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In this paper, a fault diagnostic method is proposed for autobody assembly fixtures.
This method uses measurement data to detect and isolate dimensional faults of part
caused by fixture. The proposed method includes a predetermined variation pattern
model and a fault mapping procedure. The variation pattern model is based on CAD

information about the fixture geometry and location of the measurement points. This
fault mapping procedure combines Principal Component Analysis with pattern recog-
nition approach. Simulations and one case study illustrate the proposed method.

1 Introduction

Autobody assembly is a very complex process. It requires
dozens of fixtures to assemble on average 150-250 parts. The
complexity of the assembly line puts high demands on the tool-
ing fixtures. Therefore, design, manufacture, and diagnosis of
fixtures are important issues for improving autobody quality.

In recent years, fixture modeling and design have been thor-
oughly studied and significant results have been achieved
( Asada and By, 1985; Chou et al., 1989; Menassa and De Vries,

1989). Fixture designs are analyzed in terms of their ability to -

arrest translation and rotation, while minimizing deflection and
distortion of the part during processing (Chou et al., 1989).
Kinematical and mechanical methods such as screw theory
(Asada and By, 1985) and force equilibrium equations (Salis-
bury and Roth, 1983) are most often used for functional config-
uration of the fixture. Menassa and De Vries presented a synthe-
sis of this approach (1989). Although such advances in fixture
design can greatly improve fixture accuracy and repeatability,
fixture faults are still the major root cause of autobody dimen-
sional variation (ABC, 1993). However, there is very little
literature investigating fixture diagnosis based on the dimen-
sional variation of parts.

In recent years, the implementation of the in-line Optical
Coordinate Measurement Machine (OCMM ) in the automotive
industry provides new opportunities for fixture fault diagnosis.
OCMM gages are installed at the end of major assembly pro-
cesses, such as framing, side frames, underbody, etc. The
OCMM measures 100 to 150 points on each major assembly
with a 100 percent sample rate. These inspected points are
located on each individual part of the autobody. As a result, the
OCMM provides tremendous amounts of dimensional informa-
tion, which can be used for assembly process control. However,
effective implementation of this measurement information, es-
pecially for fixture fault diagnosis, is still a challenge. These
challenges can be summarized as:

(1) Sensor synthesis in the dimensional analysis: Fixture
diagnosis requires identifying and describing the variation pat-
tern of a part orientation and position. Identification can be
achieved by dimensional sensors, which are highly suitable for
part position and orientation checks (Tlusty and Andrews,
1983). However, no single sensor can describe the variation
pattern of a part. Additionally, there is no model which relates
the variation pattern to sensor readings. Thus, sensor synthesis
using advanced statistics has to be applied in this development.
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(2) Engineering interpretation of the multi-dimensional
measurements: Historically, dimensional analysis of the as-
sembly line began by using statistical techniques to assign qual-
ity targets to isolate faults off-line (Takezawa, 1980). Takezawa
(1980) examined the addition theorem of variances to establish
dimensional relationships between subassemblies. Besides his
contributions, most of the monitoring methods for manufactur-
ing processes are based on statistical techniques such as Statisti-
cal Process Control (SPC). Statistical techniques have not been
widely used for on-line evaluation of faults in quality systems
(Faltin and Tucker, 1991). Hu and Wu (1992) as well as Roan
et al. (1993) presented an intuitive interpretation of the dimen-
sional faults detected by multidimensional measurements and
represented in the form of variation patterns. However, there is
no generic and proven approach linking patterns of dimensional
variation with fault root causes.

(3) Inmtegration of advanced statistics and engineering
knowledge for root cause identification: Pure statistical meth-
ods, without integration with knowledge about the product/
process, are not sufficient to identify the root cause of the fault.
Schwarz and Lu (1992) emphasized the integration of statistical
methods with knowledge-based techniques to provide enhanced
decision support capabilities. Dessouky et al. (1987) success-
fully applied decision tree analysis, supported by time series
modeling to diagnose process quality. Integration of knowledge
with statistics is especially important during dimensional diag-
nosis of a multi-fixture system such as an autobody assembly.
However, no approach currently models assembly fixtures for
diagnostic purposes.

In recent years, research exploring fault isolation issues in
autobody assembly has focused on the statistical descriptions
of variation patterns (Hu and Wu, 1992) and the detection of
failing assembly stations (Ceglarek et al., 1994). Hu and Wu
(1992) investigated the description of the dimensional faults by
in-line measurement data using Principal Component Analysis
(PCA). Ceglarek et al. (1994) described a systematic method
of identifying failing stations and faulty parts in the assembly
line. Additionally, they described a rule-based approach to iden-
tify root causes of dimensional faults in the fixture. Their rule-
based approach is based on heuristic knowledge which specifies
a fixed level of detail about the position and control directions
of the fixture locators.

This paper attempts to resolve the above mentioned chal-
lenges by developing a fixture fault diagnostic approach which
integrates in-line dimensional measurements, advanced statis-
tics, product and fixture design as well as pattern recognition.
The selection of fixture failures was based on an investigation
of the most severe faults occurring during the 18-month devel-
opment cycle of a domestic sport utility vehicle. The study

FEBRUARY 1996, Vol. 118 / 55



off-line

Section 2

Information
about tooling elements

Section 3 |

Model of variation pattern

in-line

Section 4_

Estimation of
unknown fault pattern

Section § 1
Mapping
unknown fault pattern
to

\_Pre-determined fault pattem

Y

Root cause of the fault

Fig. 1 Outline of the method

started at pilot phase and was conducted until 2-shift full pro-
duction phase. During the study, 52 case studies with 118 root
causes were identified and solved (Ceglarek et al., 1993,
Ceglarek and Shi, 1995). The conclusion from this investigation
was that 72 percent of all root causes were due to fixture failures
(Ceglarek et al., 1993; Ceglarek, 1994).

