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faults in panel assembly. From geometric information about the panel and fixture, a
fixture fault model can be consiructed off-line. Combining the fault model with in-
line panel dimensional measurements, the algorithm is capable of detecting and
classifying multiple fixture faults. The algorithm, which relies heavily on the fault
model, is based on least squares estimation. Consequently, the test is of relatively
simple form and is easily implemented and analyzed. Experimental results of applying

the algorithm to an autobody assemble process are provided.

1 Introduction

Panel assembly is an integral part of many manufacturing
processes, such as the assembly of automobile bodies, office
furniture, and home appliances (e.g., washers and dryers). The
dimensional quality of the completed product is highly depen-
dent on the level of accuracy with which the panels were fix-
tured. Consequently, design and maintenance of accurate fixtur-
ing is an important research area.

In the past decade, there has been large amount of research
concerning automated fixture design and analysis. The problems
are usually formulated as constrained optimization problems
satisfying the fixturing requirements (Asada and By, 1985;
Chou, et al., 1989; Menassa and DeVries, 1991) of (1) unique-
ness of the workpiece location; (2) accessibility to and detach-
ability of the workpiece; (3) clamping stability; (4) positioning
stability; and (5) total restraint in the presence of any external
forces. Asada and By (1985) use a kinematic analysis to de-
velop conditions for ensuring that the fixture uniquely locate
the workpiece and that one is able to insert ( accessibility) and
remove (detachability) the workpiece from the fixture. Chou et
al. (1989) use screw theory to ensure that none of the reaction
forces exerted on the workpiece by the locating elements be-
come negative during positioning (positioning stability),
clamping (clamping stability ), and subsequent machining (total
restraint). Menassa and DeVries (1991), using finite element
analysis, optimize the position of the support blocks to minimize
workpiece deflection due to applied forces. Rong and Zhu
(1992) develop a search and retrieve (over a set of existing
fixture designs ) technique with kinematic requirement consider-
ations. Hockenberger and De Meter (1995) and De Meter
(1995) conduct an experimental analysis into the causes of
workpiece deflection under machining forces and optimize the
layout of clamps and locators using a mini-max locating force
criteria with kinematic and total restraint constraints. King and
Hutter (1993) combine kinematic and total restraint require-
ments into an overall optimization criteria. including frictional
forces in their model.

While these works represents significant contributions to fix-
turing research, they are all geared towards fixture design. No
matter how good the fixture design is and how well laid out
the locating pins and blocks are, over time the locating elements
may become worn, loose, bent, or broken. The impact of this
could be a severe deterioration in the ability of the fixture to
accurately locate the panel. In fact, studies have concluded that
fixture faults are the major root cause of autobody dimensional
variation (ABC, 1993) and that at one domestic automobile
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assembly plant 72 percent of all root causes of dimensional
variation over an 18 month period were due to fixture failures
(Ceglarek et al., 1994).

In light of this, a method for detecting and diagnosing fixture
fajlures, based on in-line panel measurements, would be highly
advantageous. In spite of the prevalent research on fixture de-
sign, research on fixture diagnosis is scarce. The most likely
reason for this was the past difficulties in obtaining sufficient
dimensional measurements. However, given the recent develop-
ment and implementation of Optical Coordinate Measuring Ma-
chines (OCMMs), especially in the automotive industry, new
opportunities for fixture failure diagnosis have emerged.
OCMMs are typically installed at the end of major autobody
subassemblies and provide a 100 percent inspection rate with
up to 150 measurement points on each subassembly.

A few recent works have taken advantage of OCMM technol-
ogy and developed methods for diagnosing dimensional varia-
tion problems in autobody assembly. Hu and Wu (1992) devel-
oped a method based on the multivariate statistical technique
known as Principle Components Analysis (PCA ). The method
relies on an intuitive interpretation of the principle components
to gain insight into the root causes of dimensional variation.

. Ceglarek et al. (1994) developed a rule-based approach for

identifying failing subassembly stations. By restricting attention
to fixture-related problems, Ceglarek and Shi (1996) developed
a PCA-based diagnostic approach that has achieved consider-
able success in autobody assembly implementations. The class
of fixture related problems their method applies to are those
resulting from worn, loose, or broken locating elements.

