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A Knowledge-Based Diagnostic
Approach for the Launch of the
Auto-Body Assembly Process

This paper is the first attempt to implement a knowledge-based diagnostic approach

for the auto-body assembly process launch. This approach enables quick detection
and localization of assembly process faults based on in-line dimensional measure-
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ments. The proposed approach includes an auto-body assembly knowledge repre-
sentation and a diagnostic reasoning mechanism. The knowledge representation is
comprised of the product, tooling, process, and measurement representations in the

form of hierarchical groups. The diagnostic reasoning performs fault diagnostic in
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three steps. First, an initial statistical analysis of measurement data is performed.
Next, the Candidate Component and Candidate Station with the hypothetical fault
are searched. Finally, the fault symptom is identified and the root cause is suggested.

Two case studies are presented to demonstrate the implementation of the proposed

method.

1 Introduction

In the automotive body assembly process, launch time is
defined as the time between installation of the complete tooling
equipment on the plant floor and the beginning at full scale
production. The most time consuming part of the assembly
process launch is verification and correction of faults related
to tooling design and tooling installation. Therefore, efficient
diagnostic of the assembly process is essential during launch
time.

In recent years, in-line measurement gages (Optical Coor-
dinate Measurement Machines—OCMMs) have been used to
measure auto-body dimensions. OCMMSs allow 100 percent
measurement of products and therefore, are capable of pro-
viding tremendous information about product quality and the
assembly process which challenge current diagnostic ap-
proaches. Based on in-line dimensional measurements, Hu and
Wu (1992) proposed a diagnostic method applying a multi-
variate statistical technique—Principal Components Analysis
(PCA). PCA has been used successfully in reducing variation
of the body assembly process, resulting in a significant quality
improvement.

Such multivariate approaches focus on statistical input-out-
put relationship. They enable one to analyze large numbers of
variables that can affect product quality. However, these ap-
proaches center mostly on the ability to identify a process
model, making no use of knowledge of the product structure
and the tooling system. Thus, they are merely statistical tools
for variation reduction rather than systematic approaches to
the diagnostic of an assembly process.

Knowledge of the product and assembly process should be

actively integrated with statistical analyses in order to develop
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an efficient diagnostic approach. Some recent research has
investigated the integration of statistical methods with knowl-
edge-based techniques to provide enhanced decision support
capabilities (Schwarz and Lu, 1992). Dessouky et al. (1987)
successfully applied decision tree analysis, supported by time
series modeling and factorial design experimentation tech-
niques, to diagnose process quality. Dooley and Kapoor (1990a,
1990b) proposed an enhanced quality evaluation system for
continuous manufacturing processes. They developed a rule
base to classify various types of signal changes such as mean
and variance.

Knowledge-based diagnostic systems have been used in man-
ufacturing processes. Becker et al. (1989) proposed a diagnostic
system which involved implementing a knowledge-based ap-
proach in the form of a model-based representation. The sys-
tem explicitly represents the relationship between components
and the order of process steps, as well as what the process
steps are designed to accomplish and what causes them to fail.
An on-line model-based diagnostic system was proposed by
Isermann and Freyermuth (1991). Knowledge of the process
is represented in the form of heuristic knowledge (fault trees)
and analytical knowledge (input-output relations). Though
there is evidence of successful implementation of knowledge-
based approaches in diagnostic, yet very little research has
been done with regards to investigation of these approaches
during the launch of a new auto-body assembly process.

This paper is the first attempt to develop a knowledge-based
diagnostic approach for the launch of auto-body assembly.
When launching a new process, pre-enumerated faults and
identified case studies are unavailable. Therefore, an experi-
ence-based diagnostic technique used, for example, in classical
rule-based systems such as MYCIN (Buchanan and Shortliffe,
1984) and DENDRAL (Buchanan and Feigenbaum, 1978) can-
not be used in this application. Additionally, these systems
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Fig. 1 A schematic diagram for knowledge-based diagnosis approach

were mainly heuristic with no direct support from the physics
(deep system) of the domain. To overcome these limitations,
Lu and Tcheng (1991) developed a layered model building
process from a detailed mechanistic description of the task
based on the domain physics.

In this paper, a systematic approach is proposed for knowl-
edge-based diagnostic of the auto-body assembly process. A
schematic diagram for knowledge-based diagnostic is shown
in Fig. 1.

