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ABSTRACT

The force exerted by the press during a stamping or
forming operation offers a convenient and accurate sig-
nal for process monitoring. Different statistical methods
based on thresholding have been proposed in the past for
the analysis of the tonnage signatures. The orthogonal
Haar transform (used for data compression) is presented
here as an alternative approach which is computationally
efficient and ideal for on-line fault detection schemes. This
paper introduces the properties of the Haar transform rel-
evant to this application with several case studies drawn
from the autobody stamping industry.

INTRODUCTION

The three-dimensional forming of sheet metal imparts
the final shape on the finished product by matched dies un-
der considerable pressure. A separate binder ring is used
to regulate the flow of material as the inner punch stretches
the material over the lower die. Both the blank holder
force (BHF) generated by the binder ring and the punch
tonnage have significant impact on the quality of the part
produced.

The tonnage forces, in particular the BHF, are sen-
sitive to changes in a number of process variables
[Ahmetoglu2, er al. (1992)], [Siekirt (1986)].  These
process variables fall broadly into three categories: (i)
material properties, (ii) die set variables, and (iii) press
variables. Tonnage signatures are altered either directly
by changes in these process variables or indirectly through

occurrences of splits, wrinkles or slugs during the drawing
stage.
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Tonnage monitoring systems are used to monitor
peak loads and variation in tonnage as a function of
time, ram position or crank angle [Carabbio (1993)],
[Clark, et al. (1991)]. However, the detection schemes
available thus far depend on thresholding to detect the
occurrence of a fauit. Upper and lower control limits are
used to establish an acceptable operating range around
a desired template signal. Any excursion beyond these
thresholds will trigger a fault alarm.

More robust detection schemes have been de- .
veloped by [Martinez and Bortfeld (1987)] and
[Seem and Knussmann (1994)] which are based on
the deviation of tonnage signatures from a desired tem-
plate. The data fall into acceptable or unacceptable
classes. These techniques were used to detect workpiece
fracture and die wear.

All these methods, however, do not provide any fault
isolation capability. The standard (diagnostic) procedure
following a fault alarm is to shut down the press and “eye-
ball” the signatures for some quick answers. This is not
only an off-line procedure but also one which success rate
(of diagnostic) is highly dependent on the experience and
skill of the attendent technician.

This paper presents an alternative approach to the
fault detection problem using the Haar transform.
The extension to fault isolation comes naturally with
sufficient training data. While the more familiar or-
thogonal Fourier transform (which uses complex ex-
ponentials as its basis functions) is ideal for sinusoidal
narrow-band signals, the Haar transform is especially
well-suited to represent spectrally wide-band signals

Volume XXIII, 1995



hi0,00)

0

1

h(o,1.9)

1

-1

h(1,11)

42

1

-1

h(124)

-

h(2,1

0

1

-2

h(231)

2

0

.

h{2.41}

2

24

U

1

[} 4

-21

FIGURE 1: CONTINUOUS HAAR FUNCTION FOR n=8
SUBINTERVALS.

(Mikhael and Ramaswamy (1992)], as in this case. The
Haar transform is also the most efficient algorithm in
terms of computational speed and memory usage.

The fundamental definition and properties of the Haar
functions are given in Section II. The applications of the
Haar transform to the detection problem in the stamping
process are discussed in the section titled Applications.

HAAR FUNCTIONS

The Haar transform is a member of a class of nonsinu-
soidal orthogonal functions [Ahmed and Rao (1975)]. It
consists of rectangular waves distinguished by a parame-
ter called sequency which is a generalization of frequency.
The set of continuous Haar functions {h(n,m,t)} is peri-
odic, orthonormal and complete, and was proposed by Al-
- fred Haar in 1910. The Haar orthonormal sequence is de-
fined on the closed interval [0,1] and can be generated by

the recurring relation (1):

h(0,0,1) = 1, t€[0,1)
vP, mpl o< Bl 1)
h(r,m,t) == _2r/2, "l—} 2 <t< 2”%

0, elsewhere ¥ t € [0,1)

where 0 < r <. logan (n = number of subintervalsin [0,1))
and 1 <m<?.

The first eight Haar functions are shown in Fig. 1.
Points of discontinuity are defined as the average of the
limits approached from both sides of the discontinuity.