The proposed method is presented in three parts. The first
part, develops a variation pattern model for each hypothetical
fault derived, based on the CAD data for the fixture (Sections
2 and 3). The model of the variation pattern is based solely on
the fixture configuration and measurement location. The relation
between layout of tooling elements and measurements are de-
veloped and used for modeling the fault variation pattern. Addi-
tionally, hypothetical tooling faults as well as their manifesta-
tions through dimensional sensors are thoroughly discussed.
Part one of the paper develops a variation pattern model based
solely on the engineering knowledge stored in the CAD system
(fixture geometry — position of all locators; measurement infor-
mation—position of all measurement points). In the second
part of the paper. a variation pattern for an unknown fault is
described based on the multisensor data, solely through a multi-
variate statistical approach—Principal Component Analysis.
(Section 4). The relationship between parts one and two (engi-
neering knowledge —statistical knowledge ) is discussed in part
three of the paper. The third part of the paper maps the model of
the variation pattern (engineering knowledge ) with the variation
pattern of an unknown fault (statistical knowledge) using a
pattern recognition approach (Section 5). Fault mapping in-
cludes two tasks: (1) estimating the dominant direction of the
fault variation pattern, and (2) isolating the fault of the domi-
nant direction using a minimum distance classifier. A minimum
distance classifier determines the unknown fault based on its
distance from the predetermined variation pattern described in
the model. The outline of these two parts is shown in Fig. 1.
The third part of the paper illustrates and verifies the proposed
method through a series of computer simulations (Section 7)
and one case study based on the production data (Section 8).

2 Autobody Part Fixture and Its Hypothetical Faults

This section presents an investigation of autobody parts and
assembly fixtures. Relations between hypothetical faults and
fixture geometry, based on in-line measurements, are studied.
These relations are used during development of the variation
pattern model.
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2.1 Autobody Part. An autobody is built of sheet metal
parts which have different shapes, sizes and thicknesses, de-
pending on their functions. The parts are divided into structural
and non-structural parts. Structural parts support the autobody
structure as (1) main parts, for example rails and plenum, or
as (2) reinforcement parts, for instance door hinge reinforce-
ments. The other parts are called nonstructural parts, for exam-
ple, door outer, cowlside, roof and so on.

Structural parts are usuatly much more rigid than nonstructu-
ral parts, and usually have a much bigger impact on the auto-
body dimensional accuracy (ABC, 1993). Similar conclusions
were made by Takezawa (1980). Based on his study, he con-
cluded that the parts with low rigidity fit into the final assembly
with little dimensional influence. Thus, the detection of dimen-
sional faults affecting structural parts addressed in this paper.
is critical for the assembly process.

2.2 Fixture Layout for a Rigid Part. As in machining,
an assembly fixture must satisfy the following four conditions
for holding parts (Chou et al., 1989): locating stability, clamp-
ing stability, deterministic part location, and total restraint.
These conditions impact on the dimensional variation of the
product. Locating stability and deterministic part location are
specified by correct layout of the locators (typically locating
pins and NC locators). Clamping stability is defined by location
and closing sequence of the clamps. Asada and By (1985)
showed mathematical relations for these conditions.

The results presented by Asada and By (1985) and Chou et
al. (1989) show that satisfying the aforementioned conditions is
sufficient to have a correct fixture. These conditions are realized
directly through locating pins (P) and NC blocks (C = NC
locator + clamp). Therefore, we assume that Ps and Cs have
primary responsibilities for fixture function, and therefore for
product dimensional variation.

Based on this assumption. Ps and Cs are selected as the
major elements of the fixture contributing to the variation of
the product. From the discussion in Section 2.1, which con-
cluded that structural parts have the greatest impact on the
variation, we will focus our analysis on fixture fault diagnosis
for rigid parts. For a rigid part, the most common layout method
is the 3-2-1 principle. The 3-2-1 principle locates a part by three
groups of locators laid out in two orthogonal planes. As shown
in Fig. 2 these three groups usually include: (1) a four-way
(expanding or stationary) pin P, to precisely position the part
in two directions (X and Z) on the first plane, (2) a two-way
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Fig. 2 A layout of 3-2-1 fixture with marked Ps, Cs and Ms points

pin P, or NC block to locate the part in one direction (Z) laid
in the first plane, and (3) all remaining NC locators (C,, Cs,
C;) to locate the part in the second plane (Y direction).

2.3 Hypothesis of Fixture Faults. The hypotheses of
tooling faults are derived from the 3-2-/ layout fixture. The
basic set of potential tooling faults which could contribute to
dimensional variation is prefixed and limited to the major ele-
ments of the fixture. This paper addresses the issue of faults
caused by fixture locator malfunction.

Definition 1. A set of Pin Locating Points (Ps) and NC
block Locating Points (Cs) in the given fixture is called a Ser
of Tooling Elements. Each element of that set is called a Tooling
Element (TE).

Ceglarek et al. (1994) lists examples of faults related to the
TEs. In this paper the tooling element (TE) faults are under-
stood as any tooling discrepancies that cause part mislocation
in the final product. Faults of the TE can be caused by locator
wear, inclusions on the locating surface of locators, or clamps
that do not properly force the part against the locator. Further-
more, each TE has a part control axis, which defines the critical
direction for that given TE. For example, the part control axis
of the locating pin P, (Fig. 2) is the Z axis. Faults caused by
failure of the TEs manifest themselves in a specific predeter-
mined way. These manifestations can be described by measure-
ments, and information about sensor location, which are as
follows:

Definition 2. Se: of Complement Tooling Elements (CTE)
to a specified tooling element TE in the given axis =, is a subset
of all tooling elements which control the part in the = axis,
except the tooling element TE.

Corollary 1. Failure of the Tooling Element TE, which con-
trols part in the = axis, causes mislocation of the part according
to the rigid motion, defined by the all Complement Tooling
Elements (CTEs) to element TE in the = axis.