This paper is organized as follows: section 2 describes the
knowledge representation of the product and the assembly
tooling and process. Section 3 introduces diagnostic reasoning,
which allows detection and location of dimensional faults.
Section 4 presents two case studies demonstrating the imple-
mentation of the proposed approach.

2 Knowledge Representation

The knowledge representation presented here supports a
novel approach to reasoning in the diagnostic of the auto-body
assembly process. Instead of reasoning from experience based
on previously solved case studies, relevant knowledge struc-
tures are built from key design features of the assembly process.
In this study four features are taken into consideration in the
knowledge representation for the assembly process diagnostic.
These features include: knowledge of the product, of tooling,
of process, and, of measurements. Figure 2 shows major fea-
tures of the auto-body assembly and their representation using
hierarchical groups. A detailed description of the features and
their representations are summarized in the following sections.

2.1 Product Representation. A set of components and
subassemblies is used to represent the auto-body in the form
of Hierarchical Groups (HG) of the product. The component
and subassembly groups are organized in order of their as-
sembly sequences. Figure 3 shows the auto-body used in this
research. The HG of the product showing details of the left
hand aperture (LH-APT)is presented in Fig. 4. Inthe following
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Fig. 2 Major features of auto-body assembly and their representation
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discussion, the LH-APT is used as an example to explain the
concept of the HG of the product.

The LH-APT consists of four layers (Fig. 4). Starting from
the Aperture Complete (layer 3), the aperture is divided into
two groups: the Aperture Outer Complete and the Aperture
Inner Complete (layer 4). Then, for example, the Aperture
Inner Complete is further divided into four groups (layer 5),
each of which may be composed of subgroups. For instance,
the rear quarter inner of layer 5 is further divided into three
groups (layer 6). For simplicity, each component of the HG
of the product will be represented as C; ;, where i stands for
the layer number and j represents the subassembly within the
ith layer. Using this compact taxonomy represented by the
HG, one can set up an exhaustive description of the product
structure and of the assembly sequence. Additionally, assembly
stations, marked as S; (/ = 1, ..., 7), are also presented in
the HG of the product (Fig. 4).

In general, the HG of the product represents all components
and intermediate subassemblies. Thus, the size and the scope
of the HG depends on the complexity of the designed product
and assembly process. For the auto-body studied in this paper,
the whole HG of the product consists of 10 layers, 22 stations
and 70 panels or subassemblies.

2.2 Representation of Tooling. Representation of tooling
provides information about the method of holding subassem-
blies in the fixtures during the assembly process. Two repre-
sentations were selected to describe tooling features: (/) Pin
Locating Points (PLPs) and (2) Clamp Locating Points (CLPs).
PLPs define the orientation of the subassemblies in the fixtures
during the assembly process. CLPs describe the clamping tasks
by using information about the location of the clamping points
and their respective directions.

Nomenclature
also a Candidate Sta-
Ci; = Jjth component in the sensors Sn; ;(+) and tion
ith layer Sng (*) Sn; {+) = jth Sensor Locating
Ci; = jth component in the CSS Candidate Set of Point in the ith layer,
ith layer, when also a Sensors controlling the (+)
Candidate Compo- P;(a, b) = jth Pin Locating axis
nent Point in the ith layer, T. = correlation threshold
Cl; (@) = jth Clamp Locating controlling the a and T, = variation threshold
Point in the ith layer, b axes Var; j(+) = variation of sensor
controlling the a axis S; ith station in the Sn, ; in the (+) axis
CMI1 = Criterion of Mode assembly line W;;(a) = jth Weld Locating

Corrij(s, *)

Importance
correlation between
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ith station in the
assembly line, when

Point in the ith layer,
controlling the a axis
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In general, tooling design follows the «¢3.2-1"" principle for
a rigid body (Chou, 1992). Typically, two pins are used to
orient the panel as shown in Fig. 5. In Fig. 5, pin A controls
axes X and Z, and pin B controls axis Z. Three clamps C, D,
and E control the Y axis.

