction 

Carbon nanotubes (CNTs) buckypaper is an important multifunctional platform material 

with great potential for creating lightweight and high-performance materials for various 

applications due to buckypaper’s superior mechanical and electrical characteristics. One of the 

critical bottlenecks in the massive production and applications of high-quality buckypaper is 

quality inspection and monitoring of nanomanufacturing processes. The challenges include: (i) 

applying quick and accurate quality metrology to obtain information associated with 

microstructure, (ii) characterizing and analyzing in-line data to extract useful quality information 

for inspection and monitoring. 

As an effective characterization method for nanostructure information, Raman 

spectroscopy is very suitable for in-line quality inspection of nanomanufacturing processes. As 

an example, one Raman spectrum of single-walled CNTs buckypaper is shown in Fig. 1. In the 

figure, the Raman peak intensity corresponds to material concentration and distribution; peak 

frequency is associated with molecular structure and phase; bandwidth is associated with 

crystallinity and phase (Salzer and Siesler 2009); intensity ratio of D-band and G-band can be 

affected by degree of functionalization (Cheng et al. 2009). Therefore, numerous vital 

information about buckypaper quality is hidden in the Raman spectra data, which provides 

unprecedented opportunities for quality inspection, system informatics, and monitoring. 
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Fig. 1. One Raman Spectrum for Single-Walled CNTs Buckypaper 

Due to the recent development of metrology technologies, Raman mapping (also called 

Raman spectral imaging) can be used to perform in-line quality inspection in continuous CNTs 

buckypaper nanomanufacturing processes. Raman mapping is a technique for generating detailed 

multi-array Raman spectra including numerous information about nanomaterials. Meanwhile, it 

is a challenging task to conduct data analytics, feature extraction, pattern recognition and in-line 

decision making, due to the high-dimensionality, large data size, as well as complex spatial and 

temporal correlation structures of Raman mapping. Specifically, in a Raman mapping 

measurement for single-walled CNTs buckypaper, about 600 Raman spectra can be collected per 

minute from a rectangular zone with a dimension of 10 micrometers by 60 micrometers. As 

shown in Fig. 2, multiple measurement points are chosen from a rectangular zone, and each 

measurement point generates one Raman spectrum. Every Raman spectrum includes 1024 

Raman shifts and intensities. The correlations along x/y directions of the rectangular zone are 

different due to the alignment of carbon nanotubes in the CNTs buckypaper. Meanwhile, the 

correlation along the Raman shift is different from the aforementioned spatial correlation.    Acc
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Fig.  2.  Raman mapping from the rectangular zone in CNTs buckypaper 

According to the data structure of Raman mapping, tensor is an efficient mathematical 

tool for formulating the Raman mapping for nanomanufacturing inspection. Tensors (also called 

multidimensional arrays) have become increasingly important because they provide a concise 

mathematical framework for formulating the high-dimensional data. Similar to the linear 

regression model in classical statistics, people use high-order tensor decompositions in high-

dimensional statistics, such as CANDECOM/PARAFAC (CP) decomposition and Tucker 

decomposition, to separate different components inherent to the data. Kolda and Bader (2009) 

provided an overview of higher-order tensor decompositions, their applications, and available 

software. Corresponding to the generalized linear model (GLM) in statistics, Zhou et al. (2013) 

proposed a GLM model in the tensor domain, which extends the classical vector-valued 

covariate regression to an array-valued covariate regression. However, these tensor-based 

methods do not consider the multilevel variabilities (mixed effects) in the datasets.   

A mixed effects model is a statistical model containing both fixed effects and random 

effects. It has nice properties, including (i) the capability to handle multilevel hierarchical data, 

such as longitudinal data with multiple measurements collected over time for an individual 

sensor; (ii) its ability to take complex association structures, including the correlation between 

different groups and correlation within an individual group, into consideration. Thus, the mixed 

effects model is widely used in a variety of disciplines such as physics, biology, engineering and 

social sciences (Demidenko 2013; Galecki and Burzykowski 2013). However, the classical 
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mixed effects model treats multivariate data as a vector or a matrix, which is insufficient for 

analysis of high-dimensional data, such as tensor-type Raman mapping with its high 

dimensionality and complex correlations.  Thus we need to develop a novel tensor mixed effects 

(TME) model that can explore mixed effects in the tensor domain.  

We emphasize the motivation of developing a TME model with an example in 

nanomanufacturing. Raman mapping data are collected to inspect the quality of continuously 

fabricated CNTs buckypaper. There are multiple components in the data that are associated with 

different critical quality characteristics. Specifically, fixed effects measure the fabrication 

consistency of quality features (such as degree of alignment, degree of functionalization, 

nanotube distribution, and dispersion). This indicates whether there is a gradual mean shift in the 

roll-to-roll fabrication process of CNTs buckypaper. In addition, random effects are relevant to 

the uniformity and defect information. The uniformity pertains to the status of the quality indices, 

while the defect information consists of the number and the pattern of defects in the CNTs 

buckypaper (Yue et al. 2018). Therefore, it is necessary to use a mixed effects model to 

decompose different effects in the Raman mapping data. From another point of view, Raman 

mapping data have tensor structures. One Raman mapping dataset usually contains multiple 

dimensions: two measurement coordinates, Raman shift (frequency) and Raman intensity. If 

matricization or vectorization is conducted to process the Raman data, a classical mixed effects 

model can be developed. However, this vectorized linear mixed effects (vLME) model has three 

limitations: (i) the dimension after vectorization becomes very high and a large sample size is 

required for accurate parameter estimation; Also, vectorization destroys the tensor structure and 

results that the corresponding basis matrices are not full rank;  (ii) the computation cost will be 

large, and it cannot meet the needs of in-line inspection and monitoring; (iii) the transformation 

alters the inherent multi-way correlation structures, which makes the correlation along different 

dimensions unobtainable. To overcome these three limitations, this paper proposes the tensor 

mixed effects (TME) model.  

The TME model can effectively and efficiently explore multilevel variabilities (including 

fixed effects and random effects) inherent to tensor-structured high-dimensional data. It can be 

regarded as a logical extension from a vector-valued or matrix-valued mixed effects model to an 

array-valued mixed effects model. It is a challenging task to develop the TME model because (i) 

it deals with high-dimensional datasets with tensor structure; (ii) an efficient algorithm is 
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required to do parameter estimation; (iii) it is necessary to ensure the identifiability of multi-

dimensional correlations. In this paper, we propose the TME model and explore its properties. 

An iterative Flip-Flop algorithm is proposed for parameter estimation.  

The remainder of this paper is organized as follows. Section 2 introduces basic tensor 

notation and preliminaries, and further proposes the TME model. Section 3 describes the 

proposed maximum likelihood estimation (MLE) algorithm for the TME model, in addition to 

investigating the existence of the MLE and the identifiability of the TME model. In Section 4, a 

double Flip-Flop algorithm is proposed to conduct parameter estimation of the TME model. In 

addition, initialization and convergence criteria of the algorithm are provided. Sections 5 

presents a numerical simulation, a surrogated data analysis and a real case study of Raman 

mapping to test the performance of the TME model. Finally, a brief summary is provided in 

Section 6.  

 

2. Tensor Mixed Effects Model 

In this section, we first introduce the tensor notation and preliminaries. Then, we propose 

the TME model and explore the random distribution of tensor responses. Next, we discuss the 

maximum likelihood estimation (MLE) for the TME model, the conditions for the existence of 

the MLE, and the constraints to ensure the identifiability.   

2.1 Tensor Notation and Preliminaries 

In this section, basic notations, definitions, and matrix/array operators in multilinear 

(tensor) algebra are introduced and summarized. The terminology used here remains as 

consistent as possible with the terminology of previous publications (Kolda and Bader 2009; 

Zhou et al. 2013) in the area of tensor algebra. Scalars are denoted by lowercase italic letters, e.g., 

𝑎; vectors by lowercase italic boldface letters, e.g., 𝒂; matrices by uppercase italic boldface 

letters, e.g., 𝑨; and tensors by calligraphic letters, e.g., 𝓧. The order of a tensor is the number of 

dimensions (modes). For example, an 𝐾-order tensor is denoted by 𝓧 ∈  ℝ𝐼1×∙∙∙×𝐼𝐾 , where 𝐼𝑘 

denotes the 𝑘-mode dimension of 𝓧. The 𝑖th
 entry of a vector 𝒂 is denoted by 𝑎𝑖, the element 

(𝑖, 𝑗) of a matrix 𝑨 is denoted by 𝑎𝑖𝑗, and the element (𝑖, 𝑗, 𝑘) of a third-order tensor 𝓧 is denoted 

by 𝑥𝑖𝑗𝑘. Indices range from 1 to their capital versions, e.g., 𝑖 = 1,∙∙∙, 𝐼.  