Proof. In order, for a part to be detachable from the desired
location on the fixture, there must exist at least one admissible
motion called part mislocation which is caused by failure of a
tooling element, for example TE. Since TE controls only the
E axis, the failure of this element might cause dimensional
discrepancies of the part only in that axis. Additionally, the part
is controlled in the = axis only by complement tooling elements
to TE. Therefore, the dimensional mislocation of the part is
determined by the configuration of the CTE. The proposition
that the part is mislocated in the sense of rigid motion, is based
on the design principle for the 3-2-1 layout fixture, which as-
sumes no deformation of the part in the fixture. W

Theorem 1. Motion of the mislocated part, due to failure
of a tooling element TE which controls the part in the = axis,
can be described as:
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(1) translation along the = axis,
if the number of complement tooling elements to TE,
nere = 0;

(2) rotation along the axis defined by one complement
tooling element,
if the number of complement tooling elements to TE,
nere = 1,

(3) rotation along the axis defined by two complement
tooling elements,
if the number of complement tooling elements to TE,
Nectg = 2.

Table 1 summarizes the fault manifestations described by
Corollary | and Theorem 1. Arrows in Table 1 represent the
direction of part mislocation due to the TE failure.

3 Representation of Dimensional Faults

This section investigates the geometrical relations in tooling
fixtures and analyzes the hypothetical faults which might occur.
The main goal of this section is to derive a generic model of
variation patterns for the failure of each TE. The model de-
scribes the relationship between the in-line measurements ob-
tained from OCMM gages under single failure condition. The
OCMM gages are installed at the end of major assembly pro-
cesses, such as framing, side frames, underbody, etc. The
OCMMs are used to measure dimensions of automotive bodies
relative to design nominals. All OCMM gages in the plant use
the same coordinate system, called the body coordinate system,

Table 1 Manifestation of a single fauit

Fault
Fault manifestation NCTE
P | ||| x o
o [ Z 1
P, by t
o &
-
C, d- _' 2
-
c - 2
m =
-
C,y Y 2
- - —m.-
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which makes it easy to use and compare data from different
gages. Additionally, the same coordinate system is used during
product and tooling design.

3.1 The Relationship between Fixture Geometry and Di-
mensional Variation. Fixture layout obtained from CAD is
important informatior. for dimensional diagnosis. Figure 2
shows the location of the TEs in Cartesian coordinates. The
manifestation of the TE faults is represented by sensors M,
(M, My, M,.) and their standard deviations o, (o, Oy, Oi), 1
= 1, 2, 3. Total variation of each sensor can be decomposed
into the variation along the individual directions as follows:

(1)

The magnitude of dimensional variation captured by sensors
depends on the severity of the fault, described by the standard
deviation of the TE, o4, as well as on the geometrical relations
between the location of the sensors and the TEs. These relations
are presented by Theorem 2 as follows:

(00 = (0u)" + (0,)* + (o) i=1,2,3

Theorem 2. Relations between fixture geometry and dimen-
sional variation, during failure of the tooling element TE, is
described by measurement data from sensors M,, M,, M; as
follows:

(1) in case the number of complement tooling elements
Ncteg = 0
O =0,=0,= 0,4 (2)
(2) in case the number of complement tooling elements
Ny = 1
o 2]

d(TE, CTE) _ d(CTE, M,)

g2 O3

" d(CTE, M) _ d(CTE. M)

(3)

where d(a, b)is a Euclidean distance between point a and
b defined as:

d(a9 b) = V(-xa - xb)2 + (ya - yb)2 + (:-u - -b)2 (4)

(3) in case the number of complement tooling elements
Nere = 2

F
OTE g

d(TE, CTE;;)  d(CTE,., M)

[} g3

" d(CTE,.. M;) _ d(CTE,,. M)

(5)

where CTE,, is an axis between complement tooling ele-
ments | and 2.

Proof.  The proof for Eq. (3) is conducted. Equations (2)
and (5) can be proved following the same procedure. Let M|,
M. My and M|, Mi, M; be the points located on the part
before and after rotation of that part respectively (Fig. 3). And
let 6;, 65, 65 describe the distance of each point M,, M,, M,
from the center of rotation O. Simultaneously ¢, is the distance
between points M, and M/ points (i = 1, 2, 3).

First. observe that in general £,/6, = £2/6, = &;/65, holds
for rotation of the part, so this relation can be rearranged as:

(6)

where «; = 6,.,/8, is a constant. The standard deviation of point
M, can be calculated as:
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M,'
&3
M; .
)
8, 5 7 M,
M, &
SiM, M,

_EI ((fi)j - g’):
- 7
N (N

where &, is the mean dislocation of the point M;, i =1, 2, 3,
and N is the sample size. Substituting Eq. (6) to Eq. (7), we
obtain the following:

N

2 (k&) — k&)’
=i

L

Oiv1 =

N-1

z ((6: )} - E)Z
j=1
N-1

K; = Ki0; (8)
Equation (8) defines the relationship between variation o,
and geometric parameter x;, i = 1, 2, 3. Thus:

(o} o4} [ (o)

=22 (9)
o by

For ncre = 1, let point O (Fig. 3) shows the location of the
CTE, and standard deviations oy. ¢,. 05, 03 represent variation
of the TE, and measurement sensors M,, M,, M, respectively.
Thus, the distances 6, 8,, 6, 6, represent d(CTE, TE ), d(CTE,
M,), d(CTE. M,), and d(CTE. M,) respectively. Substituting
the aforementioned relations into Eq. (9), we get Eq. (3). B

Theorem 2 extends the linear relation between the motion of
the points located on the rigid part during rotation of that part
(Paul. 1981), to the linear relations between the variances of
those points and their locations. In order to illustrate the use of
Theorem 2, a failure of P, is explained in the following example.

Example— Failure of P,. Tooling element P, controls part
motion in the Z axis (Fig. 4). There are two TEs controlling
motion along the Z axis: pins P, and P,. Thus, based on Defini-
tion 2, pin P, is the only CTE to P, in the Z axis (neme = 1).
Further, based on part (2) of Theorem I, the fault at P- can be
represented as a rotation of the part around P, (Fig. 4). Based
on Eq. (3) of Thearem 2, it can be quantitatively described as:

0';3 g, - g3

d(P., P,)  d(P.My)  d(P., My _ d(P,. M)

(10)

The fault at P, is represented in Fig. 4 as a standard deviation
F
Opa.