The method of Ceglarek and Shi (1996), however, has two
significant drawbacks. Firstly, it cannot detect multiple fixture
faults. In fact, if two or more faults occur simultaneously with
similar severity, then their method produces erroneous results
and is likely to miss both faults. Secondly, the statistics of their
test are intractible. meaning that it is impossible to analyze the
test performance theoretically. Thus, there is no efficient means
of choosing a test threshold to guarantee a desired probability
of false alarm, other than through extensive simulation and/or
experience.

The objective of this research is to develop a diagnostic algo-
rithm for detecting and classifying fixture faults in panel assem-
bly operations that (1) applies to multiple fixture faults oc-
curring simultaneously, and (2) has detection and false alarm
properties that are easily determined theoretically. One result
of (2) is that all test parameters (e.g. the threshold) can easily
be selected 1o provide a desired probability of false alarm. By
fixture-related faults it is meant worn, loose, or broken locating
elements. An additional contribution of this research is the de-
velopment of a model that relates fixture faults to the displace-
ment of measured points on the panel. The model is essential
to the development of the diagnostic algorithm and, in general,
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allows a convenient means of interpreting and analyzing the
fixture faults considered.

The overall procedure for implementing the algorithm is illus-
trated in Fig. 1.1. Based only on the panel geometry (CAD
Data) and fixture geometry (Fixture Layout Knowledge) the
fixture fault model is constructed off-line. To implement the
algorithm, the model is merged with in-line OCMM panel mea-
surement data. The diagnostic algorithm, based on least squares
estimation theory, then uses the model and in-line data to detect
and classify multiple fixwre faults.

The remainder of the paper is summarized as follows. In
section 2 the fixture fault model is presented and illustrated
with an example. Section 3 develops the least squares based
diagnostic algorithm, and section 4 theoretically analyzes the
algorithm performance in terms of the probability of detecting
the faults and the probability of false alarm. Section 5 presents
experimental results in which the algorithm was applied to fix-
ture fault detection in autobody panel assembly. Conclusions
and discussion follow in section 6.

2 A Linear Model For Fixture Related Variation

Consider the fixturing of the flat rigid body pane! illustrated
in Fig. 2.1, which follows the 3-2-1 fixturing principle. The
three shaded blocks constrain the motion of the panel in the v
direction, and the combination pin/hole (P,) and pin/slot (P,)
constrain the motion in the x-z plane. Together, the combination
of tooling elements (blocks and pins) constrains all six degrees-
of-freedom of the rigid panel. In this section, we develop a linear
model relating small displacements of the tooling elements to
the overall displacement of (measured points on) the panel.
Such panel displacements commonly occur in panel assembly,
the result of worn, loose, or broken tooling elements. Although
we illustrate the concepts with the simple setup of Fig. 2.1, the
model will be applicable to generic 3-2-1 rigid body fixturing.
The model will also apply to n-2-1 nonrigid body fixturing if
the faults being considered cause panel motion only in the plane
of rigidity. For example, if the panel in Fig. 2.1 is non rigid in
the y direction (and, thus, requires n locating blocks to constrain
motion in the y direction) but rigid in the x-z plane, then the
model will apply to faults which cause motion only within the
x-Z plane.

First consider the effects of pin displacements on the panel
position, which, since the panel is flat, only cause motion in
the x-z plane. This situation is illustrated in Fig. 2.2. Suppose
the x-y-z coordinates of three points M, = (M,(x), M,(y),
Mi(2)), My = (My(x), My(y), My(2)), and M5 = (Ms(x),
Mi(y), M;(z)) are to be measured Jlet x =

off; ]
FIXTURE LAYOUT B
KNOWLEDGE
FIXTURE FAULT IN-LINE
MODEL . OCMM DATA
— l |

DIAGNOSTIC |
ALGORITHM |

MULTIPLE FAULT
DETECTION/CLASSIFICATION

Fig. 1.1 Outline of the fixture fault diagnosis method
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Fig. 2.1

llustration of the 3-2-1 fixturing principle for rigid panels

(M ()M ()M ()Mo ()Mo (y) My (2) M3 () M3 (¥)M5(2)]7
be the 9-dimensional measurement vector consisting of all com-
ponents of the measurement points. The immediate goal is to
find the effects of positional displacements of the pins on x.
The displacement of P, in the x direction has no effect on x,
provided the pin does not displace further than the boundary of
the slot. Let 6P,(z) denote the displacement of P, in the z
direction, 6P, (x) and 8P, (z) be defined similarly, and 8x denote
the resulting deviation (from nominal) of the measurement vec-
tor x.