Matricization, also known as unfolding or flattening, is the process of reordering the 

elements of a tensor into a matrix (Kolda and Bader 2009). The 𝑘-mode matricization of a tensor 
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𝓧 ∈  ℝ𝐼1×∙∙∙×𝐼𝐾  is denoted by 𝑿(𝑘) . vec(𝓧)  is the vectorization of a tensor 𝓧 . The 𝑘 -mode 

product of a tensor 𝓧 ∈  ℝ𝐼1×∙∙∙×𝐼𝐾  with a matrix 𝑼 ∈  ℝ𝐽×𝐼𝑘  is denoted by 𝓧 ×𝑘 𝑼  and 

elementwise, we have (𝓧 ×𝑘 𝑼)𝑖1∙∙∙𝑖𝑘−1𝑗𝑖𝑘+1∙∙∙𝑖𝐾
= ∑ 𝑥𝑖1∙∙∙𝑖𝑘∙∙∙𝑖𝐾

𝑢𝑗𝑖𝑘

𝐼𝑘
𝑖𝑘=1 , where all the indices range 

from 1 to their capital versions, e.g., the index 𝑗 goes from 1,2, … , 𝐽, and the index 𝑖𝑘 goes from 

1,2, … , 𝐼𝑘 . The kronecker product of matrices 𝑨 and 𝑩 are denoted by 𝑨⨂𝑩. The kronecker 

product is an operation on two matrices resulting in a block matrix and it is a generalization of 

the outer product.  

 

2.2 Tensor Mixed Effects Model 

Firstly, we consider a TME model for the third-order tensor data 

𝓨𝑖 = 𝓕 ×1 𝑨𝑖
(1)

×2 𝑨𝑖
(2)

×3 𝑨𝑖
(3)

+ 𝓡𝑖 ×1 𝑩𝑖
(1)

×2 𝑩𝑖
(2)

×3 𝑩𝑖
(3)

+ 𝓔𝑖 (1) 

 

where the 𝑖th
 response tensor is 𝓨𝑖 ∈  ℝ𝐽×𝐾×𝐿 with 𝑖 = 1,∙∙∙, 𝑁; 𝑁 is the sample size; the fixed 

effects core tensor is 𝓕 ∈ ℝ𝑃1×𝑄1×𝑅1;  𝑨𝑖
(1)

∈ ℝ𝐽×𝑃1, 𝑨𝑖
(2)

∈ ℝ𝐾×𝑄1, 𝑨𝑖
(3)

∈ ℝ𝐿×𝑅1 are the design 

(factor) matrices for the fixed effects;  the random effects core tensor is denoted by 𝓡𝑖 ∈

ℝ𝑃2×𝑄2×𝑅2 , and the corresponding design (factor) matrices for the random effects by 𝑩𝑖
(1)

∈

ℝ𝐽×𝑃2, 𝑩𝑖
(2)

∈ ℝ𝐾×𝑄2, 𝑩𝑖
(3)

∈ ℝ𝐿×𝑅2; the tensor for the residual errors is denoted by 𝓔𝑖 ∈ ℝ𝐽×𝐾×𝐿. 

Both the fixed effects and the random effects can be regarded as Tucker decompositions of 

original fixed/random effects. We also denote the Tucker decomposition by 

⟦𝓕; 𝑨𝑖
(1)

, 𝑨𝑖
(2)

, 𝑨𝑖
(3)

⟧ = 𝓕 ×1 𝑨𝑖
(1)

×2 𝑨𝑖
(2)

×3 𝑨𝑖
(3)

. Same as the requirement in Tucker 

decomposition, both the design matrices 𝑨𝑖
(j)

, 𝑗 = 1,2,3  and 𝑩𝑖
(j)

, 𝑗 = 1,2,3  are chosen to be 

orthogonal. Usually, the higher order Tucker decomposition follows similar structure as the 

third-order decomposition. Thus, it is straightforward to extend the third-order TME model to 

higher dimensional analysis. 

Similar to the classical mixed effects model, we assume that the specification of the 

random effects core tensor 𝓡𝑖 and the residual errors tensor 𝓔𝑖 follow tensor normal distributions. 

Particularly, the tensor normal distribution of random effects core tensor 𝓡𝑖  is 

𝑵𝑃2,𝑄2,𝑅2
(𝓞; 𝚺r, 𝚿r, 𝛀r), where the mean tensor 𝓞 is a zero tensor, and the covariance matrices 

along different dimensions 𝚺r ∈ ℝ𝑃2×𝑃2 , 𝚿r ∈ ℝ𝑄2×𝑄2 , 𝛀r ∈ ℝ𝑅2×𝑅2  are positive definite. We 
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know, from the properties of tensor normal distribution, vec(𝓡𝑖) is distributed as a multivariate 

normal distribution with mean vec(𝓞) and covariance matrix 𝛀r⨂𝚿r⨂𝚺r. We write that 

              𝓡𝑖 ∽ 𝑵𝑃2,𝑄2,𝑅2
(𝓞; 𝚺r, 𝚿r, 𝛀r) if vec(𝓡𝑖) ∽ 𝑵𝑃2𝑄2𝑅2

(vec(𝓞), 𝛀r⨂𝚿r⨂𝚺r).  

Similarly, the distribution of the residual errors tensor 𝓔𝑖 is 𝑵𝐽,𝐾,𝐿(𝓞; 𝚺ε, 𝚿ε, 𝛀ε), and the 

noise covariance matrices along different dimensions are  𝚺ε ∈ ℝ𝐽×𝐽, 𝚿ε ∈ ℝ𝐾×𝐾, 𝛀ε ∈ ℝ𝐿×𝐿 . 

Thus, vec(𝓔𝑖) ∽ 𝑵𝐽𝐾𝐿(vec(𝓞), 𝛀ε⨂𝚿ε⨂𝚺ε). Moreover, we assume that the random effects core 

tensor and residual errors tensor are independent of each other. According to the descriptions 

above, we can find that the parameter size of the TME model in Equation (1) is 𝑃1 × 𝑄1 × 𝑅1 +

(𝑃2 + 𝑃2
2 + 𝑄2 + 𝑄2

2 + 𝑅2 + 𝑅2
2)/2 + 𝐽 + 𝐾 + 𝐿 , with the assumption that the covariance 

matrices 𝚺ε, 𝚿ε, 𝛀ε are diagonal. While the parameter size of the corresponding vectorized linear 

mixed effects (vLME) model is 𝑃1 × 𝑄1 × 𝑅1 + (𝑃2𝑄2𝑅2 + 𝑃2
2𝑄2

2𝑅2
2)/2 + 𝐽𝐾𝐿 , with the 

assumption that the covariance matrix of noise term is diagonal. Therefore, the parameter size of 

the vLME model is much larger than the parameter size of the TME model.  

In addition to the fixed effects core tensor and design matrices, the TME model includes 

two sources of random components: the random effects accounting for covariance along different 

dimensions, and the residual errors 𝓔𝑖  relevant to the inevitable random noise. Based on the 

properties of tensor normal distribution, we can derive the random distribution of 𝓨𝑖, as shown 

in Proposition 1.  

Proposition 1. The response tensor (1) follows a tensor normal distribution, that is  

𝓨𝑖 ∽ 𝑵𝐽,𝐾,𝐿 (⟦𝓕; 𝑨𝑖
(1)

, 𝑨𝑖
(2)

, 𝑨𝑖
(3)

⟧; 𝑩𝑖
(1)

𝚺r𝑩𝑖
(1)𝑇

+ 𝚺ε, 𝑩𝑖
(2)

𝚿r𝑩𝑖
(2)𝑇

+ 𝚿ε, 𝑩𝑖
(3)

𝛀r𝑩𝑖
(3)𝑇

+ 𝛀ε) 
(2) 

Proof: please see the appendix A.1 in the supplementary materials. 

For simplification, we define �̃� = ⟦𝓕; 𝑨𝑖
(1)

, 𝑨𝑖
(2)

, 𝑨𝑖
(3)

⟧ , 𝚺𝑖 = 𝑩𝑖
(1)

𝚺r𝑩𝑖
(1)𝑇

+ 𝚺ε , 𝚿𝑖 =

𝑩𝑖
(2)

𝚿r𝑩𝑖
(2)𝑇

+ 𝚿ε , and 𝛀𝑖 = 𝑩𝑖
(3)

𝛀r𝑩𝑖
(3)𝑇

+ 𝛀ε . The total covariance matrices 𝚺𝑖 , 𝚿𝑖 , 𝛀𝑖  are 

positive definite. Thus, the response tensor distribution (2) can be written as 

𝓨𝑖 ∽ 𝑵𝐽,𝐾,𝐿(�̃�; 𝚺𝑖 , 𝚿𝑖, 𝛀𝑖). It can be further described in matrix form using three different modes 

as follows 
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𝒀𝑖(1) ∽ 𝑵𝐽,𝐾𝐿(𝑨𝑖
(1)

𝑭(1)(𝑨𝑖
(3)

⨂𝑨𝑖
(2)

)𝑇; 𝚺𝑖, 𝛀𝑖⨂𝚿𝑖) (3) 

𝒀𝑖(2) ∽ 𝑵𝐾,𝐽𝐿(𝑨𝑖
(2)

𝑭(2)(𝑨𝑖
(3)

⨂𝑨𝑖
(1)

)𝑇; 𝚿𝑖, 𝛀𝑖⨂𝚺𝑖) (4) 

𝒀𝑖(3) ∽ 𝑵𝐿,𝐽𝐾(𝑨𝑖
(3)

𝑭(3)(𝑨𝑖
(2)

⨂𝑨𝑖
(1)

)𝑇; 𝛀𝑖, 𝚿𝑖⨂𝚺𝑖) (5) 

 

where 𝒀𝑖(𝑘) and 𝑭(𝑘) (𝑘=1,2,3.) are the 𝑘-mode matricization of the tensor 𝓨𝑖 and 𝓕. Obviously, 

Equations (3-5) show that 𝒀𝑖(1), 𝒀𝑖(2) and 𝒀𝑖(3) follow matrix normal distributions.  