Figure 6 shows three layers of hierarchical groups of PLPs
in the LH-APT. The symbol P, ,»(a, b) means the n,th PLP
on layer n,, controlling the g and b axes. Axesa and b represent
one of the {x, y, 7} directions each. It can be seen that the
first group (layer 3) contains two PLPs: P31 (x,2) and P32(2).
In layer 4, two PLP groups can be found: { Py, (x, 2), Ps2(2)}
and {Pys5(2), Psal2), Ps3(x,2)}. The other layers are treated
in a similar manner.

A similar Hierarchical Group of the CLPs is used to rep-
resent clamps.

2.3 Representation of Process. The assembly process
consists of a succession of tasks, each of which consists of
joining subassemblies or panels to form a larger subassembly.
The process starts with all panels separated and ends with all
panels propetly joined to form the whole auto-body. In this
paper, the assembly process is comprised of joining operations
in which panels are joined through spot welds. Location, di-
rections and quality of the welding spots are the process fea-
tures, that must be represented for the diagnosis. In the current
analysis, the process is represented as the HG of Welding
Locating Points (WLPs). The HG of WLPs describes the lo-
cation and sequence of the individual welding spots on the
components during assembly operations. The layout of the
HG of WLPs is similar to that of the PLPs.

2.4 Measurement Representation. Currently, in-line
OCMM s are located after each mean assembly operation, i.e.
apertures, underbody and framing. The number of sensors
depends on the complexity of the process. On average, 40-100
points are measured at each measurement station.

The measurements provide information about the location
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of measured points on the auto-body or subassemblies. In this
paper a single representation, Sensor Locating Points (SLPs),
was selected to describe the measurement feature. SLPs de-
scribe measurement information by giving the location of all
sensors. Similarly, as with the PLP, CLP and WLP groups,
the method of hierearchical groups was applied to represent
measurements. Figure 7 shows layer 4 of the SLP groups in
the LH-APT. In Fig. 7, the symbol Sn,; »2(4, b, ¢) means the
nyth SLP located on the n;th layer with measurements in the
a, b and ¢ axes, where a, b and c are one of the {x, y, z} axes
each. A single sensor may measure one, two or three axes.
The selection of the sensor axes is based on the analysis of the
critical dimensions of the auto-body. For example, in case of
slot ““B”* (Fig. 5), z is the most important direction. The design
purpose of this slot is to control the subassembly only in the
z axis. The x axis is not critical and therefore not measured
by the sensor.

3 Diagnostic Reasoning

The diagnostic reasoning provides automated assistance for
the assembly process diagnosis. It was designed to detect the
most severe fault at any given time. The reasoning scheme has
three major steps (Fig. 8): (1) Problem identification—selection
of Candidate Set of Sensors (CSS) by determining which sen-
sors plausibly detect the hypothetical fault, (2) Problem anal-
ysis—determination of the Candidate Component (failing panel
or subassembly) as well as Candidate Station (assembly station
causing hypothetical fault) and (3) Root cause identification—
detection of the fault symptom and its root cause. This pro-
cedure is based on the assumption that at any given time one
fault occurs on one component.

3.1 Problem Identification. The objective of this phase
is to select and classify measurement information in the form
of the CSS set. It is comprised of two sub-tasks:

(1) Selection of Measurement Information by Estimation
of Data Variation. After acquiring the data, the variation
Var; ;(+) for each sensor Sn{)(+) in axis (¢) is calculated as:

N
ST (Snf ™ P () =5nf (+))?
=]

Var; j(+)=" N-1 M
where ¢ = N is the current number of produced auto-bodies,
and Sn{’(+) is an average of the last N measurements of sensor
Sn(,-y)(-), m is an auto body number, and m € ft—- N+ 1

1.
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The presented diagnostic approach assumes detection of the
faults one by one, from the most severe to the least. To con-
centrate the most severe fault, a variation threshold, T, is pre-
set based on the percentile chart. The variation percentile chart
is generated by plotting the 6-sigma value for each sensor,
starting from the lowest to the highest one. In general, T, is
determined so that 70 percent of the inspected points fall below
(Fig. 9). Therefore points shown on the percentile chart above

N

root causes in the assembly process can lead to larger variation
of the product, which may be reflected in many measurements.
Therefore, an approach needs to be developed to classify these
measurements based on a single root cause. The proposed
approach is based on correlation analysis.