The exact relationship between 6x and 6P, (x), 8P,(z), and
6P1(Z) can be expressed as some nonlinear function f which
depends on the geometry of the panel, i.e. 6x = (6P, (x),
6P\(2), 6P1(z)). To determine the exact effect of any of the pin
displacements, all of the pin displacements must be considered
simultaneously. Specifically, the effect of 6P,(z) will depend
alsoon 6P, (x) and 6P, (z). However, it is assumed that all of the
pin displacements are small relative to the overall dimensions of
the panel. Consequently, the higher order terms of a Taylor
expansion of f can be neglected, resulting in the linearized
relationship

. of of
X = [8})2(2)}6&(2) + [apl(x)]éP,(x)

of
+ [6—‘_1,1(“ ]5P1(Z),

where the partial derivatives are evaluated at 6P, (x) = §P,(z)
= 6P,(z) = 0 (i.e., the nominal position of the pins). In this
linearized relationship the effect of a P, displacement does not
depend on how much P, deviates from nominal, and vice-versa,
since the partial derivatives are evaluated at the nominal posi-
tions of the pins. Thus, the most straightforward way to calculate
the effect of, say, §P,(z) is to determine how the panel moves
with 6P, (x) = 8P,(z) = 0. The same can be done for the P,
displacements, and the effects of all three faults together are
additive.

The net effect of a displacement 6P,(z) is to cause the panel
to rotate about Py, as illustrated in Fig. 2.3. From simple geo-
metric arguments it follows that the effect of a small 6P,(z)
can be expressed as

Fig. 2.2 Ilustration of panel fixturing in the x-z plane
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Fig. 2.3 lllustration of the effect of a z direction displacement of P,: a
rotation about P,

Ox = ¢,6P,(2),

where

G = [-M() 0 M)

Pa(x) ~My(z) 0 My(x)

-Mi(z) 0O Ma(x)]T~

The quantities in the expression for ¢, are the nominal coordi-
nates of the measurement points, and P,(x) denotes the nominal
x-coordinate of P,. The origin of the coordinate system has
been chosen to coincide with the nominal position of P,. Note
that if one were to determine the exact nonlinear relationship
f referred to in the preceeding paragraph, its partial derivative
with respect to 6P,(z), evaluated at the nominal position, would
equal c;.

Likewise, the displacements due to small 6P (x) and 6P (z)
are

6x

I

C26P,(x),
and

6x = ;6P (2),

[

respectively, where
¢;=[1001001007,

and

1
caEsz(x—)[Ml(Z) 0 (Pa(x) — My(x)) Mi(z) O

(Py(x) ~ My(x)) Mi(z) 0O (Py(x) — MJ(X))]T-

All quantities in the expression for ¢, are nominal coordinates.
Since in the linearized model the effects of the faults are addi-
tive, it follows that if all three pin displacements are present,

ox = cléPz(z) + C26P|(X) + c;éP,(z)
= Cv, (2.1)

where C = {¢, ¢, c3]and v = [8P2(2) 6P\ (x) 6P,(2)]17. Note
that the development of (2.1) implied an actual pin displace-
ment, which would result from, for example, a loose or broken
pin. If instead the pin is womn, so that there s some clearance
between the pin and hole/slot, the effects would be identical to
those of a loose pin even though the pin is not actually displac-
ing. Consequently, a worn tooling element will be treated as a
tooling element displacement also.

In a similar manner, one can also consider the effects of
block displacements on the panel motion. Since the panel is
assumed flat, small displacements of the blocks in the x-z plane
have no effect on the position of the panel. In general, small
block displacements in the x-z plane will not affect the position
of the panel provided the vector normal to the panel surface, at

lmsvnmamn? ns LY ENCRN SR S S Clavmcn mun -~

the point of contact with the block. is orthogonal to the x--
plane.

Enumerate the three blocks as B,, B,. and Bs. Let [, , denote
the imaginary line connecting ( the nominal position of ) blocks
! and 2, and let /,; and I, be defined similarly. Define d(B,,
l;+) to be the nominal distance between block i and line s, and
define d(M;, I,) to be the nominal distance between measure-
ment point M, and line /;,. Define the y-direction displacements
of blocks 1 through 3 as 6B (y), 6B,(y), and 6B5(y).