In this section, we proposed the TME model and specified the distribution of random 

effects core tensor and errors tensor. We also derived the random distribution of the response 

tensors in Proposition 1, which lays a foundation for inference in Section 3.  

3. Inference of the TME Model 

This section discusses how to estimate the parameters in the TME model by using the 

maximum likelihood estimation (MLE). Generally speaking, the parameter estimation of a TME 

model involves three steps: (i) constructing a log-likelihood function for the MLE with relevant 

probability distribution functions; (ii) deriving the MLE of fixed effects and total covariance 

matrices along different dimensions; and (iii) obtaining the MLE for covariance matrices of 

residual errors based on the conditional probability distribution.  

3.1 Maximum Likelihood Estimation of Fixed Effects and Total Covariance Matrices 

We know that the response tensor 𝓨𝑖 follows the tensor normal distribution in Equation 

(2) and the 𝑘 -mode matricization 𝒀𝑖(𝑘)  follows the matrix normal distributions as shown in 

Equations (3-5). Thus, we have Proposition 2.  

Proposition 2. The log-likelihood functions of Equations (3-5) are the same, and can be 

represented as  

𝒍𝑖 =

−
𝐽𝐾𝐿

2
log 2𝜋 −

𝐽𝐾

2
log|𝛀𝑖| −

𝐽𝐿

2
log|𝚿𝑖| −

𝐾𝐿

2
log|𝚺𝑖| −

1

2
(vec (𝒀𝑖(1) − 𝑨𝑖

(1)
𝑭(1)(𝑨𝑖

(3)
⨂𝑨𝑖

(2)
)

𝑇

))

𝑇

(𝛀𝑖
−1⨂𝚿𝑖

−1⨂𝚺𝑖
−1)vec (𝒀𝑖(1) −

𝑨𝑖
(1)

𝑭(1)(𝑨𝑖
(3)

⨂𝑨𝑖
(2)

)
𝑇

). 

(6) 

 

Proof: please see the appendix A.2 in the supplementary materials. 
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Maximization of the log-likelihood function (6) yields the MLE estimators, which are 

shown in Proposition 3. 

Proposition 3. Given the response tensors 𝓨𝑖 and the basis 𝑨𝑖
(1)

, 𝑨𝑖
(2)

, 𝑨𝑖
(3)

 with 𝑖 = 1,∙∙∙, 𝑁, the 

maximum likelihood estimator of  vec(𝓕) is 

vec(�̂�) = (∑ (𝑨𝑖
(3)𝑇

𝛀𝑖
−1𝑨𝑖

(3)
) ⨂ (𝑨𝑖

(2)𝑇

𝚿𝑖
−1𝑨𝑖

(2)
) ⨂ (𝑨𝑖

(1)𝑇

𝚺𝑖
−1𝑨𝑖

(1)
)

𝑁

𝑖=1

)

−1

∙ (∑ (𝑨𝑖
(3)𝑇

𝛀𝑖
−1) ⨂ (𝑨𝑖

(2)𝑇

𝚿𝑖
−1) ⨂ (𝑨𝑖

(1)𝑇

𝚺𝑖
−1)

𝑁

𝑖=1

∙ vec(𝓨𝑖)) 

(7) 

 

When 𝑩𝑖
(1)

, 𝑩𝑖
(2)

,  and 𝑩𝑖
(3)

 are constant for all 𝑖 = 1,∙∙∙, 𝑁 , and setting 𝑩𝑖
(1)

= 𝑩(1) , 

𝑩𝑖
(2)

= 𝑩(2), 𝑩𝑖
(3)

= 𝑩(3) for 𝑖 = 1,∙∙∙, 𝑁. For simplification, we define �̂̃� = ⟦�̂�; 𝑨𝑖
(1)

, 𝑨𝑖
(2)

, 𝑨𝑖
(3)

⟧. 

The maximum likelihood estimators of  𝚺𝑖, 𝚿𝑖, 𝛀𝑖 are 

�̂�𝑖 =
1

𝐾𝐿𝑁
∑ (𝓨𝑖 − �̂̃�)

(1)
∙ (�̂�𝑖

−1⨂�̂�𝑖
−1) ∙ (𝓨𝑖 − �̂̃�)

(1)

𝑇
𝑁

𝑖=1

 (8) 

�̂�𝑖 =
1

𝐽𝐿𝑁
∑ (𝓨𝑖 − �̂̃�)

(2)
∙ (�̂�𝑖

−1⨂�̂�𝑖
−1) ∙ (𝓨𝑖 − �̂̃�)

(2)

𝑇
𝑁

𝑖=1

 (9) 

�̂�𝑖 =
1

𝐽𝐾𝑁
∑ (𝓨𝑖 − �̂̃�)

(3)
∙ (�̂�𝑖

−1⨂�̂�𝑖
−1) ∙ (𝓨𝑖 − �̂̃�)

(3)

𝑇
𝑁

𝑖=1

 (10) 

 

If both (𝑨𝑖
(1)

, 𝑨𝑖
(2)

, 𝑨𝑖
(3)

) and (𝑩𝑖
(1)

, 𝑩𝑖
(2)

, 𝑩𝑖
(3)

) are constant for all 𝑖 = 1,∙∙∙, 𝑁, �̅� is the 

mean response tensor, the maximum likelihood estimators of  𝚺𝑖, 𝚿𝑖, 𝛀𝑖 are 

�̂�𝑖 =
1

𝐾𝐿𝑁
∑(𝓨𝑖 − �̅�)(1) ∙ (�̂�𝑖

−1⨂�̂�𝑖
−1) ∙ (𝓨𝑖 − �̅�)(1)

𝑇

𝑁

𝑖=1

 (11) 

�̂�𝑖 =
1

𝐽𝐿𝑁
∑(𝓨𝑖 − �̅�)(2) ∙ (�̂�𝑖

−1⨂�̂�𝑖
−1) ∙ (𝓨𝑖 − �̅�)(2)

𝑇

𝑁

𝑖=1

 (12) 

�̂�𝑖 =
1

𝐽𝐾𝑁
∑(𝓨𝑖 − �̅�)(3) ∙ (�̂�𝑖

−1⨂�̂�𝑖
−1) ∙ (𝓨𝑖 − �̅�)(3)

𝑇

𝑁

𝑖=1

 (13) 
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Proof: please see the appendix A.3 in the supplementary materials. 

Moreover, we can show that the estimator vec(�̂�) given in Equation (7) is uniquely 

determined regardless of the parametrization of the covariance matrices, which is explored in 

appendix A.3.  

From Equations (8-13), we can see that the estimators of covariance matrices are cross-

related. A Flip-Flop type algorithm is designed to compute them. We will describe the algorithm 

in Section 4. Before that, we continue to explore the MLE for the covariance matrices of residual 

errors based on the conditional probability distributions.  

3.2 Maximum Likelihood Estimation of Random Effects and Residual Covariance Matrices 

After finishing the estimation of the fixed effects and total covariance matrices, we 

consider the estimation for the covariance matrices of random effects and residual errors. The 

distribution of random effects core tensor 𝓡𝑖  conditional on response tensors 𝓨𝑖  (𝑖 = 1,∙∙∙, 𝑁) 

follows a tensor normal distribution. Assuming 𝓨𝑖 and �̃� are known, the estimation of 𝓡𝑖 is the 

expectation of 𝓡𝑖|𝓨𝑖 and it can obtain 

�̂�𝑖 = ⟦𝓨𝑖 − �̃�; 𝚺r𝑩𝑖
(1)𝑇

𝚺𝑖
−1, 𝚿r𝑩𝑖

(2)𝑇

𝚿𝑖
−1, 𝛀r𝑩𝑖

(3)𝑇

𝛀𝑖
−1⟧.     (14) 

 

The distribution of 𝓨𝑖 − �̃� − ⟦𝓡𝑖; 𝑩𝑖
(1)

, 𝑩𝑖
(2)

, 𝑩𝑖
(3)

⟧  conditioned on the random effects 

core tensor 𝓡𝑖 is a tensor normal distribution given by 

(𝓨𝑖 − �̃� − ⟦𝓡𝑖; 𝑩𝑖
(1)

, 𝑩𝑖
(2)

, 𝑩𝑖
(3)

⟧) |𝓡𝑖 ∽ 𝑵𝐽,𝐾,𝐿(𝓞; 𝚺ε, 𝚿ε, 𝛀ε). 

For simplification, we define �̃�𝑖 = ⟦𝓡𝑖; 𝑩𝑖
(1)

, 𝑩𝑖
(2)

, 𝑩𝑖
(3)

⟧,  �̂̃�𝑖 = ⟦�̂�𝑖; 𝑩𝑖
(1)

, 𝑩𝑖
(2)

, 𝑩𝑖
(3)

⟧ . 