3.2 Model of the Variation Pattern for 3-2-7 Layout Fix-
ture. The model of the 3-2-7 layout fixture describes the part
variation pattern in terms of the TEs and measurement layout.
Sensor layout in the fixture uses 9 variables (3 sensors measur-
ing 3 axes each) to describe the 3-2-/ fixture. In order to formal-
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Fig. 4 Geometrical interpretation of the failing locator P,

ize the relationship between faults of the TEs and fixture geome-
try, the following definitions are proposed:

Definition 3. Fixture faults caused by a TE malfunction are
classified as follows:

Type-1 fault:
Type-2 fault:
Type-3 fault:
Type-4 fault:
Type-5 fault:
Type-6 fault:

failing pin P, in Z axis
failing pin P, in X axis
failing pin P, in Z axis
failing NC block C, in Y axis
failing NC block C; in Y axis
failing NC block C; in Y axis

Definition 4. A diagnostic vector d(i) = (dyi, ..., d)7
has n entries corresponding to the measured variables x; describ-
ing a variation pattern caused by type-i fault, with

(22
di=—= j=1,....n (11)

[z(P-M)) 0 x(P;, M)

2Py, M) 0 x(P, M) z(Py, M) O x(Py, My)]T

X = [X1s X25 X35 Xa» X5+ Xos X7» X8> Xo1”
= [Ml.n Ml_vv Ml:» M?_xv MZvv M., M}.n M}_\'v M}:]T (13)

2z

Type-1 fault: failing P, in Z axis. Diagnostic vector d(1)
is determined based on the measurement vector and describes
the variation pattern of type-1 fault. Diagnostic vector d(1) is
defined from Eq. (11) as:

Ty .
dy=— for j=1,3,4,6,7,9 and
a

d; =0, for j=2.518 (14)
Based on Eq. (3) from Theorem 2
d(P., M, .
o,za;?lg, ji=1,2.3 (15)
d(P-, P\)
Additionally from Fig. 4 and Theorem 2
g I\ i Txoan B 2 .
Xiy-2 ~(P-- Mj) Xz ‘(P- M/) _] = l, 27 3 (16)

o, d(P.M) o  d(P, M)’

where z(P,, M;) is the distance in the Z direction from pin P,
to sensor M; (Fig. 2), x(P>. M) is the distance in the X direction
from pin P, to sensor M;, and o, is the total standard deviation
calculated for the jth sensor. Substituting Egs. (16) to Eq. (15):

F (P, M)
OPt T 0 o
d(P,, P\)

r X(P., M)

=0gp —= j=1,2,3
" ap,, Py

Xeyj-2

(7

X3y

Total standard deviation in the data is calculated as follows:
S
c=voi+oi+ o}

_ ¢ V& (Poy M) + d*(Py, My) + 3Py, M)
a d(P, P.)

(18)

Thus, substituting Egs. (18) and (17) to Eq. (14) diagnostic
vector d( 1) can be presented in the following form:

d(l) =

where o, is a standard deviation of variable x;, and o =

0
b) aij, where n is the number of measured variables.
V/=I

Theorem 3. The model of the variation pattern for the 3-2-
I fixture is described by diagnostic matrix D = (d(1), ...,
d(6)). The ith column of the D matrix is the diagnostic vector

d(i) (i =1, ..., 6), corresponding to type-i fault.
dyy dy - di
D= dy dnp - diy (12)
dn] an2 T dn6
where elements d;; forj=1,...nand i = I, ... 6, are shown
in Table 2.

Proof. This paper conducts proofs for vectors d(1), d(2)
and d(4). The other diagnostic vectors can be derived in a
similar manner. In the case of the 3-2-1 fixture (Fig. 4), a
measurement vector x based on sensors M; (i = 1, 2, 3) is
defined as:
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Vd*(Py, M) + d*(P, My) + d*(Ps, My)

(19)

The diagnostic vector d( 1) is represented as the first column
in Table 2.

Type-2 fault: failing P, in X axis. Type-2 fault describes
failing pin P, in the X axis alone. Therefore, diagnostic vector
d(2) is determined from Eq. (11) as:

Xj

dp=— for j=1,4,7 and
o

dp =0 for
Based on Eq. (2) of Theorem 2

Foo - —
Opy = 0 = 02 = 03

Jj=2,3516,89 (20)

(21)
and

and

aszO j=2,3,56,819 (22)

Additionally, the total standard deviation in the data is equal
to

L— —- —
Op1L = 0y = 0y, = Oy

o=lYol=\30h j=1.47 (23)
J
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Table 2 Model of variation pattern for 3-2-1 layout fixture

e 4 o) ) ds) de)
element
! —zﬂ-’(:' ) 0577 ——J—"P;M‘) 0 0 0
) o . . d( M) d(CCzu,M ) d(CCu.Ml )
1 '3
, x(P:M,) . x(Pgl,M ) . . ;
4 —l—i‘“;M o577 | Z®Ma) :“” 0 0 0
S o dCaMy) | dcyM,) | diCpM
0 0 ACuM,) | €My
G G G
P
. KP M) . ®,M,) . .
7 _‘.(3;%1 0577 ﬂ;ﬂ\l 0 0 0
acaMy | accyMy | acuM)
8 0 0 0 i c &
P,M;) 2
9 o 0 B0 0 0 0

where

A=A (P M)+ (P M) +d (P M,);

B=+d*(P,M)+d (P, . M,)+d* (P, M,);

€, =Vd*(Cpp. M)+ d*(Cpp. My) + d*(Cpp M) ;

C, =d*(Cy. M)+ d*(C,y, My) + d*(C, M,) ;

€, =d*(Cy. M) + & (Cp My) +d*(C, M)

-Substituting Egs. (23) and (22) to Eq. (20) diagnostic vector
d(1) can be presented as:

d(2)=05771 0 0 1 0 0 1 0 0)7 (24)

The diagnostic vector d(2) is represented as the second col-
umn in Table 2.