Since a displacement of any of the three blocks in the y
direction causes a rotation of the panel about the line connecting
the other two blocks, it follows that the effects of the three
block displacements on the measured points are given by

OX = €0B(y) + ¢s6B,(y) + €sbBs(y),

where
1
CG=———[0 *dM,| 0 0 =dM,l 0 0
4 d(B],12.3)[ (M, 13) (M, 1,3)
*d(Ms, ;) 017,
1
=—I0 =xd(M,I 0 0 xdM,1,5) 0 0O
Cs d(B;.l,_;)[ (M), 1, 5) (M, 1;3)
*d(M;, 1,5) 0],
and
1
=—[0 =*d(M,I 0 0 xdMyl)) 0 0O
Cs d(B3,l;‘2)[ (M, 1,5) (M, 1,,)

*d(M;, l,;) 0}

The ‘£’ symbol indicates that either a positive or a negative
sign should precede each element, which can easily be deter-
mined given the position of the measurement point relative to
the blocks. If faults due to block displacements are also to be
included in the model, the C matrix in (2.1) is augmented to
include ¢, ¢s, and ¢, as the last three columns, and v is similarly
augmented.

The example used to illustrate the construction of the C ma-
trix is a special case of the 3-2-1 fixturing principle, commonly
used for thin panels. where pins and holes/slots are used to
constrain the x-z plane motion. A 3-2-1 method in which six
blocks and no pins are used is also common, especially with
thicker panels. The preceding example was further specialized
in the sense that the panel was flat and rectangular. For arbi-
trarily shaped panels and 3-2-1 fixturing using six blocks, calcu-
lating the panel motion due to block displacements can be much
more involved. In general, the panel motion depends on the
layout of the locating elements and also on the local surface
geometry of the panel in neighborhoods of each point where
the locating elements contact the panel (Rong et al., 1995).

Implementation of the fault detection algorithm requires a
linearized model relating the locating element displacements to
Ox, as in (2.1). For the small tooling element displacements
encountered in practice. a linearized approximation is usually
close to the exact relationship. For an arbitrary 3-2-1 fixturing
scheme. the first step is to determine the functional form of f
in the nonlinear relationship 6x = f(v). Refer to Rong et al.
(1995) for details. As previously discussed. the fact that f will
subsequently be linearized enables one to separately determine
the effects of the displacements of each locating element. In
general, the C matrix can then be obtained via C = (0f18v),
where (0f/0v) is the Jacobian matrix such that the ith row.
Jth column element is (9x,/3v;). Here, x; is the ith element of
X, and v, is the jth element of v. The C matrix depends only
on the nominal geometry of the panel and fixture layout and.
thus, can be constructed off-line using product/process design
information.
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After obtaining the C matrix for a general 3-2-1 fixturing
situation, the linearized fault model can be expressed similarly
to (2.1) as

x(j) = Cv(j) + w()) (2.2)
where the notation is as follows. Let p denote the number of
faults to be modeled, and let n denote the total number of
measurements taken on each panel. For the situation in Fig. 2.2,
p = 3 (x and : displacement of P, and : displacement of P,)
and n = 9 (x-y-z coordinates of three measurement points).
x(j) denotes the n-dimensional vector of measurements on the
jth panel. The index j can be thought of as a “time’" index.
For example, if the panels represent a particular component of
an autobody, then j denotes the car number. N denotes the total
number of panels being measured. For simplicity, the elements
of x(+) will be deviations from nominal, what was previously
referred to as 6x. v(j) denotes the p-dimensional vector, the
ith component of which characterizes the ith fault, as it occurs
on the jth panel. Thus, for the Fig. 2.2 example v(j) = [6P:(2)
8P, (x) 6P,(2)]" at the time of the jth panel. Let {¢; }/-, be n-
dimensional column vectors such that ¢, defines the linear or
linearized effect of the ith fault on the measurement vector
x(*). Then C is defined as C = [¢; ¢> ... ¢,]. w(j) is the n-
dimensional ‘‘noise’’ vector that represents any discrepancy
between the modeled effects of the faults and what is actually
measured on the jth panel. w( ) can be thought of as the aggre-
gated effects of sensor noise and any inherent unmodeled varia-
tion in the manufacturing process.