Similar to Proposition 3, we have the maximum likelihood estimators of  𝚺ε, 𝚿ε, 𝛀ε are 

�̂�𝜀 =
1

𝐾𝐿𝑁
∑ (𝓨𝑖 − �̂̃� − �̂̃�)

(1)
∙ (�̂�𝜀

−1⨂�̂�𝜀
−1) ∙ (𝓨𝑖 − �̂̃� − �̂̃�)

(1)

𝑇
𝑁
𝑖=1      (15) 

�̂�𝜀 =
1

𝐽𝐿𝑁
∑ (𝓨𝑖 − �̂̃� − �̂̃�)

(2)
∙ (�̂�𝜀

−1⨂�̂�𝜀
−1) ∙ (𝓨𝑖 − �̂̃� − �̂̃�)

(2)

𝑇
𝑁
𝑖=1      

(16) 

�̂�𝜀 =
1

𝐽𝐾𝑁
∑ (𝓨𝑖 − �̂̃� − �̂̃�)

(3)
∙ (�̂�𝜀

−1⨂�̂�𝜀
−1) ∙ (𝓨𝑖 − �̂̃� − �̂̃�)

(3)

𝑇
𝑁
𝑖=1      

(17) 
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Comparing Equations (15-17) with Equations (8-10), we notice similar patterns. The 

mean components change from  𝓨𝑖 − �̂̃�  to 𝓨𝑖 − �̂̃� − �̂̃�  based on the estimation of random 

effects. After that, a progressive estimation for covariance matrices 𝚺ε, 𝚿ε and 𝛀ε are obtained.  

We know that the covariance matrices 𝚺𝑖 ,  𝚿𝑖 ,  𝛀𝑖  and 𝚺ε ,  𝚿ε ,  𝛀ε  should be positive 

definite. In order to ensure the positive definite property in Equations (8-10, 15-17), the 

existence of the MLE should be explored. This is shown in Section 3.2. Based on 𝚺𝑖 =

𝑩𝑖
(1)

𝚺r𝑩𝑖
(1)𝑇

+ 𝚺ε , 𝚿𝑖 = 𝑩𝑖
(2)

𝚿r𝑩𝑖
(2)𝑇

+ 𝚿ε , 𝛀𝑖 = 𝑩𝑖
(3)

𝛀r𝑩𝑖
(3)𝑇

+ 𝛀ε , we know that the 

covariance matrices of random effects and residual errors are not unique. The identifiability 

should be investigated, which is discussed in Section 3.3.  

3.2 Existence of the MLE 

Finding the estimation of the average component, fixed effects core tensor �̂� , is 

straightforward given the positive definite covariance matrices. Hereafter, we focus on the 

exploration of the existence of MLE for the total covariance matrices �̂�𝑖 , �̂�𝑖 , �̂�𝑖  , shown in 

Equations (8-13). A necessary condition for the existence of the MLE can be derived based on 

the paper (Manceur and Dutilleul 2013), which is demonstrated in Proposition 4.  

Proposition 4. If maximum likelihood estimators for the covariance matrices 𝚺𝑖, 𝚿𝑖, 𝛀𝑖 in the 

TME model (1) exist, the sample size 𝑁 of the response tensors 𝓨𝑖  (𝑖 = 1,∙∙∙, 𝑁) satisfies the 

condition 

𝑁 ≥ max (
𝐽

𝐾𝐿
,

𝐾

𝐽𝐿
,

𝐿

𝐽𝐾
) + 1. 

The Proof is straightforward according to the conclusion in the paper (Manceur and 

Dutilleul 2013). Although the condition shown in Proposition 4 is necessary for the existence of 

the MLE, it is not sufficient because it cannot ensure that all the iterations of the algorithm have 

full rank matrices. Similar to the existence of the MLE for the model with Kronecker product 

covariance structure (Roś et al. 2016), it could happen that covariance matrices in the updated 

iterations do not have a full rank with the likelihood of the TME model converging to the 

supremum. The reason is that the space 

{𝛀𝑖⨂𝚿𝑖⨂𝚺𝑖: 𝚺𝑖 ∈ ℝ𝐽×𝐽, 𝚿𝑖 ∈ ℝ𝐾×𝐾, 𝛀𝑖 ∈ ℝ𝐿×𝐿; 𝛀𝑖 , 𝚿𝑖 , 𝚺𝑖 are positive definite} with any norm 

is not closed. If we choose a stronger condition, for a space 𝕂 (equipped with the Frobenius 

norm) of positive definite 𝐽𝐾𝐿 × 𝐽𝐾𝐿  matrices that have a kronecker structure such that 

𝛀𝑖⨂𝚿𝑖⨂𝚺𝑖 ∈ 𝕂, where 𝛀𝑖, 𝚿𝑖, 𝚺𝑖 are also positive definite, Then 𝕂 is closed, according to the 
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natural extension of (Roś et al. 2016). Based on this conclusion, we can formulate the sufficient 

condition for the existence of the MLE for the total covariance matrices, as shown in Proposition 

5. 

Proposition 5. The response tensor 𝓨𝑖  ( 𝑖 = 1,∙∙∙, 𝑁 ) satisfies the model (1). If 𝑁 ≥ 𝐽𝐾𝐿 , 

maximum likelihood estimators for the covariance matrices 𝚺𝑖, 𝚿𝑖, 𝛀𝑖 in the TME model exist 

with probability 1. 

The proof is straightforward by using the conclusion (Burg et al. 1982), and it is an 

extension of Theorem 3 in page 6 of Roś et al. (2016).  

In summary of Propositions 4 and 5, if 𝑁 < max (
𝐽

𝐾𝐿
,

𝐾

𝐽𝐿
,

𝐿

𝐽𝐾
) + 1 , the MLEs of 

covariance matrices do not exist. However, if 𝑁 ≥ 𝐽𝐾𝐿, the MLEs exist with probability 1.  

Moreover, the dimensions of tensor samples are usually large, and 𝑁 ≥ 𝐽𝐾𝐿 is hard to 

guarantee in practice. When the covariance matrices satisfy special structures, such as diagonal 

structures, the sufficient condition of existence will be changed. We have Proposition 6 to 

illustrate the existence conditions with the additional assumptions of diagonal matrices.  

Proposition 6. The response tensors 𝓨𝑖 (𝑖 = 1,∙∙∙, 𝑁) satisfy the model (1) with the additional 

assumption that 𝚺𝑖  is diagonal. If 𝑁 ≥ max (𝐾𝐿, max (
𝐽

𝐾𝐿
,

𝐾

𝐽𝐿
,

𝐿

𝐽𝐾
) + 1) , the maximum 

likelihood estimators for the covariance matrices 𝚺𝑖 ,  𝚿𝑖 ,  𝛀𝑖  in the TME model exist with 

probability 1. 

Proposition 6 is a three-dimensional extension of Theorem 8 on page 14 of Roś et al. 

(2016). 

Due to the similarity of the MLE for covariance matrices 𝚺𝑖, 𝚿𝑖, 𝛀𝑖 and 𝚺ε, 𝚿ε, 𝛀ε, the 

existence condition of the MLE for covariance matrices 𝚺ε, 𝚿ε, 𝛀ε can be obtained accordingly. 

We need to point out that the existence of MLE does not mean that the estimation has good 

identifiability and convergence to the global optimal solution. We will investigate the 

identifiability in Section 3.3 and convergence in Section 4.2. 

 

3.3 Identifiability 

The identifiability of a statistical model is essential because it ensures correct inference 

on model parameters. For the TME model, the identifiability is extremely complex because it 

involves three aspects: (i) whether the fixed effects core tensor is identifiable; (ii) the 
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identifiability of the Kronecker covariance structure, because 𝛀𝑖⨂𝚿𝑖 = 𝑐𝛀𝑖⨂
1

𝑐
𝚿𝑖 for any 𝑐 > 0; 

(iii) and the identifiability of covariance matrices of random effects and residual errors, because 

𝚺𝑖 = 𝑩𝑖
(1)

𝚺r𝑩𝑖
(1)𝑇

+ 𝚺ε , 𝚿𝑖 = 𝑩𝑖
(2)

𝚿r𝑩𝑖
(2)𝑇

+ 𝚿ε  and 𝛀𝑖 = 𝑩𝑖
(3)

𝛀r𝑩𝑖
(3)𝑇

+ 𝛀ε . We will 

investigate the identifiability for each these aspects respectively.  

Firstly, the identifiability of the TME model follows the identifiability definition of a 

linear mixed effects model (Demidenko 2013). If the TME model is defined by a family of 

distributions {𝑷𝜽, 𝜽 ∈ 𝚯}, as shown in Equation (2), which is parameterized by the vector 𝜽,  and 

𝚯 is the parameter space. The model is identifiable on 𝚯 if 𝑷𝜽1
= 𝑷𝜽2

 implies that 𝜽1 = 𝜽2 . 

Identifiability is a necessary property for the adequacy of the TME model.  

In the linear mixed effects model, the design matrix for fixed effects has to be full-ranked 

to realize unique estimation of fixed effects parameters. If 

⟦𝓕1; 𝑨𝑖
(1)

, 𝑨𝑖
(2)

, 𝑨𝑖
(3)

⟧ = ⟦𝓕2; 𝑨𝑖
(1)

, 𝑨𝑖
(2)

, 𝑨𝑖
(3)

⟧ implies 𝓕1 = 𝓕2,  it means the fixed effects core 

tensor is indentifiable. To ensure the identifiability of fixed effects core tensor in the TME model, 

it must satisfy that the design matrices 𝑨𝑖
(1)

, 𝑨𝑖
(2)

, 𝑨𝑖
(3)

 have full rank. According to the property 

of Kronecker product, 𝑨𝑖
(3)

⨂𝑨𝑖
(2)

⨂𝑨𝑖
(1)

 has full rank.  

The identifiability of the Kronecker covariance structure can be ensured by introducing 

additional constraints. Because the covariance matrices are positive definite, one kind of 

constraint can be fixing particular summations of the diagonal elements of 𝚺𝑖 , 𝚿𝑖  or 𝛀𝑖  to be 

equal to 1; another possible constraint is to assume that the determinants of two of the three 

covariance matrices are equal to 1. The constraints do not restrict the application of the TME 

model since the relative magnitude of the entries in the covariance matrix will be relevant to the 

key information that we care about.  