The correlation Corrf/(+, *), between sensors Sn'{’)(+) and
Sn(,ﬁf,(*) is calculated for all sensors with variance exceeding

T, as:

D5 (SnfT ™) = Snf () (SnlT ™V (%) —Snfl (%))

m=1

Corrfi(s, %)=

@

=1

N 2r N _ 2
[Z [Sn},;—m+l)(.)_§ni('y)(.)i| l:z (S"/((ff'"H)(*)-Snw)(*)}
m=1

T, are focused during further diagnosis. T, decreases when the
overall variation of the product is reduced.

(2)' Prob_lem Classification Using Correlation Analysis.
The dla_gnostx.c approach developed in this paper analyzes prob-
lems with a single root cause. In general, several independent
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The correlation threshold, T, is pre-set for the classification
purpose. The correlation threshold is a second constraint in
grouping measurements to achieve a single fault root cause.
It is based on the assumption that measurements with large
variation are strongly correlated if and only if their variation
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is caused by the same root cause. T, = 0.7 was selected ac-
cording to the simulation studies done by Jolliffe (1972), where
it is concluded that variables with correlation less than 0.7
contain less information than a single variable. The set of all
sensors Sn; ; that exceeds T, and T, thresholds are defined as
the Candidate set of sensors (CS8), i.e., let g, x be such that
Sn,x is a sensor with largest variation:

CSS={Sni(* )| (Var, (*)>T,) & (Cor. (s, ¥)>T)
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3.2 Problem Analysis. This step localizes the fault based
on information included in the CSS (subset of the HG of SLP)
and the knowledge of the HG of the product. The problem is
localized by mapping information about hypothetical faults
represented by the selected sensors (CSS) onto components
represented by the HG of the product. This mapping deter-
mines the faulty component of the auto-body, as well as an
assembly station causing this fault. To realize this, two tasks
are proposed:

(1) Determination of the Candidate Component. This
task leads to determining components, referred to as Candidate
Components, Cf;, which manifest the symptom of the hy-
pothetical fault. The proposed approach to determine Can-
didate Components is based on the general idea of hierarchical
classification (Gomez and Chandrasekaran, 1981) and the fol-
lowing observations. In hierarchical classification, domain
knowledge is organized as a hierarchical collection of cate-
gories, each of which contains knowledge that help in diagnosis
of the unknown input data. Each category in this hierarchy
represents a fault location in the system. More general fault
locations are higher in the hierarchy, while more specific ones
are lower in the structure (Chandrasekaran and Goel, 1988).

In the assembly system, represented by the HG of the product
(Fig. 4), the fault occurrence during assembly can be thought
of as bottom-up propagation, while their manifestation, shown
by sensors, are analyzed in a top-down fashion. Top-down
manifestation of the component fault defines not only the
direction of the fault manifestation but also the resolution of
fault location in the HG of the product (Fig. 10). The Candidate
Component determination procedure operates on the analysis
of individual components of the HG of the product by using
information from the HG of SLP.

Currently, a common approach in similar situations involve
applying techniques based on the known probability con-
straints imposed by the failure relations between components
(Narayanan and Viswanadham, 1987). This diagnostic ap-
proach assumes a priori knowledge of some solved problems
based on which probability constraints can be estimated. An-
other approach (Scarl et al., 1987) assumes a priori knowledge
about all possible fault hypotheses. Scarl et al. (1987) present
failure source location diagnostic, which is based on the hi-
erarchical fault propagation model. It backtracks along all
feasible fault propagation paths in the hierarchical structure
of the system, starting from the components indicated to be
faulty by alarms, and locates a set of components which may
be the sources of failure in that structure. These approaches
assume that failure relations between components, represented
in the form of probabilities or fault propagation models, are
known. The proposed approach of this paper relaxes this as-
sumption in the following way.

The C;; C (HG of the product) is said to be a Candidate
Component Cj; if:
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Fig. 10 Mechanism of fault propagation and manifestation in the HG

of the product
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WCij) = {2'4} = maximum 4
n;j )
for all C;; in the assembly path. The n; ; represents number of
SLPs located on the C;, and n;; represents number of SLPs
from CSS which are located on the C; ;. An assembly path is
a sequence of consecutive stations (not components). For ex-
ample, for the aperture there are two assembly paths: (/) S;
— 84 — 8¢, and (2) S; — S5 — S; (Fig. 4).