We make the following assumptions regarding the model:

(Al) {v())} }L. are random vectors that follow a multivanate
Gaussian distribution with zero mean and p X p covari-
ance matrix K, = E[v(+)v7(+)]. denoted v(*) ~ N(0,
K,). Here. E[*] denotes the probabilistic expectation.
Furthermore, assume v () is uncorrelated with v(i) for
i+ .

The columns of C are linearly independent. In general,
if a sufficient number of measurements are taken this
will be the case. Since C is an n X p matrix, an absolute
minimum is n = p. Also, let each column of C be scaled
s0 as to have unit norm. The elements of v(+) must be
rescaled accordingly.

{w(j)}/, are zero-mean Gaussian random vectors, i.e.
w(-) ~ N(0, K,), where K, = 0. and I is the n X
n identity matrix. Furthermore, assume w () is uncorre-
lated with w(i) for i # j, and w() is uncorrelated with
v(i) for all i and j.

(A2)

(A3)

Some comments are in order regarding the assumptions. (A1)
essentially says that the types of faults being considered are
variation sources, as opposed to faults that manifest themselves
as mean shifts. For example, a P, fault in Fig. 2.2, resulting
from a worn or loose pin, would cause the panels to rotate
randomly about P,, with some panels rotating in a clockwise
direction and some in a counter-clockwise direction. The aver-
age rotation is zero since v(-) is assumed zero-mean, and the
average ‘‘magnitude’’ of the rotation is determined by the vari-
ance of the corresponding element of v(-). Faults that are not
manifested as variation, but rather as mean shifts (e.g. a bent
or mislocated pin), can still be modeled by (2.2) if the zero-
mean assumption on v(-) is dropped. Much of the analysis of
the detection algorithm developed in the subsequent section
applies to variation type faults and does not apply directly to
mean shift faults. However, if mean shift type faults or both
mean shift and variation type faults are occurring, the developed
algorithm can still be successfully applied. How to interpret the
algorithm in this situation is addressed as Remark 3 in sec-
tion 3.1.

In (A3) the assumption that K, = 21 means that the noise
affecting the measurements are uncorrelated and of equal van-
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ance. This can be assumed without loss of generality if the true
K. is known or can be estimated from data during which none
of the faults were present. In this event, the measurement vectors
x(+) must be transformed by K'/? before applying the algo-
rithm. Premultiplying (2.2) by K;'? gives

x'(j) = C'v(j) + w(j),

where x'(j) = K;'?x(j), C' = K;'?C, and w'(j) =
K.'"?w(j) ~ N(0, I). (A3) then applies to w’(+), and the
algorithm can be applied to the transformed measurements
x’(+) instead of x(*).

3 An Algorithm for Fault Detection and Classifica-
tion

[n this section a least squares based algorithm is developed
for detecting and classifying multiple faults in panel assembly.
The type of faults the algorithm is applicable to are the varia-
tion-related faults described by the model (2.2) under assump-
tions (A1)-(A3). The most typical causes of such faults are
worn, loose, or broken locating elements. As discussed in the
paragraphs following the assumptions, (A1) and (A3) are not
overly restrictive and can often be worked around.

3.1 Algorithm Development. The physical reasoning be-
hind the algorithm is as follows. Let {o?}2., denote the diago-
nal elements of K,. If v;(-) denotes the ith element of v(-),
then o? is the variance of v;(+). Thus, o? is in some sense a
measure of the severity of the ith fault. ¢? = 0 means that v, (j)
= 0 for all j or, in other words, the ith fault is not present. On
the other hand, if o} is large, the ith fault is present and quite
severe. Consequently, we will refer to o'/ as the magnitude of
the ith fault.

This interpretation suggests a method of determining whether
each of the p faults are present: From the measurement data
and the model (2.2), estimate {o?}2.,. If the estimated magni-
tude of one or more of the faults is large in some sense, then
conclude that those faults are present. Note that the estimate
of o} also provides a measure of how severe the fault is. The
remainder of this section is devoted to defining appropriate
estimates of the fault magnitudes and analyzing their statistical
distributions, so that thresholds for deciding if they are ‘‘large”’
can be set.