Based on 𝚺𝑖 = 𝑩𝑖
(1)

𝚺r𝑩𝑖
(1)𝑇

+ 𝚺ε , 𝚿𝑖 = 𝑩𝑖
(2)

𝚿r𝑩𝑖
(2)𝑇

+ 𝚿ε  and 𝛀𝑖 = 𝑩𝑖
(3)

𝛀r𝑩𝑖
(3)𝑇

+ 𝛀ε , 

we know that the covariance matrices of random effects and residual errors are not unique. In 

order to ensure identifiability in a similar way to the classical mixed effects model (Demidenko 

2013), we need to ensure that the design matrices 𝑩𝑖
(1)

, 𝑩𝑖
(2)

, 𝑩𝑖
(3)

 have full rank and to specify 

the structure of the covariance matrices 𝚺ε, 𝚿ε, 𝛀ε. In general, there are two ways to specify the 

structure of the covariance matrices: One way is to assume the covariance matrices 𝚺ε, 𝚿ε, 𝛀ε 

are diagonal matrices (corresponding to the independent noise). Notably, the covariance matrices 
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for random effects 𝚺r , 𝚿r , 𝛀r  and the total covariance matrices 𝚺𝑖 , 𝚿𝑖  , 𝛀𝑖  are not diagonal. 

Another way is to determine the noise pattern based on a phase-I analysis. For example the noise 

is found to have a signal dependent property and the noise parameters are consistent for different 

data acquisition time in Raman inspection of nanomanufacturing (Yue et al. 2017).   

 

4. Double Flip-Flop Algorithm for Parameter Estimation of TME Model 

4.1 Double Flip-Flop Algorithm 

For existing maximum likelihood estimation of covariance matrices with Kronecker 

structure, a Flip-Flop algorithm has been proposed to update the estimation of several 

components sequentially and iteratively (Dutilleul 1999; Lu and Zimmerman 2004; Manceur and 

Dutilleul  2013; Sakata 2016). We have derived the maximum likelihood estimators for the TME 

model in Section 3. In this section, we will propose a double Flip-Flop algorithm to implement 

the parameter estimation iteratively. The algorithm is shown in Table 1. 

 

Table 1: Double Flip-Flop Algorithm for the TME Model 

Step 1: Initialize the core tensor �̂�{0}  and design matrices 𝑨𝑖
(1)

, 𝑨𝑖
(2)

, 𝑨𝑖
(3)

, 𝑩𝑖
(1)

, 𝑩𝑖
(2)

, 𝑩𝑖
(3)

, and covariance matrices 

�̂�𝑟
{0}

, �̂�𝑟
{0}

, �̂�𝑟
{0}

, �̂�𝜀
{0}

, �̂�𝜀
{0}

, �̂�𝜀
{0}

. Set the iteration number 𝑘 = 0. 

 Calculate the mean response tensor �̅�, and then use high-order orthogonal iteration (HOOI) to compute a 

rank-(𝑃1, 𝑄1 , 𝑅1) Tucker decomposition, �̅� = ⟦𝓕{0}; 𝑨𝑖
(1){0}

, 𝑨𝑖
(2){0}

, 𝑨𝑖
(3){0}

⟧. The decomposed core tensor 

and factor matrices work as the initialized fixed effect core tensor and design matrices for fixed effects.  

 Choose the design matrices for random effects 𝑩𝑖
(1){0}

, 𝑩𝑖
(2){0}

, 𝑩𝑖
(3){0}

 as a subset of appropriate columns of 

the design matrices 𝑨𝑖
(1){0}

, 𝑨𝑖
(2){0}

, 𝑨𝑖
(3){0}

. 

 Compute the �̂�𝑖
{0}

, �̂�𝑖
{0}

, �̂�𝑖
{0}

. 

Step 2: Increase iteration number 𝑘 by 1.  

Step 3: Keep �̂�{𝑘−1} fixed and compute �̂�𝑖
{𝑘}

, �̂�𝑖
{𝑘}

, �̂�𝑖
{𝑘}

. 

 Compute �̂�𝑖
{𝑘}

 by using Equation (8) (using �̂�𝑖
{𝑘−1}

, �̂�𝑖
{𝑘−1}

).  

 Compute �̂�𝑖
{𝑘}

 by using Equation (9) (using �̂�𝑖
{𝑘}

, �̂�𝑖
{𝑘−1}

).  

 Compute �̂�𝑖
{𝑘}

 by using Equation (10) (using �̂�𝑖
{𝑘}

, �̂�𝑖
{𝑘}

).  

Step 4: Keep �̂�𝑖
{𝑘}

, �̂�𝑖
{𝑘}

, �̂�𝑖
{𝑘}

 fixed and compute �̂�{𝑘} by using Equation (7). 

Step 5: Iterate between steps 2 and 4 until convergence or until reaching a predetermined number of iterations 𝐾. 

Step 6: Set the iteration number 𝑡 = 0. Estimate �̂�{0}  by the expectation mean in Equation (14). 
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Step 7: Increase iteration number 𝑡 by 1. 

Step 8: Keep �̂�{𝑘}, �̂�{𝑡−1} fixed and compute �̂�ε, �̂�ε, �̂�ε considering given constraints. 

 Compute �̂�𝜀
{𝑡}

 by using Equation (15) (using �̂�𝜀
{𝑡−1}

, �̂�𝜀
{𝑡−1}

) and adjust it according to given constraints.  

 Compute �̂�𝜀
{𝑡}

 by using Equation (16) (using �̂�𝜀
{𝑡}

, �̂�𝜀
{𝑡−1}

) and adjust it according to given constraints. 

 Compute �̂�𝜀
{𝑡}

 by using Equation (17) (using �̂�𝜀
{𝑡}

, �̂�𝜀
{𝑡}

) and adjust it according to given constraints. 

Step 9: Keep �̂�𝜀
{𝑡}

, �̂�𝜀
{𝑡}

, �̂�𝜀
{𝑡}

 fixed and compute �̂�{𝑡} by using Equation (14). 

Step 10: Iterate between steps 7 and 9 until convergence or until reaching a predetermined number of iterations 𝑇. 

 

Note that the algorithm involves two iterative loops. The first one is related to the 

computation of the fixed effects and total covariance matrices, and the second one is relevant to 

the computation of covariance matrices of residual errors and random effects. Each loop follows 

the characteristic of a Flip-Flop algorithm, and that is why it is named after the double Flip-Flop 

algorithm.  

4.2 Initialization of the Algorithm 

Obtaining good initial values is important for parameter estimation in the TME model. 

For the initialization, we use high-order orthogonal iteration (HOOI) to compute a rank-

(𝑃1, 𝑄1, 𝑅1)  Tucker decomposition. In the HOOI algorithm, a higher-order Singular Value 

Decomposition (HOSVD) is applied to initialize the factor matrices, and a set of orthogonal 

constraints to ensure the core tensor is all-orthogonal. This improves the uniqueness of Tucker 

decomposition (Kolda and Bader 2009). It is typically a challenging task to determine the 

parameters 𝑃1, 𝑄1, 𝑅1. Basically, the parameters 𝑃1, 𝑄1, 𝑅1 should be relevant to the rank of given 

tensor. However, there is no straightforward algorithm to determine the rank of a specific given 

tensor, which is NP-hard (Hastad 1990, Kolda and Bader 2009). In the implementations, we 

determine the key dimensional parameters by using the following procedures: (1) with the 

assumption that only part of features have random effects, we test that the ranges of these 

parameters  𝑷𝟏, 𝑸𝟏, 𝑹𝟏  are J: K: L ~1:1:1. The ranges of parameters 𝑷𝟐, 𝑸𝟐, 𝑹𝟐  are 

𝑷𝟏: 𝑸𝟏: 𝑹𝟏~1:1:1. (2) we conduct tensor decomposition for each combination of parameters. (3) 

after obtaining core tensor from tensor decomposition, we check the sparsity for each 

combination of parameters. The sparsity is usually represented by the number of far-from-zero 

entries. For example, we choose a sparsity criterion that the summation of absolute value at one 

row of core tensor should be larger than a specific threshold. (4) we select the key dimensional 

parameters that have the largest summation of these parameters, as well as satisfy the sparsity 
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criterion. The design matrices 𝑨𝑖
(1){0}

, 𝑨𝑖
(2){0}

, 𝑨𝑖
(3){0}

 are determined by the factor matrices from 

the Tucker decomposition. The design matrices for random effects 𝑩𝑖
(1){0}

, 𝑩𝑖
(2){0}

, 𝑩𝑖
(3){0}

 can be 

chosen as a subset of appropriate columns of the design matrices 𝑨𝑖
(1){0}

, 𝑨𝑖
(2){0}

, 𝑨𝑖
(3){0}

. While 

the columns are determined by possible random effects relevant to features of interest in a phase-

I data analysis. In phase-I data analysis, a set of process data is gathered and analyzed all at once 

in a retrospective analysis, and the features of interest will be chosen by multiple trials. 

 

4.3 Convergence of the Algorithm 

Lu and Zimmerman (2004) have explored the convergence of a Flip-Flop algorithm. 

According to the paper (Lu and Zimmerman 2004), the likelihood function of successive 

iterations of a Flip-Flop algorithm cannot decrease. Provided 𝑁 ≥ 𝐽𝐾𝐿 , the algorithm is 

guaranteed to converge. However, whether it converges to a MLE is not ensured because the 

space of the covariance matrices is not convex. An empirical study of the convergence is 

investigated in Section 5.1.  