The number of Candidate Components depends on the num-
ber of the assembly paths. The maximum 5 for one path is
treated as a first approximation in the determination of Can-
didate Component. The proposed approach uses the number
and location of the selected sensors (CSS) to determine the
faulty component. It does not require any a priori knowledge
about failure relations between components.

(2) Determination of the Candidate Station. This task
determines the station where the hypothetical fault has oc-
curred. This station is called Candidate Station S;. Notice that
the set of all stations, S;, for nodes labeled from S, to $; in
Fig. 4, represents a catalog of stations in the aperture assembly
line.

The approach to determine the S§ is based on the information
about C{; and the HG of the product. The Candidate Station
S¢ is chosen to be the nearest station between two Candidate
Components on the diagram of HG of the product. For ex-
ample, the Candidate Station S shown in Fig. 11(a) as §),
represents the first assembly station where the Candidate Com-
ponents Cy, 1, and the Cj 4 are assembled (welded) together.
The bold line in Fig. 11(a) shows the search path of the Si on
the HG of the product structure, which can be interpreted as
an assembly path of the Candidate Components C;,,, and
C% 4. In case of more than two Candidate Components, each
pair of the components is treated separately in the way de-
scribed above. In case of the only one Candidate Component,
the first station in the sequence of the assembly process that
welds the Candidate Component to the subassembly is treated
as the Candidate Station [Fig. 11()].

3.3 Root Cause Identification. The objective of the root
cause identification is to map a symptom (product fault) into
aroot cause (assembly line fault). The root cause identification
step is based on the previously determined: CSS, Candidate
Component(s), Candidate Station, and is supported by statis-
tical analysis. The root cause identification procedure is divided
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into two sub-tasks, namely, fault symptom detection and root
cause detection.

(1) Fault Symptom Detection. Fault symptom detection
is based on the Principal Component Analysis (PCA) (Jolliffe,
1986) and its objective is to describe the deformation of the
Candidate Component C}; causing the variation shown by
measurement data. Here deformation means the dimensional
deviation from the nominai values of any point located on the
C; ;. It might be a mislocation of the Cj; during subassembly,
or the distortion of the panel due to a nonequalized welding
gun or a shaky clamp.

The fault symptom detection step includes two sub-tasks:
detection of the Vector of deformation and the Area of de-
formation. The Vector of deformation is a vector represented
by directions and magnitude of variance for each sensor of
the CSS.

The Vector of deformation is estimated using PCA. This
analysis can be summarized as follows (J olliffe, 1986; Hu and
Wu, 1992):

Letx; € ®”, (i = 1, ..., n) represents n measurements with
covariance matrix L. Each variable represents one sensor from
the CSS set. The covariance matrix I is the matrix whose (i,
Jj) element is the known covariance between the ith and jth
element of x.

Define y; € ®% and ¢ < p, as transformation of x;’s such
thaty; = B'x,(i=1,...,mhereBisa(p X q) orthonormal
matrix constructed as follows: let the kth column of B be the
kth eigenvector of the covariance matrix L.

In other words, {¥i, ..., ¥n} are projections of {x;, ...,
x,} onto the g-dimensional eigenspace spanned by the g ei-
genvectors of L. In order to effectively use information from
the Principal Component Analysis, an index Criterion of Mode
Importance (CMI) is defined as:

CMI; = 100 ,,)\' (%) (5)
2 M
k=1

where ), indicates the ith eigenvalue calculated for covariance
matrix £. CMI indicates the relative importance of principal
components in terms of their variances (indicated by the ei-
genvalues) in comparison to the variances of the original vari-
ables. In our application, a criterion was set up at the level of
w = 80 percent to account for the first two modes:

2
CMI= ) CMI;>w 6)

i=1

It means, supposing that the first two modes contributed w
percent of the total variance, further analysis will continue.
Otherwise, if more than two modes are significant 7, is in-
creased and CSS is redefined. This procedure is based on the
observation that it is much more difficult to find the root cause
if more than two modes contribute to the overall variation of
the correlated sensors.