The Haar functions form a complete orthonormal basis
of L?[0,1], the space of functions f(r) that are defined over
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the interval [0,1] with f2(r) integrable in the Lebesque
sense [Shore (1973)]. The function f(r) can be expressed
as an infinite series of Haar functions:

w0 211

f(6y =Y 3 cth(nmr) )
n=0m=0
where
n_ ! h dt 3)
& = [ FOhnmo)

In practice the function f(¢) is approximated by the partial
sum Sy(t) which contains 2V terms :

N 21
Sy = z Z C:,n h(n,m,t)
n=1 m=0
In other words, in the expansion of f(x), Sy (x) is a step
function with 2V steps, with the value of Sy (x) at each step
equal to the mean value of f(x) within the step interval.
The coefficient, 7, is simply proportional to the difference
between two adjacent steps of Sy(x) at x = (2m—1)/2".
It can be shown that Sy is the best approximation of f(x)
in the mean-square-error sense when it is a step function
of 2V equal steps.
The corresponding discrete Haar functions are obtained
by sampling the continuous Haar functions in Fig. 1 at the
middle of each subinterval to produce an array:

“)

1 1 1 1 1 i 1 1

1 1 1 1 =1 -1 -1 -1

Vi VI -2 V2 o0 o 0 0

H={ ¢ ¢ 0 0 VI VI -2 -2
2 -2 0 0 0 0 0 0

0 0 2 -2 0 0 0 0

0 0 0 0 2 =2 0 0

0 0 0 0 0 o] 2 -2

The discrete Haar transform array is generally denoted
by H(N) where N = logan and n is the number of discrete
data points. Each row of H(N)) is a discrete Haar function
obtained by sampling the corresponding continuous Haar
function, h(r,m,t).

If [X] = [x(0) x(1) x(2) ... x(n —1)] is a sequence of n
discrete points, then the corresponding Haar coefficients,
[C] = [c(0) c(1) ¢(2) ... c(n— 1)] for the Haar basis are
related by the transform pair:

X] = [CHEN)]
n=1

x(i) = Y c(k)h(k,i) &)
k=0

and

€] = XIHN)™

i) = EX(k)ﬁ"(k,i) (6)
k=0
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FIGURE 2: TYPICAL DRAW PRESS SIGNATURE.

whereA(i, j) andA~" (i, j) are the (i, j)th elements of H(N)
and H(N)~! respectively.

The Haar transform can be done in (2n — 2) additions
and subtractions and is less than the nlog, n multiplica-
tions in the case of the fast Fourier transform.

APPLICATIONS

Tonnage signals from a HELM monitoring system were
recorded with a TEAC RD145 DAT recorder. The loca-
tion of the strain gage transducers vary with the type of the
press. A typical signature showing the various segments of
the BHF and inner tonnage is shown in Fig. 2.

Under normal operating conditions, the Haar coeffi-
cients for successive cycles follow a normal Gaussian dis-
tribution, with very small variance. Fault sensitive coef-
ficients are identified from training data and tracked dur-
ing a production run. The +3a limits have been used to
set the thresholds for fault alarm in most cases. How-
ever, the selection of thresholds is purely subjective and
depends on several factors including the age and condition
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of the press which affects the repeatability of the process.
The absence of quantitative measures in this paper is in-
tentional as the purpose here is to demonstrate the method-
ology and not to establish operating limits for the stamp-
ing process; the reason being that each press-die-material-
stamping speed combination produces a unique signature
[Carabbio (1993)]. Furthermore, the correct choice of
Haar detectors will set new maxima and minima in the
presence of an offending signature (Fig. 8).
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FIGURE 3: SIGNATURE FOR NORMAL/LOOSE TIE
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FIGURE 4: HAAR COEFFICIENTS VARY WITH TIE ROD
CONDITION.

The detection of four process faults using the Haar
transform will be discussed in the following paragraphs.
These are based on case studies conducted at an autobody
stamping plant.

Loose Tie Rods
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In straight-side presses, the crown and bed are con-
nected to the uprights by tie rods which hold the uprightsin
compression. The tie rods must be equally prestressed for
the press to operate normally. The crown separates from
the uprights at about 200% of press capacity and any loads
above this is absorbed by the tie rods.

When this happens, the uprights are no longer in com-
pression and the strain gages of the tonnage monitors re-
main in maximum extension over the period of separation
during the highest point of the forming cycle. The tonnage
signature has a flat top or is said to “plateau out” at the
maximum tonnage as shown in Fig. 3.