The most commonly used stopping criteria are ones that based on the relative change in 

either the covariance parameters between successive iterations or differences between successive 

log-likelihood functions. Considering all the covariance matrices, the stopping criteria for the 

first loop are that the 𝐿1  norms ‖�̂�𝑖
{𝑘}

− �̂�𝑖
{𝑘−1}

‖
1

, ‖�̂�𝑖
{𝑘}

− �̂�𝑖
{𝑘−1}

‖
1

, ‖�̂�𝑖
{𝑘}

− �̂�𝑖
{𝑘−1}

‖
1

 are 

simultaneously smaller than the thresholds. Similar stopping criteria are applied for the second 

loop, which means that ‖�̂�𝜀
{𝑡}

− �̂�𝜀
{𝑡−1}

‖
1

, ‖�̂�𝜀
{𝑡}

− �̂�𝜀
{𝑡−1}

‖
1

, ‖�̂�𝜀
{𝑡}

− �̂�𝜀
{𝑡−1}

‖
1

 are 

simultaneously smaller than the thresholds. For the asymptotic properties of the Flip-Flop type 

algorithm, please refer to the paper (Werner et al. 2008). We also investigate the asymptotic 

properties in Sections 5 through simulation and surrogated data analysis.  

4.4 Computational Complexity of the Algorithm 

Since the double Flip-Flop algorithm uses the HOOI algorithm to do initialization and 

then conducts two iterative Flip-Flop loops, we need to analyze the computational cost of this 

algorithm. For simplicity, we assume the dimensions  𝐽 = 𝐾 = 𝐿, 𝑃1 = 𝑄1 = 𝑅1, 𝑃2 = 𝑄2 = 𝑅2. 

In the initialization part, each iteration in HOOI involves six tensor-by-matrix products and three 

maximization problems, where the computational complexity for each HOOI iteration is 

𝑂(𝐽3𝑃1 + 𝐽𝑃1
4 + 𝑃1

6) (Elden and Savas 2009). The computational complexity of step 3 is 𝑂(𝑁𝐽5), 
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while step 4 is 𝑂(𝑁𝑃1
9 + 𝑁𝐽3𝑃1

3). Therefore the cost for each iteration of the first Flip-Flop loop 

is 𝑂(𝑁𝐽5 + 𝑁𝑃1
9 + 𝑁𝐽3𝑃1

3). Similarly, the computational complexities for step 8 and step 9 are 

𝑂(𝑁𝐽5) and 𝑂(𝑁𝐽3𝑃2), respectively. Thus, the computation cost for each iteration of the second 

Flip-Flop loop is 𝑂(𝑁𝐽5), which is dominated by step 8. The computational time will also be 

impacted by the iteration number. According to the simulation study in Section 5.1, the 

algorithm will converge quickly.  

To show the computational advantage of the proposed TME model, we consider the 

conventional linear mixed effects model for vectorized responses (marked as vLME) (Galecki 

and Burzykowski 2013). After vectorization of the tensor responses, the dimension of each 

response becomes 𝐽3 . Thus the computational complexity of the vLME model is 𝑂(𝑁𝐽9) 

(Lippert et al. 2011). It is much larger than the complexity of the TME model, which is 𝑂(𝑁𝐽5 +

𝑁𝑃1
9 + 𝑁𝐽3𝑃1

3). 

5. Numerical Analysis 

5.1 Simulation Study 

In this section, the performance of the iterative algorithm is evaluated through simulation 

studies. In order to simulate the response tensor with mixed effects, we generate the fixed effects 

tensor with dimension 30×5×5. The dimensions of core tensors for fixed effects and random 

effects are 8×3×3 and 3×2×2, respectively. The covariance matrices of random effects are 

generated from random symmetric positive definite matrices. Two covariance matrices of 

residual errors are generated by isotropic matrices (an isotropic matrix is an identity matrix 

multiplied by a positive number) with dimension 5×5 and another covariance matrix with 

dimension 30×30. 1000 response tensors are generated to test the performance. A computer with 

Intel Core i7-4500U processor and 8.00GB RAM is used to conduct the numerical analysis.  

After we generate the dataset, we run the double Flip-Flop algorithm for parameter 

estimation of a tensor mixed effect model. For convergence, we test several convergence indices 

that are the divided 𝐿1 norm of the difference between covariance matrices in two successive 

iterations, including ‖�̂�𝑖
{𝑘}

− �̂�𝑖
{𝑘−1}

‖
1

/𝐽 ∙ 𝐽, ‖�̂�𝑖
{𝑘}

− �̂�𝑖
{𝑘−1}

‖
1

/𝐾 ∙ 𝐾, ‖�̂�𝑖
{𝑘}

− �̂�𝑖
{𝑘−1}

‖
1

/𝐿 ∙ 𝐿 

for the first loop and ‖�̂�𝜀
{𝑡}

− �̂�𝜀
{𝑡−1}

‖
1

/𝐽 ∙ 𝐽, ‖�̂�𝜀
{𝑡}

− �̂�𝜀
{𝑡−1}

‖
1

/𝐾 ∙ 𝐾, ‖�̂�𝜀
{𝑡}

− �̂�𝜀
{𝑡−1}

‖
1

/𝐿 ∙ 𝐿 

for the second loop. We can see the convergence indices versus iterative histories in Fig. 3. We 

can find that the convergence history is monotonic and fast. 
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(a) Convergence of the first loop                                   (b) Convergence of the second loop 

Fig. 3. Convergence of the iterative algorithm 

 

When we do the parameter estimation for the TME model, we will get the design 

matrices 𝑨𝑖
(1)

, 𝑨𝑖
(2)

, 𝑨𝑖
(3)

 first by a Tucker decomposition for the mean response tensor. The 

design matrices 𝑩𝑖
(1)

,  𝑩𝑖
(2)

, 𝑩𝑖
(3)

 are a subset of the design matrices 𝑨𝑖
(1)

, 𝑨𝑖
(2)

, 𝑨𝑖
(3)

. After 

convergence, we compare the estimated parameters with a sample size of 600 and the ones in the 

simulation model (underlying true parameters). The parameters that we consider include core 

tensor of fixed effects, total covariance matrices from the first loop and covariance matrices of 

residual errors from the second loop. The results are shown in Fig. 4. We can see the estimations 

are quite consistent with the simulated parameters (underlying true parameters).   

   

(a) Core tensor of fixed effects                              (b) Covariance matrices �̂�𝑖 and �̂�𝑖 

Acc
ep

te
d 

M
an

us
cr

ipt



20 
 

 

(c) Covariance matrices �̂�𝑟 and �̂�𝑟                        (d) Covariance matrices �̂�𝜀 and �̂�𝜀 

Fig. 4. Comparison between estimated parameters and simulated parameters 

 

In order to quantitatively evaluate the estimation accuracy, we introduce indices, 

including  𝑫𝓕, 𝑫𝚺𝑖
, 𝑫𝚿𝑖

, 𝑫𝛀𝑖
 for the first loop, and 𝑫𝚺𝜀

, 𝑫𝚿𝜀
, 𝑫𝛀𝜀

 for the second loop. Where 

𝑫𝑿 = ‖�̂� − 𝑿‖
𝐹

/‖𝑿‖𝐹 , and �̂� − 𝑿  denote the difference between estimated and true 

matrix/tensor. Moreover, 𝑿 = {𝓕, 𝚺𝑖, 𝚿𝑖 , 𝛀𝑖, 𝚺𝜀 , 𝚿𝜀 , 𝛀𝜀} , and ‖∙‖𝐹  denotes Frobenius norm. 

Furthermore, we introduce three indices for showing the convergence speed of different sample 

sizes. These indices are the iteration number, the time per iteration in the first loop, and the time 

per iteration in the second loop. 

In order to explore the quantitative estimation accuracy and the asymptotic properties, we 

conduct the parameter estimation of the TME model for different sample sizes from 50 to 800. 

One hundred simulation runs are tested, where the mean and the standard deviation of the 

quantitative indices 𝑫𝑿, 𝑿 = {𝓕, 𝚺𝑖, 𝚿𝑖 , 𝛀𝑖, 𝚺𝜀 , 𝚿𝜀 , 𝛀𝜀}  are calculated. The results are listed in 

Table 2. For the convergence speed, we notice that as the increase of sample size from 50 to 800, 

the average iteration number becomes smaller (from 9.32 to 6.05). While the average time per 

iteration increases from 0.62 seconds to 9.89 seconds in the first loop and from 0.22 seconds to 

3.48 seconds in the second loop. For the quantitative estimation accuracy, the indices 

𝑫𝓕, 𝑫𝚺𝑖
, 𝑫𝚿𝑖

, 𝑫𝛀𝑖
, 𝑫𝚺𝜀

, 𝑫𝚿𝜀
, 𝑫𝛀𝜀

 become smaller as the sample size increases. Which means that 

the estimated parameters are more accurate for the larger sample size. Of course, it costs more to 

obtain larger size of samples.  