Type-4 fault: failing C, in Y axis. Type-4 fault describes
failing pin C, in the Y axis alone. Therefore, diagnostic vector
d(4) is determined from Eq. (11) as:

[0 d(Cy, M) 0 0 d(Cy, M) 0 0 d(Cy, M;) 0]

Additionally the total standard deviation in the data is calcu-
lated as

3

3 o;

=i

or Vd*(Cy, M) + d*(Cxa, Ma) + d*(Ca, My)
1
d(Cs, Cy)
where d(C;, M,) is the Euclidean distance from the axis defined

by NC blocks C; and C; to the sensor M, (Fig. 2). Finally,
diagnostic vector d(4) can be presented in the following form:

%)

g = (28)

-

d(4) =

(24

dy=-—= for j=2,58 and
(o)

dy=0 for j=1,3,4,67,9 (25)
Based on Eq. (5) in Theorem 2

_ s d(Cu M)

\ =1,2,3
7T T d(Ca C1)

(26)

and
Ty, = 013 0y, = 031 0,, = 0y and

0,=0 j=235689 (27)
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2 a (29)
Jd-(C231 M) + d*(Cxn, M2) + d*(Caz, M3)

The diagnostic vector d(4) is represented as the fourth col-
umn in Table 2. W

Each diagnostic vector represents a variation pattern of one
fault defined in Definition 2. Results from Table 2 show that
elements of all diagnostic vectors depend on the geometry of
the fixture, i.e., location of the TEs and sensors.

4 Description of Variation Pattern Using Principal
Component Analysis (PCA)

4.1 Principle Component Analysis (PCA). The varia-
tion pattern of a single part is estimated based on PCA (Hu
and Wu, 1992). In PCA, the goal is to model one sample of
data using orthogonal components. PCA linearly transforms an
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original set of variables into a set of uncorrelated variables that
represents most of the information in the original set of vari-
ables. The number of principal components is equal to the di-
mensionality of the variable space (Jolliffe, 1986).

In the case of autobody diagnosis without noise, the dimen-
sionality of the variable space is equal to the number of faults.
PCA describes a variation pattern by finding p = n linear trans-
formations of n variables. Each variable represents measure-
ment data from one of three sensors (M,, M, and M,) in one
axis (X, YorZ),ie,n=09.

Let x € R", represent N measurements from n sensors with
covariance matrix Q = E(xx"). Define ¥ € R” forp = n, as
a transformation of x such that

Xi=Axi i=1.....n (30)
where A = [a;],x.. The ith column of A represented as a;, =
(@1 . ...an)", is the ith eigenvector of the covariance matrix
X obtained in the form

(NI —Qla; = 0. 31

i=1,...,n

where \; is the eigenvalue of the ith principal component, I is
the identity matrix and a; is the ith eigenvector corresponding
to \; . The detailed procedure of the PCA can be found in Jolliffe
(1986). In the case of the 3-2-/ fixwre (Fig. 4), principal
components are a linear combination of the n = 9 variables
defined in Eq. (13).

The ith principal "omponent a; maximizes the variance of

2 (a;x;) given that 2 aj = 1, and that this component is

lmear]y independent of all prior principal components.
The sum of sample variances of the principal components is
equal to the sum of variances of the original variables o7 = var

(xi)

9 9
Y ot=3 N = trace(Q)

i=1 i=1

(32)

Based on the variance properties (Morrison, 1967) this rela-
tion can be reformulated as:

9 9
= Y var (%;) = X var (a;X))

j=l j=1

(33)

Knowing that component a; is constant for a given variation
pattern, and applying again the variance property
9
= 3 aj var (x;) (34)
=1 .

Vectorsa! = (a@iy,...,ai9),i=1,...,9 represent variation

patterns. Coefficient a; can be interpreted as a weight assigned

to the ith mode by the jth variable. Geometrically, the first

eigenvector points in the direction of the greatest variability in

the data, and the orthogonal projection of the data onto this
eigenvector is the first eigenvalue.

4.2 The Relationship between Variation Pattern Model
of the 3-2-1 Fixture and PCA. The relations between fixture
geometry, dimensional variation and faults are summarized as
Theorem 3. In this section, based on Theorem 3 and PCA,
relations between variation pattern, represented by diagnostic
vector d (i), and the principal component a,, represented as the
first eigenvector in Eq. (31), are derived. These relations are
presented in the form of the following theorems.

Lemma. A single fault, defined in Definition 3, is manifested
through a variation pattern, modeled and based on the measure-
ments from sensors M\, M,, M;, and described by one eigenvec-
tor-eigenvalue pair (a,, \;).
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Proof. 'The fotal standard deviation in the data caused by a
single fault derived from fixture geometry can be expressed in
the same form as the variation described by one eigenvector.

Based on Theorem 2, for any single TE fault, there exist
constants, j = 1, 2, 3 such that

o, =kjote (35)
For example, for a type-1 fault, k]
From Eq. (16)

= d(P,. M}/d(P,, Ps).

o, =kioy, i=1,2,3 o, =kos i=456

o, =kios, i=17,8,9 (36)
where ki are constant. In case of a type-1 fault. k] is equal to:
'['1,-7. = (P, My)/d(P-, M), k’(’}j—l) =0, k{3, = x(Py, M)/
d(P,, M), forj =12, 3.
Substituting Eq. (35) to Eq. (36), one can get

(37)

— F
0',(’ = k,’UTE,

where k; = k/k; are constants. Total standard deviation in the

data o caused by the fault is equal to
9
1}2 ki

9 9
o= \/Z 0 = 4|2 ki(oTe) =

i=1 i=1
where o4z is a variable referred to as the standard deviation of
the TE fault.