The Area of deformation of the C{; is defined in terms of
the percentage of sensors located in the Cs; belong to the CSS
set. If most of the sensors (heuristically set as n = 75 percent)
in the C¢; belong to the CSS, it is assumed to be a global
symptom. This means the Area of deformation is distributed
throughout the whole component. Otherwise, it is assumed to
be a local symptom.

(2) Root Cause Detection. Root cause detection starts
when the detected fault symptom provides information about
the direction and area of deformation. The four features cho-
sen for our analysis, namely PLPs, CLPs, WLPs, and external
interference, form a general class of parameters that explain
the most common root causes of the faults occurring in the
assembly process. The relationship between root causes and
their corresponding symptoms are summarized in Table 1.
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Table 1 Root cause—symptom relations table

Root causes Fauit symptoms
e - Direction Area
Identrification Description i | of deformation |
* misjocatis
2.way PLP oot X andZ
1-way PLP - loose Z(orX) global

«_missing

* not functioning
cre * missing Y

« not closing properly

WLP * unequalized welding gun
: ‘“.’“!"“"'ell'dill " Y local
« missing welding spo! (location of the
 malfunction of tip wﬂ:‘;
« dressing operation
External interference X.YorZ local

3.4 Summary of Diagnostic Reasoning. The following
procedure shows the overall diagnostic reasoning:

(1) Select the Candidate Set of Sensors

(@) Set T, and T, based on the quality level and
experience. (in general, T, = 0.7 is recom-
mended);

b) Based on Eq. (3) and supported by Egs. (1) and
(2) select all sensors for which measurements
exceed T, and T.. The selected sensors constitute
the CSS set.

(2) Determine the Candidate Component C;; [Eq. (4)] by
mapping between the HG of the product and the HG of
SLP.

(3) Determine the Candidate Station (Fig. 11) based on the
C§, with reference to the HG of product:

IF (there is one Candidate Component = C; )

THEN (the first station in the sequence of the assembly
process (HG of the product) that weld C; ; with
the subassembly is called the Candidate Station
S?) [see Fig. 11(b)]

IF (there are two Candidate Components: C; ; and

Cii)

(the first station in the sequence of assembly

process (HG of the product) that bring C; ; and

C, together is called the Candidate station S5)

[see Fig. 11(a)]

IF (there are more than two Candidate Compo-

nents)

(each pair of components is treated separately

in the way described above)

($) Fault Symptom Detection
(a) Vector of deformation based on the PCA and

criterion CM1 > 80 percent

() Area of deformation [Eq. (4)]

IF 1y > 75 percent THEN global symptom
ELSE local symptom

(5) Root Cause Detection
IF (direction of deformation is X or Z)

THEN (suggested root cause is the PLP pin in Can-
didate Station S¢, (HG of PLP) the closest to
the biggest element of the Vector of deforma-
tion)

IF (direction of deformation is Y) & (Area of de-

formation = global symptom)

(suggested root cause is CLP in the Candidate

Station S5, the closest to the largest element of

the Vector of deformation)

IF (direction of deformation is Y) & (Area of de-

formation = local symptom)

(suggested root cause is the WLP in the Can-

didate Station S, the closest to the largest ele-

THEN

THEN

THEN

THEN
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* *
Sns'13(2.85, )

Sn 5_14(3.76, %)

Sn 5'19(2.3. **) Sng (3.0, %, *)
Fig. 12 Case study I-LH-APT scheme with marked elements of CcSsSs

ment of the Vector of deformation) OR
(unidentified external interference close to the
biggest element of the Vector of deformation)

4 Case Studies

Two case studies are presented to illustrate the proposed
diagnostic approach. The emphasis of these case studies is to
demonstrate the applicability of the proposed approach during
the launch of a new product in the assembly plant. The di-
mensional faults, which occurred during launch time, were
caused by tooling faults, such as tooling design and tooling
installation. Each case study is presented in four steps to il-
lustrate the diagnostic procedure. Three of these steps are listed
in section 3, and the last one is root cause verification and
evaluation.

Case Study I: Aperture Variation in the X Axis. This case
study illustrates diagnostic of a fault pertaining to tooling
design. The correction of this fault involved redesigning of the
tooling.