Table 2. Quantitative results for convergence speed and accuracy for different sample size 
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Sampl

e size 

Iteratio

n 

numbe

r 

𝑫𝓕 𝑫𝚺𝑖
 𝑫𝚿𝑖

 𝑫𝛀𝑖
 

Time 

1/s 
𝑫𝚺𝜀

 𝑫𝚿𝜀
 𝑫𝛀𝜀

 
Time 

2/s 

50 
9.21 

(0.48) 

0.0093 

(0.0013) 

0.9463 

(0.0016) 

0.0999 

(0.0131) 

0.0353 

(0.0151) 

0.63 

(0.06) 

0.9596 

(0.3692) 

0.2900 

(0.0298) 

0.3586 

(0.0344) 

0.27 

(0.03) 

80 
8.69 

(0.46) 

0.0071 

(0.0009) 

0.9140 

(0.0022) 

0.0988 

(0.0128) 

0.0325 

(0.0161) 

0.99 

(0.11) 

0.5566 

(0.2811) 

0.2685 

(0.0234) 

0.3327 

(0.0269) 

0.41 

(0.05) 

100 
8.12 

(0.48) 

0.0063 

(0.0008) 

0.8924 

(0.0027) 

0.0989 

(0.0129) 

0.0318 

(0.0158) 

1.26 

(0.23) 

0.3966 

(0.1835) 

0.2577 

(0.0215) 

0.3188 

(0.0240) 

0.49 

(0.06) 

200 
7.02 

(0.14) 

0.0045 

(0.0006) 

0.7842 

(0.0049) 

0.0985 

(0.0121) 

0.0297 

(0.0157) 

2.47 

(0.27) 

0.1827 

(0.0355) 

0.2313 

(0.0183) 

0.2876 

(0.0191) 

0.99 

(0.13) 

400 
6.71 

(0.45) 

0.0033 

(0.0005) 

0.5682 

(0.0094) 

0.0981 

(0.0122) 

0.0280 

(0.0158) 

4.94 

(0.50) 

0.1249 

(0.0205) 

0.2189 

(0.0166) 

0.2736 

(0.0180) 

1.99 

(0.26) 

600 
6.27 

(0.45) 

0.0027 

(0.0004) 

0.3525 

(0.0143) 

0.0982 

(0.0124) 

0.0277 

(0.0162) 

7.42 

(0.77) 

0.1100 

(0.0182) 

0.2157 

(0.0165) 

0.2696 

(0.0178) 

2.97 

(0.34) 

800 
6.07 

(0.26) 

0.0023 

(0.0003) 

0.1380 

(0.0181) 

0.0982 

(0.0126) 

0.0277 

(0.0162) 

9.86 

(1.05) 

0.1033 

(0.0172) 

0.2135 

(0.0164) 

0.2678 

(0.0175) 

3.98 

(0.46) 

 

We compare our proposed TME method with two benchmark methods. The first is the 

tensor normal model with a structured mean (Nzabanita et al. 2015), which corresponds to the 

model that only considers fixed effects. We name it as the Tensor Fixed Effects (TFE) model and 

it is shown in Equation (18).   

𝓨𝑖 = 𝓕 ×1 𝑨𝑖
(1)

×2 𝑨𝑖
(2)

×3 𝑨𝑖
(3)

+ 𝓔𝑖 (18) 

where the distribution of the residual errors tensor 𝓔𝑖  is 𝑵𝐽,𝐾,𝐿(𝓞; 𝚺ε, 𝚿ε, 𝛀ε), and the noise 

covariance matrices along different dimensions are 𝚺ε ∈ ℝ𝐽×𝐽, 𝚿ε ∈ ℝ𝐾×𝐾, 𝛀ε ∈ ℝ𝐿×𝐿 . The 

second benchmark method is the Tucker decomposition (TD) for the average tensor response. In 

this method, we do not consider that the residual errors follow the tensor normal distribution.  

In the simulation, we used the tensor toolbox from the Sandia National Laboratories 

(Bader, et al. 2015) when writing codes for the TME, the TFE and the TD. In order to evaluate 

the performance of the proposed TME model and benchmark methods, we use the mean square 

error for each sample denoted as MSE𝑖 = ‖𝓨𝑖 − �̂�𝑖‖𝐹

2
/𝐽𝐾𝐿  with 𝑖 = 1,∙∙∙, 𝑁 . The mean and 

standard deviation for MSE are calculated for different sample sizes and presented in Table 3. 

The time in Table 3 denotes the total running time of the corresponding model.  

Table. 3. Comparison of mean square error in the TME model and benchmark methods 

Sample 

size 

TME 
Benchmark 1 

(TFE) 

Benchmark 2 

(TD) 

MSE Time MSE Time MSE Time 
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50 
67.9450 

(38.2969) 
9.29 

12.4738 

(1.2700) 
5.97 

12.3996 

(1.2719) 

1.69 

80 
26.2507 

(9.4062) 
15.24 

12.4155 

(1.2760) 
8.20 

12.3648 

(1.2700) 

2.44 

100 
18.3721 

(4.1957) 
18.08 

12.3916 

(1.2975) 
11.10 

12.3483 

(1.2960) 

2.86 

200 
11.9734 

(1.2894) 
22.82 

12.3624 

(1.3992) 
17.37 

12.3367 

(1.4047) 

5.75 

400 
10.5248 

(0.9193) 
36.95 

12.3620 

(1.4640) 
29.57 

12.3478 

(1.4666) 

11.80 

600 
10.2208 

(0.8512) 
58.13 

12.3860 

(1.4300) 
46.93 

12.3772 

(1.4315) 

18.35 

800 
10.0595 

(0.8234) 
85.55 

12.3226 

(1.4232) 
70.63 

12.3167 

(1.4235) 

26.06 

 

The results of mean and standard deviation for MSE and computational time in different 

sample sizes are shown in Table 3. For the general pattern, as the sample size increases, the mean 

of MSE tends to become smaller for all those methods. This is because the quantitative 

estimation accuracy is low when the sample size is small. When the sample size is 50, 80, or 100, 

the MSE of the proposed TME model is larger than that of the TFE model and the TD model. 

The reason is that the sample size is lower than the number of unknown parameters needed to be 

estimated, which is 152 in this simulation example. Therefore the parameter estimation is not 

accurate. It indicates that if the sample size is low, the error from parameter estimation will 

significantly reduce the effectiveness of the model that considers random effects. Hence, it is 

better to only consider the fixed effects. When the sample size is larger than 200, the proposed 

TME model outperforms the TFE model and the TD model with respect to MSE. This is 

especially true when the sample size is comparable or larger than the total dimensions (𝐽 ∙ 𝐾 ∙ 𝐿 

in this example). The reason is that the TME model considers not only the fixed effects, but also 

the random effects. Additionally, the computational time of the TME model, the TFE model, and 

the TD model are comparable. 

We also tried to conduct the vectorized Linear Mixed Effects (vLME) model, which 

conducts the typical linear mixed effects model (Galecki and Burzykowski 2013) after 

vectorization of the tensor responses. We used the fitlmematrix function in Matlab to conduct the 

vLME model. In this simulation, we transform 𝓨 = {𝓨1, 𝓨2, … , 𝓨𝑁} into a matrix, and get basis 

matrices from the vectorized parameters in {𝑨𝑖
(1)

, 𝑨𝑖
(2)

, 𝑨𝑖
(3)

, 𝑩𝑖
(1)

, 𝑩𝑖
(2)

, 𝑩𝑖
(3)

} . However, 

vectorization destroys the tensor structure and results that the corresponding basis matrices are 

not of full rank. Therefore the vLME model failed in this situation. If we use different basis 
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design in the TME and vLME models, the comparison will be unfair. Therefore, the TME model 

and vLME cannot be compared in the simulation. 

It is worth mentioning that the small MSE is to show the TME model can realize accurate 

parameter estimation when there exist fixed effects and random effects in the multi-dimensional 

arrays. The main reason that we recommend the TME model is not that it can realize smaller 

MSE, but it can (i) separate fixed effects and random effects in a tensor domain; (ii) explore the 

correlations along different dimensions. If we know that there are not random effects in the 

tensor datasets according to domain knowledge, the TFE model and the TD model are 

recommended.  

 

5.2 Surrogated Data Analysis of Raman Mapping 

In this section, the performance of the TME model is evaluated through the surrogated 

Raman mapping data from a real CNTs buckypaper fabrication process. The setup of in-line 

Raman spectroscopy is shown in Fig. 5. In the experimental setup, Near Infra-Red (NIR) laser 

with a wavelength of 785nm and a laser output power of 150mW were used to eliminate the 

effect of ambient light. A low magnification lens was used to achieve a larger focus tolerance.  

Raman mapping data have been collected from multiple rectangular zones, and the 

Raman data from each zone corresponds to one tensor. One Raman mapping tensor is shown in 

Fig. 2. Red dots represent measurement points, and there is a Raman spectrum in each 

measurement point. The mean response tensor is computed, and Tucker decomposition is 

conducted to obtain the design matrices. The dimension of the response tensor is 256×5×5. The 

dimensions of core tensor of fixed effects and random effects are 8 × 3 × 3 and 4 × 2 × 2, 

respectively. The covariance matrices of random effects are generated by weighted summation of 

diagonal matrices with random values and identity matrices. Two covariance matrices of residual 

errors are generated by the identity matrices with dimension 5×5 and another covariance matrix 

with dimension 256×256 that is diagonal with a given signal-dependent noise from experimental 

data.  

After generating the surrogated Raman mapping data, the proposed TME is applied to 

extract different components including fixed effects, random effects, and signal-dependent noise. 