On the other hand, Eq. (34) defines relations between the

eigenvectors and the eigenvalues. In the situation when only
one eigenvalue exists, Eq. (34) is equal to

(38)

9
P= N = 2 aijvar (x)) (39)

i=1

which is equivalent to Eq. (38), for var (x,) = of, and k; =
ay (i=1,...,9). Knowing that the first eigenvector describes
the maximum variance expressed using linear components a,,,
, @19, it can be stated that the variance pattern in the data
due to a single fault can be expressed by one eigenvector. H

Theorem 4. Type-i fault of TE, defined in Definition 3 by
diagnostic vector d(i), can be described by one eigenvalue-
eigenvector pair (X, a;), which has the following relations:

3

9
2 oi=2X o}

1. (a) N = (40a)
k=1 j=1

(®) N\ = y(o5)?d7(Hd(i) (40b)

2. a, =d() (40c¢)

where (o /z)? is the variance of the failing tooling element TE,
and v is defined as:

_ 4(CTE, M)
d(TE, CTE)
k]

where d(CTE, M) = 4/ = d*(CTE, M,) is the average distance

k=1
between sensors and CTE element.

Proof. Eq.(40a) First, it is shown that the first eigenvalue
expresses the total variance of the data. Based on Lemma, a
single type-i fault defined in Definition 3, can be expressed by
one eigenvalue-eigenvector pair (X, a,). Therefore from Eq.
(32), the total variance is equal to A;:

(40d)

! (41)
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Proof. Eq.(40b) The proof of this part is conducted only
for type-1 faults. The proof for other faults can be conducted
in a similar way. Substituting Eq. (40d) to Eq. (18)

c=0hy (42)
From Eq. (11)

0, =dyoky (43)
And finally, substituting Eq. -(43) to Eq. (41), one can get

9
M= X oy = (oh) Y d(D)d(i) (44)

j=1
Proof. Eq. (40c) By the definition of eigenvector a,

(Morrison, 1967) and from Eq. (31)

Qa, = \ja, (45)

The proof is only conducted for type-3 fault. The proof for
other fault types can be conducted in a similar manner. From
the geometrical relation of the fixture (Fig. 4) one can get

. (P, M)
M, =M, i =M ——— M, =0
=My M
X or
Cp(l) =
x(Py, M) .
M.=Mcos B =M, ———=, i=1,2,3 (46)
d(P,, M,)

Based on Theorem 2, if the pin P, is dislocated about &, it
causes part rotation with angle «, and with center of rotation
around pin P,. For small « the following relations hold:

M; = d(P,, M)a (47)
and
§P2=d(PnP‘2)a=a='iL_ (48)
d(Py, Py)
Substituting Eq. (48) to Eq. (47)

_d(P. M)
d(pP,, P,)

Substituting Eq. (49) to Eq. (46)

- Z(PlvAt)
d(P,, P,)

_ x(Py, M)
T d(Py, P)

Substituting Eq. (50) to Eq. (13):

Ep2 (49)

i

ix

s M, =0

Epay 1=1,2,3 (50)

i

_lz(P.M) 0 x(P M) z(P, M) O x(P, M)

Q = E(xenx () = Y?E[(d(3)€p,)(d(3)€r2)")
Y d(3)E[p:£72]dT(3) = ¥ (0£2)(d(3)d7(3)) (53)
where E[£p26]2] = (05;)°. Based on Eq. (53)
0d(3) = y*(052)*(d(3)d"(3))d(3) (54)
= ¥} (0£2)?d(3)(d"(3)d(3))
From Eq. (44), Eq. (54) can be rearranged as
Qd(i) = \d (i) (55)

which is equivalent to the definition of a,, thusa, = d(i) H

5 Fault Mapping Procedure

This section presents a procedure for mapping an unknown
fault onto the variation pattern model. The mapping is realized
in two steps (Fig. 5): (1) estimation of the dominant direction
of the variation pattern described by one mode, and (2) fault
classification of the dominant direction using a minimum dis-
tance classifier.

Estimating the dominant direction for the first dominant vari-
ation mode is realized by Criterion of Dominant Direction
Cp(1) defined as:

Z if c¢(1) or c,(i)= max (c,(l),cy(l),c:(l))} (56)
Y if (1) = max {(c,(1), c,(1), c.(1))

where ¢,(1), ¢,(1) and c,(1) are:

n=9 n=9

o(l) = 2 afuj—z)s (1) = 2 ﬂf(aj—n-

ji=1 i=1
n=9
c(1) = ¥ al, (57)
j=t

where a,; is the ith element in the principal component a,
obtained from PCA analysis.

This criterion can be applied because the faults in the Y axis
are orthogonal to the faults in the X or Z axes. It allows simpli-
fied classification by filtering out the independent faults in the
Y axis from faults in the X or Z axis. It makes classification
less sensitive to errors caused by noise. This criterion allows
us to focus fault classification on the dominant direction of
the variation described by the following elements of the first
eigenvector: in the X axis {a,,, a;s, a;7} or Z axis {a;s, a,e,
a;o}, and in the Y axis {a;2, a5, a5} .

Having estimated the dominant direction, the fault classifica-
tion is presented. The variation pattern model with defined diag-
nostic vectors {d(1),...,d(m)} describes m = 6 classes {D,,
..., D¢} of fault which need to be classified. First. a minimum
distance classifier is designed (Kannatey-Asibu, 1982). Actu-
ally two classifiers will be designed: one for classification of
faults in the X or Z axis. and the second one for classification

X3 = d(P.. Py)

which is equivalent to x3, = yd(3)£&,. It can be generalized
for type-i fault

X = yd(i)§; (52)
Covariance matrix Q of x4, is equal to
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. T
(P M) O x(P,, M5)] €2 (51)

in the Y axis. There are three faults in the ¥ axis described by
d(4),d(5)and d(6), and three faults in the X or Z axis: d(1),
d(2), and d(3).