Let the overscore symbol *“ " ** denote an estimate of a quan-
tity, and the subscript “‘i’’ on a vector denote its ith element.
For each panel index (j = 1, 2, ..., N) consider the least

squares estimate of v(j),

v(j) = [CTCI7'Cx()) 3.1
Unless n > p, ¥(j) may not be a very good estimate of v(j).
However, it will still allow us to estimate the variances of its
elements. Define the following estimates of {o?}%.,.

i M=

1
5= Y 93 3.2
gi=y vilh) (3.2)

H

J=1

It will become apparent shortly that we also require an estimate
of o2, which we define as

AP S -
VT El wI(HWw()), (33)
where
w(j) = x(j) - C¥(j) (34)

is an estimate of w(j) forj=1,2,..., N.
The following theorem states the statistical properties of the
estimates. Proof is given in the appendix.
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Theorem I:  For the model (2.2) under assumptions (Al) -
(A3), the estimates of the fault magnitudes (3.2) and noise
variance (3.3) have the following statistical properties.

2
i) 6t~ 1o + orrcre)n XV,

i=1,2,...,p,

i.e. 67 is distributed as a chi-squared random variable
multiplied by a constant. x2(N) denotes a chi-squared
random variable with N degrees-of-freedom, and
[CCY;}! is the ith diagonal element of [Cc'Cy'.

o2 XA(N(n = p))
" N(n-p)

&1 is independent of {52 2.

&l ~

(i)

(iii)

Remark I Since the expected value of a x? random variable
divided by its degrees-of-freedom is 1, 6% is a biased estimate
of o}, whereas 2 is an unbiased estimate of ¢2. An unbiased
estimated of o7 would be 62 — & 2ICTCy.

Remark 2. From (i), if the ith fault is not present (o? =
0), &7 is a x? random variable multiplied by a positive constant
ag2[CTCI;//IN. If the ith fault is present (o} > 0), 52 is a x2
random variable multiplied by a larger constant. This suggests
ax’teston &7 for detecting the presence of the ith fault, where
the threshold of the test is chosen to give a specified probability
of false alarm. However, the threshold would depend on the
unknown o Substituting &2 for o2 provides a solution, but
the true probability of false alarm would then not be the desired
one and would be difficult to calculate.

In light of Remark 2, we define the test statistics

A2
g;

(ccyiay’

Fi = i=1,2...,p. (3.5)

The following corollary follows directly from Theorem 1 and
the definition of the F-distribution.

Corollary 2 The test statistics {Fi }?-y defined in (3.5) are
distributed as F-distributed random variables multiplied by con-
stants

of
Fi ~ [] + m]F(N, N(n - p)).

F(v,, v;) denotes an F-distributed random variable with v,
numerator degrees-of-freedom and v, denominator degrees-of-
freedom.

ol=0is interpreted as the ith fault not being present, and
gl > 0is interpreted as the ith fauh being present. Conse-
quently, it follows from Corollary 2 that if the ith fault is not
present, F; ~ F(N, N(n — P))}. On the other hand, if the ith
fault is present, F; is distributed as an F(N, N(n - p)) random
variable scaled by a constant {1 + o}/[C'C);} 2] > 1. Thus,
with the ith fault present the distribution of F, is shifted to the
right. An example of how the distribution is shifted is illustrated
in Fig. 3.1, where the parameters n = 6,p =3, N =230, and
oi/[C'Cl;' o = 3.85 have been used.

This suggests using an F-test to detect the presence of each
of the p faults. Each of the statistics { F; }2., would be compared
to a threshold vy, chosen to provide a specified probability of
false alarm. Thus, if « denotes the desired probability of false
alarm, -y would be set as the | — o percentile of the F(N, N(n
— p)) distribution. For each i {1,2,..., P}, if F; is larger
than v, it is concluded that the ith fault has occurred. Otherwise,
it is concluded that the ith fault has not occurred.
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Fig. 3.1 Example illustrating the distribution of a test statistic with and
without the corresponding fault present