To explore the quantitative estimation accuracy, the same indices 
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𝑫f1, 𝑫𝚺𝑖
, 𝑫𝚿𝑖

, 𝑫𝛀𝑖
, 𝑫𝚺𝜀

, 𝑫𝚿𝜀
, 𝑫𝛀𝜀

 that were defined in Section 5 have been used to evaluate the 

results under different sample sizes. The results are shown in Table 4.   

 

 

Fig.  5.  Renishaw™ inVia micro-Raman system with custom-designed remote optical probe and 

roller sample stage 

 

Table. 4. Quantitative results for convergence speed and accuracy for surrogated Raman 

mapping data 

Sample 

size 

Iteration 

number 
𝑫𝓕 𝑫𝚺𝑖

 𝑫𝚿𝑖
 𝑫𝛀𝑖

 
Time 

1/s 
𝑫𝚺𝜀

 𝑫𝚿𝜀
 𝑫𝛀𝜀

 
Time 

2/s 

50 17 0.0039 0.9184 0.2031 0.2076 7.08 4.6351 0.3624 0.2261 3.55 

80 13 0.0035 0.8693 0.2063 0.2158 11.94 4.3259 0.3455 0.2165 5.55 

100 13 0.0031 0.8365 0.2079 0.2174 15.83 3.9043 0.3276 0.2087 6.91 

200 9 0.0022 0.6735 0.2089 0.2190 30.84 0.2483 0.2945 0.1815 13.93 

400 9 0.0015 0.3465 0.2103 0.2201 56.83 0.1449 0.2900 0.1792 28.62 

600 7 0.0012 0.0702 0.2107 0.2206 90.73 0.1264 0.2908 0.1789 42.32 

 

In comparison to Table 2, the results in Table 4 show similar asymptotic patterns, which 

means the estimated parameters become more accurate as the sample size increases. For example, 

when the sample size is 600, the indices 𝑫𝓕, 𝑫𝚺𝑖
, 𝑫𝚿𝑖

, 𝑫𝛀𝑖
 are as low as 0.0012, 0.0702, 0.2107 

and 0.2206, respectively, which indicates the accuracy of the parameter estimation. However, the 

iteration number and time per iteration become larger for the same sample size due to the 

dimension increases from 30 to 256. Specifically, the computation time for 600 samples are 

90.73 seconds per first loop and 42.32 per second loop.  
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5.3 Real Case Study 

In this section, we show a real case study of applying the proposed TME model. The 

setup of in-line Raman spectroscopy is shown in Fig. 5. Similar to the surrogated data analysis, 

NIR laser with a wavelength of 785nm and a laser output power of 150mW were used to 

eliminate the effect of ambient light. The multi-walled CNTs buckypaper before alignment and 

after alignment are measured by Raman mapping technique. The scanning electron microscope 

(SEM) pictures for CNTs buckypaper are shown in Fig. 6. Alignment was conducted by 

stretching with different stretch ratio, including 0%, 20%, 35%, and 60%. When stretch ratio 

equals to 0%, it is referring to the CNTs buckypaper without alignment. The matrices 𝚿r and 𝚿ε 

are associated with the correlation along the horizontal direction, while the matrices 𝛀r and 𝛀ε 

are associated with the correlation along the vertical direction.  

 

Fig.  6.  SEM pictures of CNTs buckypaper with different stretch ratios 

 

After running Raman mapping in a rectangular zone, 800 response tensors with 

dimension 256×3×4 are generated from each CNTs buckypaper sample. The proposed TME 

model is used to fit the datasets and the double Flip-Flop algorithm is conducted for parameter 

estimation. The covariance matrices 𝚿r , 𝚿ε , 𝛀r  and 𝛀ε  for CNTs buckypaper with different 

degrees of alignment are summarized in Fig. 7 and Fig. 8. Fig. 7(a) shows the range of diagonal 

entries in covariance matrices (𝚿r and 𝚿ε) along the horizontal direction; while Fig. 7(b) shows 

the range of diagonal entries in covariance matrices (𝛀r and 𝛀ε) along the vertical direction. Fig. 

8 indicates changes of covariance coefficients as the stretch ratio increases. Fig. 8(a) shows 

coefficients in 𝚿r, and Fig. 8(b) shows coefficients in 𝛀r.    
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Fig.  7.  Range of diagonal entries in covariance matrices (a) 𝚿r and 𝚿ε, (b) 𝛀r and 𝛀ε for CNTs 

buckypaper with different degrees of alignment 

 

Fig.  8.  Covariance coefficients in covariance matrices (a) 𝚿r, (b) 𝛀r for CNTs buckypaper with 

different degrees of alignment 

 

We compare the covariance matrices along horizontal and vertical directions for each 

CNTs buckypaper sample. Considering the physical knowledge of CNTs buckypaper, we can 

provide the following remarks: 

 For the random effects covariance along the horizontal direction, we observe that the 

coefficient 𝚿r(1,2)  tends to become negative after alignment and as the degree of 

alignment increases, the absolute magnitude becomes larger. The covariance coefficient 

𝚿r(1,2)  changes from 0.0097 to -0.1267. It indicates that negative correlation along the 
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alignment direction occurs, and the covariance coefficient changes with the alignment of 

CNTs buckypaper. This can be explained by the conservation of mass in a local zone. 

Alignment introduces systematic ridges and valleys in the microstructure pattern, and a 

ridge will be close to a valley, that indicates the negative correlation in the height. The 

height will impact the measurement distance between the laser head in Raman 

spectroscopy and the Raman mapping. The covariance coefficient in 𝚿r(1,3) becomes 

negative after alignment, but the absolute magnitude becomes closer to zero. One 

physical interpretation is that after alignment, the distance between the first measurement 

line and the third measurement line becomes larger, and their correlation relationship 

becomes weaker.  

 For the random effects covariance along the vertical direction, coefficients 𝛀r(1,2) 

becomes closer to zero, but the absolute magnitude of 𝛀r(1,3)  becomes larger. The 

physical interpretation is that as the stretch ratio increases, the high-frequency surface 

roughness becomes smaller, while the low-frequency surface roughness becomes larger.  

 For the range of diagonal entries in covariance matrices of Raman mapping, the change 

of 𝚿r , 𝛀r  and 𝛀ε  for CNTs buckypaper with different degrees of alignment are quite 

random. However, 𝚿ε has a larger quantitative difference between the maximum entry 

and the minimum one after alignment. Without alignment, the diagonal coefficients range 

is 0.0464, while after alignment with a stretch ratio of 60%, the range becomes as large as 

0.3121. Which means that for different measurement lines along the alignment direction, 

the variability becomes larger. This makes sense because the alignment creates 

systematic ridges and valleys along the alignment directions. We can use this index to 

quantify the degree of alignment.  

In summary, based on the covariance matrices from the TME model, we can quantify the 

influence of alignment based on the range of diagonal entries in 𝚿ε and covariance coefficients 

𝚿r(1,2) . The quantitative changes after alignment can be interpreted by engineering knowledge. 

We want to point out that this case study is chosen to illustrate the performance of our approach. 

Other approaches may also work well for quantifying the degree of alignment. In addition, our 

TME approach can be extendable to other applications.  
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6. Summary 

In this paper, we proposed a novel TME model that effectively and efficiently explores 

the fixed effects and random effects inherent to the data in tensor domain. The advantages of this 

model include (i) its capability to handle multilevel hierarchical data; (ii) its ability to take 

complexed association structures, including correlation along different dimensions, into 

consideration; (iii) analyzing the mixed effects for the high-dimensional datasets. The proposed 

TME model can be viewed as a logical extension from a vector/matrix-valued mixed effects 

model to an array-valued mixed effects model. The proposed TME model is applied in the 

nanomanufacturing inspection. Moreover, the TME model can be applied to provide potential 

solutions for a family of tensor data analytics with mixed effects, such as problems in the 

research fields of multimodality imaging analysis, chemometrics, neuroimaging, multichannel 

signal processing, etc.   

For the TME model, the distribution of response tensors and its 𝑘-mode matricization 

were explored. We also derived the log-likelihood function for the TME model. Maximum 

likelihood estimators for fixed effect core tensor and covariance matrices were derived. 

Existence of the MLE and identifiability of the TME model were illustrated. Moreover, an 

iterative double Flip-Flop algorithm has been developed for parameter estimation, and the 

initialization and convergence criteria have been discussed. The computational complexity of the 

Flip-Flop algorithm has been derived. The TME model was shown to outperform vectorized 

LME model from a computational complexity perspective. By simulation and surrogated data 

analysis, we found that the algorithm can realize very quick convergence. The iteration number 

becomes smaller and time per iteration becomes longer as the sample size increases. In addition, 

the asymptotic property was investigated in the simulation and surrogate data analysis. The 

estimation accuracy of total covariance matrices and covariance matrices for the error terms 

improve as the sample size increases. In the simulation study, we also show that the TME model 

outperforms two benchmark methods which do not consider random effects (the TFE model and 

the TD model) when the sample size is larger than the dimensions of response tensor. 

Furthermore, in the case study, the influence of alignment of CNTs buckypaper is quantified by 

the covariance matrices along different dimensions.  

In future work, different extracted components for Raman mapping of different kinds of 

buckypaper can be analyzed based on the TME model. The extracted features will be used to do 
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inspection and monitoring of various quality characteristics, such as fabrication consistency, 

thickness variability, uniformity, and defect information. Finally, a set of quality assessment 

criteria of CNTs buckypaper will be developed.  

 

Supplementary Materials 

Supplementary materials contain the data and functions for the TME model and all technical 

proofs. 
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