Classification of Faults in the X and Z axes. Let the vector
a(ay, as, a4, s, a7, ay) be the first principal component, which
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Variation pattern
of unknown fault
represented by i-th
eigenvector

Dominant direction
of variation, selected by
Cp criterion

a(i)

Fault classification by
minimum distance classifier

@ax( £,(8), 2,00), g;(a)) @x( 24(8). £5®), () )

'

Type-1 fault Type-4 fault
or or
Type-2 fault Type-5 fault
or or
Type-3 fault Type-6 fault

Fig. 5 Schematic diagram of fault classification procedure

describes the variation pattern of an unknown fault which needs
to be classified as belonging to either D,, D, or D; (fault type-
1, -2 or -3). A fault described by variation pattern a is classified
intoD; (i = 1.2, 3), ifais closest to d(i). Decision boundaries,
which separate classes D, D,, or D5, are selected perpendicular
bisectors of the lines joining d(1) = [d,\. d\3, d\4, dis, di7,
d19]rs d(2) = [da, dy, du, dy, dn, dzo]r- and d(3) = [ds,
ds3, ds, dss, dir, die]”. Let d(a, d(i)) denote the distance of
a from d(i), where i = 1, 2, 3. Then

d*(a, d(i)) = lla — d()}* = (a — d(i))"(a — d(i))
= [lali* — 2{d"(i)a — Fd(i)|*} (58)
Minimizing quantity d*(a, d(i)) is equivalent to maximizing
{d7(da — ld(i)|*}, where 3|d(i)|? is called the
threshold of the classifier (Fukunaga, 1972). Thus, the discrimi-

nant function describing the classifier can be presented in the
following way:

g(a) = {d"(Da - HdDI*}, i=1,23 (59

Substituting the values of d(i), i = 1, 2, 3, the individual
discriminant function are obtained

gi(a) = diay + diza; + disas + digas + diza; + disas

— 3@} + dh + di + dis + dY + dYy),

i=1,23 (60)

Decision rules for 3-class minimum distance classifier can
be presented as

If g:(a) =max (g (a), g.(a), g;(a)),

then ae D, i=1,23 (61)

Classification of faults in the Y axis. Let vector a(a,, as,
ag) describe the varation pattern of an unknown fault which
needs to be classified as belonging to either D, Ds, or D (fault
type-4, -5, or -6). The fault described by variation pattern a is
classified into D; (i = 4, §, 6), if a is closest to d(i). Let d{a,
d(i)) denote the distance of a from d (i), where i = 4, 5, 6.
Following Eqs. (58) and (59), and substituting the values of
d(i) for i = 4, 5, 6 the individual discriminant functions are
obtained as

gi(a) = dpa; + disas + disag - %(dizz + dis + diy),
i=4,56 (62)
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Decision rules for 3-class minimum distance classifier can
be presented as
If gi(a) = max (gi(a), gs(a), ge(a)),
then a€D;,i=4,5,6 (63)

Evaluation of mapping procedure is based on the relative
distance 77 between the unknown fault @ and the closest known
type-i fault, described by d(i) (Table 2):

_ 2g(a) — g(dGNl,

- 100% (64)
d(Hl?
= 2ljg(a) — g(d(i))||- 100%
The correct fault classification is done when
1 < 7o (65)

where 7, depends on the variability of the fault, and was selected
based on experience as 7, = 40%. For n = 0 the unknown fault
has exactly the same variation pattern as fault estimated directly
from the model of variation pattern (Table 2).

6 Simulation Results: Failure of the Locating Pin P,
(S/N = 45 Percent Noise)

This section verifies the proposed approach through simula-
tions. As an example, the locating pin P, failure is simulated
by Monte Carlo approach (Rubinstein, 1981).

Methodology. In order to simulate measurement data that
follows the Gaussian distribution with given mean and variance,
random numbers are generated. These random numbers are sub-
stituted for part mislocation caused by a failing locating pin P;.
The range of the random numbers represents the range of part
mislocation from nominal position at pin P,. Further, for each
generated random number the measurement readings from sen-
sors 1, 2, and 3 are calculated, based on the information about
location of the TE in the fixture. These numbers are substituted
for sensor readings M,(x, y, z), Ma(x, y, 2), Ms(x, ¥, 2)
producing a series of measurements, whose variation pattern
follows a single fault. Fifteen simulations with 300 samples
each were conducted for each case. The locating pin P, failure
characteristics were selected as shown in Table 3.

Table 3 Characteristics of a simulated locating pin P, failure

Sample size Mean 6-Sigma Range
(mm] [mm] [mm]
300 1.52 5.50 3.00
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Fig. 6 The geometry of the fixture used for simulations

The model of variation pattern for the fixture (Fig. 6) is
shown in Table 4.

Noise. Simulations include Gaussian additive noise, which
refers to external random excitations. In the case of the autobody
assembly process, additive noise is caused by: part dimensional
variation due to stamping operations or clearance on the loca-
tors. Additive noise was added to all measurements with stan-
dard deviation 6-0 2.5 mm. A random noise pattern was gener-
ated as: M| = M, + RND, where M/ is the ith sensor with
added noise, M; is the ith sensor without noise, and RND is a
random normal deviate. To quantitatively described additive
noise, the following signal-to-noise ratio is proposed:

§ _ 60 standard deviation of the TE fault

N

66
60 standard deviation of the noise (66)

Simulations results. Table 5 shows a dispersion report with
characteristics from one batch of measurements. During PCA
analysis, the Criterion of the Mode Importance (CMI)
(Ceglarek et al., 1994), shows that the first dominant mode
explains 94.8 percent of variation:

N
trace(X)
{948 52 0 0 0 0}

CMI

(%)

I

(67)

The eigenvalue-eigenvector pair (a,, \,) of the first mode is
equal to:

A =3.03; a =[0150 0 0150 0.150 0 0.585 0.406

The average CMI for 15 independent simulations with sample
of 300 is shown below:

CMI corresponding to the mean o
Ist mode 94.67 0.88
2nd mode 5.13 0.70

The Criterion of Dominant Direction (Cp) estimated for the
first mode shows that Cp, = {Z, ¢, = max (0.2098, 0, 0.7898) } .
Fault classification (Z axis). From Eq. (60) gs(a) = max
(0.007, —0.092, 0.492) = 0.492, showing = 1.6 percent devia-
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Table 4 Predetermined model of the variation pattern for fixture in
Fig. 6

vector d(n) a2 40
| _element

1 0.1206 0.5774 0.0926
2 0 0 0

3 0.8427 0 0.0926
4 0.1206 0.5774 0.0926
S 0 0 0

6 0.1206 0 0.6471
7 04816 0.5774 0.3698
8 0 0 0

9 0.1206 0 0.6471

tion from the single d(3) fault without noise. Graphically, the
fault mapping mechanism is shown in Fig. 7. Simulated fault
classification for all 15 batches has maximum deviation n within
1.9 percent, an average deviation 1.42 percent and 1-sigma
variation of the deviation 0.21, which under the condition from
Eq. (59) provides 100 percent correct diagnosis.

7 Case Study

The case study presented describes a problem which occurred
during framing operations in one of the domestic assembly
plants.

Problem description. A large variation was observed in the
Z axis of the aperture. Figure 8 shows the aperture panel with
marked measurement locations.

The model of the variation pattern for the fixture (Fig. 9) is
shown in Table 6.

Estimation of the variation pattern. During PCA analysis.
the CMI criterion (Ceglarek et al., 1994) shows that the first
dominant mode explains 59.7 percent of variation:

CMI = {597 242 94 43 13 1.0} (69)

The eigenvalue-eigenvector pair (a,, \,) of the first mode is
equal to:

0 0.652]7 (68)

Table 5 Dispersion report—fault of the locating pin P,

6-Sigma
MLP {mm]
M, X 0.906
M, z 0.906
M, X 0.906
M, 2z 6.347
M; x 3.627
My 2 6.347
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(a9; dig)

1

dag =0.647
0.5

dyg =0.1206

dyg =0.1206 ‘Lx

& 3&. 150
2,6=0.585
2,5=0.625 (Eq. 68)

dy3=0.842
d,=0.120
d,g=0.647
d33=0.092
dy6=0.647
d39=0647 (Tab 4)

0.5

(a13;d13)

Fig. 7 Graphical representation of the fault mapping mechanism-—noise 45 percent

N =030 a =[0049 0 0.104 0257 0 0431

The Criterion of Dominant Direction Cp, = {Z, ¢. = max
(0.0685, 0. 0.9315)) shows that the Z axis is the dominant
direction for the first mode.

Classification of fault in the Z axis. From Eq. (60) g:(a)
= max (-0.244, 0.277, 0.414) = 0.414, showing = 17.1

Pyxz)

Fig.8 Left handed aperture part with marked sensors and locating pins

595

2658.37

P

2828.28

Fig.9 Sensor location and the geometry of the fixture used in the Fram-
ing station
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0002 0 0.8571 (70)

percent deviation from the fault d(3). Graphically, the fault
mapping mechanism is shown in Fig. 10. )

Conclusions. 59.7 percent of the variation in the aperture
panel 1s caused by failure of locating pin P, with deviation 7
= 17.7 percent,

Corrective action.
ing station

Evaluation. On average variation was reduced around 20
percent for the analyzed sensors. The maximum variation shown
by sensor M(z) was reduced 50 percent.

Locating pin P, was replaced in the fram-

8 Summary and Conclusion

The complexity of the assembly line due to the number of
parts and stations and its high production rate, puts high de-
mands on the tooling equipment. Fixture failure diagnosis based
on in-line measurements, is an important issue in autobody
dimensional integrity.

Table 6 Predetermined model of the variation pattemn for the framing
station

N gy d2) de3)
| clement

1 0.200 0.5774 0

2 0 0 0

3 09515 | o 0

4 02266 | 05774 0.0200
5 0 0 0

6 00512 | o 0.6768
7 0 0.5774 0.1515
8 0 0 0

9 0 0 0.7201
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(ayg; di9)

d39 =0.7201

0.5

a (expressed by mode I))

a) 3-'—0. 104
ay 6=0'43 1
3,,=0.857 (Eq. 70)

d,3=0.951
dy=0.057

dyg=0

dsy3=0

d36=0.676
d39=0.720 (Tab. 6)

(216, d16)

a3y =0.104

dy3=09515
1

(213;d13)

Fig. 10 Graphical representation of the fault mapping

This paper develops a fixture failure diagnostic method based
on the fixture geometry and in-line measurements. The proposed
solution, based on the fixture geometry and measurement loca-
tions, is generic enough to apply to multi-fixture systems such
as an autobody assembly. In this paper a generic model of
variation pattern for 3-2-1 fixtures and fault mapping mecha-
nism are proposed.

The model of the variation pattern is based solely on the
fixture configuration and measurement location. The relations
between layout of tooling elements and measurements are de-
veloped and used for modeling of the fault variation pattern.
Additionally, hypothetical tooling faults as well as their mani-
festation through dimensional sensors are thoroughly discussed.
A major advantage of the proposed model is that the variation
pattern of faults can be predetermined based only on the CAD
data available during tooling design. In addition, a model can
be created during the development cycle for all fixtures.

Fault mapping includes two tasks: (1) estimation of the domi-
nant direction of the fault variation pattern, and (2) fault classi-
fication of the dominant direction using a minimum distance
classifier. A minimum distance classifier determines the un-
known fault based on its distance from the predetermined varia-
tion pattern described in the model. The variation pattern of
the unknown fault is described through Principal Component
Analysis-

The verification of the proposed method is presented through
a series of computer simulations and one case study based on
production data. These simulations and the one case study have
demonstrated that dimensional faults can be isolated by using
the proposed approach in the noisy production environment.
The simulation results show that the presented approach is ro-
bust in a 45 percent noise environment.
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