Step (1) Problem Identification

Task 1 First, constraints were specified in the form of the
variation threshold, T, = 2.30 mm, (6-sigma) and the corre-
lation threshold, 7, = 0.70. The T, level was specified such
that 30 percent of all SLPs were included in the analysis. After
calculating the variation and correlation using Eqgs. (1) and
(2), the CSS is found from Eq. (3) to be CSS = {Sn; 13, Sns 14
Sns. 158519} . The location of the CSS elements is shown in Fig.
12.

Step (2) Problem Analysis

Task II Comparing Figs. 12, 7 and 4, one sees that all ele-
ments of the CSS are located on the Quarter Outer panel Cs .
Therefore, following the diagnostic procedure presented in
section 3.4, the Candidate Component is determined as C5¢-
Quarter Outer Panel.

Task III Since there is only one C$¢ the Candidate Station
is S% (Fig. 4).

Step (3) Root Cause Identification

Task IV In the symptom detection procedure described in
section 3.3 there are two sub-tasks: (/) Estimation of the Vector
of deformation and (2) estimation of the Area of deformation.

As shown in Fig. 12, all elements of the CSS are measure-
ments along the X axis. Therefore, the direction of the Vector
of deformation is along the X axis.

The Area of deformation is defined as the percentage of
sensors localized in the C$ ¢, which simultaneously belong to
the CSS set. In this case, all sensors of C5 ¢ (except Sns 1) are
elements of CSS = {Sns,13, Sns,1a, SNs 15, SNs 19 - The Area of
deformation is spread throughout the whole C56. Based on
this analysis it can be concluded that this case depicts a global
symptom in the X axis.

Task V The fact that the deformation is a global symptom
in the X axis suggests some discrepancies in the PLP pin con-
trolling the X direction in S5 (Table 1). Based on the HG of
PLPs (Fig. 6), the suggested root cause is the PLP pin Ps3(x,
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7), since, it is the only pin that controls the Quarter Outer in
the X direction.

Step (4) Root Cause Verification and Performance Evalu-
ation

Task VI After a detailed investigation of S5, it was found
that Ps3(x, z) actually controls only the Z direction due to
incorrect design of the pin (Fig. 13). After corrective action
was completed, the 60 variation was reduced by approximately
20 percent for CSS sensors. Table 2 shows the 6o variation for
selected sensors before and after corrective action.

Case Study II: Tail Lamp Panel Dimensional Discrepancies.
This case study illustrates the diagnostic of a fault pertaining
to tooling installation.

(1) Problem Identification

Task I All constraints were the same as in case study 1. After
calculating the variation and correlation using Egs. (1) and
(2), the CSS is found from Eq. (3) to be CSS = {Sns 14, Sns,15,
Sns 16, Sns,17}. The location of the CSS elements is shown in
Fig. 14. Figure 15 shows X-bar charts for SLPs belonging to
the CSS. All SLPs show strong correlation (Table 3).

(2) Problem Analysis

Task II Comparing Figs. 14, 7 and 4, one sees that all ele-
ments of the CSS are located on the Tail Lamp panel (Cs )
and Quarter Inner panel (Cs ;). Based on Eq. (2), the Candidate
Components are C54 and C5,.

Task III The Candidate Station is determined to be the near-
est station between the Candidate Components [Fig. 11(a)].
Based on Fig. 4, the Candidate Station is station S5 (the Inner
& Outer Aperture marriage station).
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MODE II eigenvalue A3 =0.0213 CMIz= 063%
MODE IV cigenvalue Aq =0.0073 CMIy= 021%

Fig. 16 Graphical representation of the eigenvector 1 (Vector 1)

Table 2 Evaluation of case study |

Sample of 100
BEFORE AFTER
Sensor variation - 6-sigma variation -6-sigma
Snsae X 3.76 2.87
| Snsas_ X 2.85 2.47

Table 3 Correlation matrix
SAMPLE OF 100

Sngse gy Ssgs Slgy
Sa .| 1000
sn_, | 0943  1.000
Sn..| 0934 0988 1000

Snsgsr| 0800 0835 0834 1

Table 4 Eigenvectors associated with covariance matrix

Vector 1 Vector 2
SN g4 0.239 0273
Sn s 0.407 0.464
S0 16 0.459 0.526
Sngiq 0.753 0.658