Remark 3. The validity of Corollary 2 relies on the assump-
tions regarding the distribution of the underlying random vari-
ables. In particular, assumption (A1), which requires that v(-)
is zero-mean. In practice, many locating element fauits appear
in the data as a mean shift, rather than (or in addition to) a
variance change, examples of which are a bent pin or a mislo-
cated pin. If the ith fault occurs and causes the mean of v,(+)
to become non-zero, then the distribution of F; is no longer
given by Corollary 2. However, the above test, unmodified, can
still be successfully applied to detecting the ith fault. The prob-
lem must be formulated slightly differently. Define the absence
of the ith fault to be that v;(*) is zero-mean and has zero
variance (¢? = 0). Define the presence of the ith fault to be
that v; (- ) has either non-zero mean, non-zero variance, or both.
If the ith fault is not present, F; still follows an F(N, N(n —
p)) distribution. The threshold for the above test can then be
selected, as before, to be the 1 — o percentile of the F(N, N(n
— p)) distribution. If the ith fault is present, regardless of
whether it causes a mean shift or variance change in v, (- ), the
measurement vectors x(+) will have larger components along
¢;. This will cause 2 from (3.2), and thus F;, to be larger on
average than if the ith fault were not present. If the fault is
large enough, it is likely that F; will lie above the threshold,
signaling that the ith fault has occurred. These intuitive argu-
ments can be rigorously justified by showing that F,, under the
same assumptions as before except that v, (-) is no longer re-
quired to be zero-mean, follows a noncentral F-distribution.
The non-central F-distribution is also shifted to the right relative
to the F(N, N(n — p)) distribution, in a manner similar to that
shown in Fig. 3.1. See Rao (1973) for a discussion on the
distribution of quadratic forms of Gaussian random variables
and the noncentral F-distribution. Once the ith fault is detected,
whether it was a mean shift or variance change can easily be
determined by inspecting {¥:(j/)})-: and determining if they
have experienced a mean shift or variance change.

Remark 4 Another violation of the assumptions that would
cause the distribution of F; to differ from that of Corollary 2,
is if v(-) was nonstationary. If no fault is present, v(-) is
stationary by definition. since it is assumed identically zero.
However, suppose the ith fault is present and that, instead of
o} being constant over the data window of N panels, it grows
slowly. The distribution of F; is no longer given by Coroliary
2, and its exact distribution is intractable. Regardless, by the
same reasoning outlined in Remark 3, x(+) will have larger
components along ¢, than if the ith fault were not present, and
F; will likely signal an alarm. Once the ith fault is detected.
{%:(j)})% can again be inspected to determine if the fault
magnitude is growing or steady.
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3.2 Discussion. As illustrated in Fig. 3.1, the probability
of detecting the ith fault (of a given magnitude) is the area to
the right of y under the distribution with the fault present. This
probability depends on how much the distribution is shifted
over when the fault is present, which, from Corollary 2, depends
solely on the quantity

-9
ICSFES

d;, which we will refer to as the detectability index for the ith
fault. is closely related to what can be interpreted as a signal-
to-noise ratio. In order to define a signal-to-noise ratio, we first
define the following measure of the average variance of the n
measurement points:

d, i=12...,p. (3.6)

Z Var [x;(*)]
=
n

3.7)

It can be shown that if the ith fault (but no other fault) is
present, then
=2 Uiz

gl=—L+ ol
n

(3.8)

Thus, the portion of the average variance of the measurement
points due to the ith fault is ¢;/n, and the portion due to the
inherent noise is . Consequently, a signal-to-noise ratio for
the ith fault can be defined as

2

ai

SNR;, = —.
n

(3.9)

w

If the columns of C are not too close to being linearly depen-
dent, [C"C];} should lie in the neighborhood of 1. Note that
if the columns of C are orthogonal or if p = 1, [C'C];} is
identically 1. Consequently, the detectability index for the ith
fault is approximately n times the signal-to-noise ratio for the
ith fault, i.e.

d; = nSNR;. (3.10)

From (3.10) it is apparent that the detectability of a fault de-
pends strongly on its signal-to-noise ratio. At first glance, the
factor n in (3.10) appears to cancel out the n in the denominator
of (3.9). However, the columns of C are always scaled to have
unit norm. Consequently, as the number of measurement points
n increases, the magnitude of the elements of ¢; must be de-
creased—roughly by a factor of V. In the model (2.2), this
must be compensated for by increasing o; by the same factor,
even though the size of the fault has not changed. The net result
is that ¢? increases roughly proportionally to n, and the signal-
to-noise ratio is approximately independent of n. Thus, from
(3.10) the detectability of a fault also depends strongly on the
number of relevant measurement points.