Fig. 4 shows the shift in the values of selected (normal-
ized) Haar coefficients when this occurs. The separation
between the two sets of coefficients is directly proportional
to the extent of the problem.

Non-parallelism

Unlike one and two point slides (the number of connec-
tions supporting the slide) , parallelism of slide to bolster
of a four point slide may be forced. Forcing parallelism
during die contact is one of the major causes for poor part
quality and also detrimental to die life and press integrity.
Fortunately, the forcing action shows up clearly in the ton-
nage signature and can be easily rectified if detected early
in its appearance. A correlation between the corner ton-
nages will indicate a rocking motion between *“‘opposing”
corners as shown in Fig. 5. Here, the different degrees of
parallelism (before and after the links were adjusted) are
reflected by a corresponding shift in the 1st, 3rd and 4th
Haar coefficients (Fig 6). The deterioration in condition
can be monitored by tracking the trajectories of these co-
efficients over time.

Spurious Faults

Spurious faults are extremely difficult to detect without
continuous on-line monitoring. They are highly nonsta-
tionary and random and usually associated with the initial
stages of component failure. In this example, a cycle with
a fault (Fig. 7) was inserted in a train of 60 successive cy-
cles of the press.

The 6th and 12th coefficients displayed the largest
change at the fault cycle. The trajectories of these two co-
efficients are plotted in Fig. 8.

Slugs

Splits usually occur during the drawing stage due to a
variety of causes. Inextreme cases, pieces of the blank ma-
terial around the split may break off and lodge themselves
in the die. These “slugs” in tumn produce splits and surface
defects in the next blank.

Fig. 9 shows a train of pulses from the tonnage monitors
leading from a normal operation (cycle n) to the discov-
ery of a slug at the end of (cycle (n+2)). Only the region

Transactions of NAMRI/SME

232

Tons

___Left Comer Tonnages
Right Comer Tonnages

140V ’ RF
’

130 ”
0

40 50 60 70 80

Time (100=1sec)

180

180}
170}
160}
150}
-
5 1404
e

130}

120}
, (®) R
1ot [/ RP .
’ — Left Comer Tonnages \
100} _ _ Right Comer Tonnages N
% N s s " N
10 20 30 40 50 60 70 80

Time (1001 sec)

FIGURE 5: PARALLELISM (a) BEFORE, AND (b) AFTER
LINK ADJUSTMENT.

(@) LR () AR
150 150
100t ¥ 100t %
50 50
R R
[ I ] [ I
0 - % - . - N 0 ) 5 . e [ ]
~o s 10 )
Haar Coet Haar Coef
©) LF (d) RF
150 150
100t X 100} %
50 50
4 '82'..-.' 0 .ug-Il-I
~o 5 10 % 3
Haar Cost Haar Coef

FIGURE 6: HAAR COEFFICIENTS (x) BEFORE, AND (o)

AFTER LINK ADJUSTMENT.

Volume XXIII, 1995



500 T T T T

4001

300+ Faut

”
5 200 \
fd
100}
0
.00 N s s .
0 100 200 300 400 500 600
Time
FIGURE 7: FAULT SIGNATURE.
(@
-5500 T
56001
~5700F
5800+
-§9001
80001
~61001 Fauit Event
-5200 . .
0 10 20 40 50 60

30
Cydles

-100

=150

=200+

Fault Event

-250

i . " i "
0 10 20 30 40 50 80
Cydes

FIGURE 8: TRAJECTORY OF THE (a) 6th AND (b) 12th
HAAR COEFFICIENTS.

Transactions of NAMRI/SME

233

around the secondary peak was affected by this anomaly.
The corresponding Haar coefficients were computed for
these signals and a plot of the lowest 10 coefficients shown
in Fig. 10.

CONCLUSION

The application of the Haar transform to the analysis of
tonnage signals encountered in the stamping industry was
discussed. The nature of the normal and fault signatures
lend themselves as ideal candidates for the Haar transform.
In contrast with conventional methods that are dependent
on peak tonnage measurements, the Haar approach is not
compromised by the relative magnitude or distance of the
faults from the peak tonnage.

The computational efficiency of the Haar coefficients
makes it ideal for real-time process monitoring.
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