(3) Root Cause Identification

Task IV The fault symptom is determined in the way de-
scribed in section 3.3. Since all elements of the CSS show
variation in the Y axis, the direction of the Vector of defor-
mation is also the Y axis. The Area of deformation has a global
character for the Tail Lamp (all sensors on the panel belong
to CSS) and a local character for the Quarter Inner (only one
sensor on the panel belongs to CSS). The Principal Component
Analysis is used to determine the Vector of deformation. Cal-
culating the two eigenvectors for four variables {Sns j4, S5 15,
Sns 16, Sns17}, we get projections of the measurements from
the 4-sensors of the CSS onto a 2-dimensional subspace. The
first two eigenvectors are presented in Table 4. Figure 16 shows
a geometric interpretation of Mode 1 (eigenvector 1).

Since the first eigenvector contributes 88.72 percent (Fig.
16) to the total variation, only the first eigenvector is considered
in further analysis. The largest element of the first eigenvector
for the CSS corresponds to sensor Sns 7, and decreases for
sensors located “‘higher’’ (+ Z direction). This means that the
source of the variation is approximately around sensor Sns ;7.

Based on this analysis, it can be concluded that this case
study has a global symptom in the Y direction for the Tail
Lamp panel, and a local symptom in the Y direction for the
Quarter Inner panel with the origin of deformation localized
around sensor Sns ;7.

Task V Using the rules described in Table 1, it is suggested
that the root cause might be external interference or discrep-
ancy related to the WLPs around sensor Sns 7, occurring in
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Fig. 17 Maechanism of fault occurrence in case study Il

S3. However, the HG of WLPs contains no WLP around sensor
Sns 7. Thus, the final suggestion is that the external interfer-
ence near sensor Sns j7 in the Quarter Inner panel occurred in
station Sj.

(4) Root Cause Verification and Performance Evaluation

Task VI After investigation of station S5, interference be-
tween the magnetic sensor (part-present-sensor) and the Quarter
Inner panel was discovered. The magnetic sensor was installed
too close to the panel, causing interference with the panel near
Sn5’17 (Fig. 17).

After the magnetic sensor was relocated, the deformation
of the Quarter Inner panel was eliminated. Table 5 shows the

6-sigma variation of the measurements before and after cor-
rection.

5 Summary and Conclusions

The launch of an auto-body assembly process is an important
stage of the vehicle development cycle. An efficient approach
to process diagnostic during launch is beneficial not only for
overall cost reduction and quality improvement, but also to
provide quick feedback with suggestions for the design of a
new product or process.

This paper is the first attempt to develop a knowledge-based
diagnostic approach for the launch of an auto-body assembly
process. The proposed knowledge-based solution for diagnosis
makes this approach more flexible during implementation for
launching different auto-body assembly processes with differ-
ent product, process and measurement points. In this paper
the knowledge representation and a diagnostic reasoning mech-
anism are proposed.

The knowledge representation is based on the functional
characteristics of the product, tooling, process, and measure-
ments, which are in turn defined as collections of hierarchical
groups. The hierarchical groups explicitly show the relationship
between the most important features of auto-body assembly.
A major advantage of the proposed knowledge representation
is that a great deal of knowledge can be represented within a
unified framework. This unified framework allows easy access
to and fast diagnostic reasoning for root causes of faults. In
addition, no presolved cases are necessary to create the knowl-
edge base, which makes this approach a viable strategy for the
launch period.

The diagnostic reasoning includes five major tasks: (i) se-
lection of the Candidate Set of Sensors (CSS), (ii) determi-
nation of the Candidate Components, (iii) determination of
the Candidate Station, (iv) fault symptom detection and
(v) root cause detection. The fault symptom detection pro-
cedure determines the direction and area of the panel defor-
mation. Fault root cause identification uses general rules to
determine potential root causes of faults in the assembly line.

Two case studies were presented to illustrate the proposed
diagnostic approach. The results showed significant perform-
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Table 5 Evaluation for case study |l

Sample of 100
Before After
Sensors
6-g {mml 6-¢ (mm] |
Snse 2.63 132
Sngys 4.08 L.67
Sngye 3,98 1.99
Ngy7 5.64 2.12

ance improvement after implementing this approach. In one
domestic assembly plant the dimensional variation of the auto-
body during the launch period was reduced by 250 percent to
a level no other US automobile manufacturer has ever achieved.
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