A main advantage of the method presented in this section
over PCA is that the least squares based method developed here
can detect and classify multiple faults. F; is the test statistic
used to detect the ith fault. From Corollary 2, the distribution
of F; depends on the presence of the ith fault (i.e. on o}) and
is independent of the presence of any of the other modeled
faults. Thus, the ability of the test to detect a particular fault is
not affected by the presence of any of the other faults. In con-
trast, the PCA-based method of Ceglarek and Shi (1996) can
only be applied to detecting single fixture faults.

Another main advantage over PCA is that the probability
distribution of the test statistics are of very simple form. The
result of this is that y can be easily chosen to provide a desired
probability of false alarm, and the probability of detecting faults
can be easily calculated. Calculation of these probabilities re-
quires only F-distribution tables, which are widely available.

798 / Vol. 120, NOVEMBER 1998

Moreover, if F,(v,, 1) denotes the | — a percentile of the
F(v\, v,) distribution, the following approximations are quite
close for v, = 10 and v, = 30 (Bowker and Liebermann,
1961):

2.6841 1 1
logio Foooi (V1. va) = .00 - 1572(;‘ - u_> ,
\-/ - 2. 1 2

2.2373 1 1
logio Fopos(v1, v2) = m - 1'250(,, » > ,
- 1. 1 2

and

2.0206

1 1
logio Fooi (v, v2) = m - 1-073(‘; - V_> .
- 1. 1 2

where h = 2/(1/v, + 1/v,). In the PCA method of Ceglarek
and Shi (1996), the distributions of the test statistics are highly
compticated and completely unknown. Thus, threshold selection
is not straightforward, and very little analysis of probabilities
of detection and false alarm can be made other than through
Monte Carlo simulation.

An additional feature of the algorithm of this paper is that it
is well suited for sequential detection. That is, as the (¥ + 1)*
panel is measured, estimate ¥(N + 1) and W(N + 1) and
update &%, {67}%.,, and {F,;}%,. Note that, to provide the
desired probability of false alarm, y must also be updated based
on the F(N + 1, (N + 1)(n - p)) distribution. If implemented
in this manner, the process can be monitored from the first panel
produced, allowing early detection of the fault (if its magnitude
is sufficiently large).

4 Theoretical Analysis

As mentioned in the preceeding section, one advantage of
the detection algorithm of this paper is that its performance, in
terms of probabilities of false alarm and detection, can easily
be determined analytically. In this section, we analyze the algo-
rithm performance for the situation illustrated in Fig. 2.1 and
Fig. 2.2.

The faults considered are P, variations in the x and z direc-
tions and P, variation in the z direction (p = 3). x( ) consists
of the deviations from nominal of the x-y-z coordinates of the
three measurement points, M,, M,, and M, (n = 9). The nomi-
nal x-y-z coordinates for P, and the measurement points are P,
=(6,0,0),M, =(-1,0, -1), M, = (7,0, -1), and M; =
(7, 0, 4), where the origin of the coordinate system coincides
with P,. From the geometry of the panel and tooling, C was
found to be

(093 577 -.120
0 0 0
~093 0  .843
093 577 -.120
C-= 0 0 0o |,
647 0 -.120
-370 577 482
0 0 0
| 647 0 —.120

where the first column corresponds to P, variation in the z
direction ( fault 1), and the second and third columns correspond
to P, variation in the x (fault 2) and z (fault 3) directions,
respectively. Note that the diagonal elements of [C'C] ™' are
[C'CI{! = 1.24, {CTC5i = 1.02, and [C'C]53 = 1.25.
The probability of detecting fault 1 for various sample sizes
(N) and various signal-to-noise ratios was calculated analyti-
cally using Corollary 1, and the resuits are plotted in Fig. 4.1.
For all sample sizes the threshold v, which depends on N, was
chosen to provide a probability of false alarm a = 0.001. Even
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Fig. 4.1 Example probability of detection curves for a P.(z) fault with
various signal-to-noise ratios and sample sizes. Probability of false alarm
was set at 0.001.

for small signal-to-noise ratios, such as SNR = 0.25, the proba-
bility of detecting fault 1 is high with a sample size of 40 panels.
For large signal-to-noise ratios, the probability of detection is
close to 100% after only a few panels are measured. With
identical SNR’s, any difference in the probability of detection
for the different faults must result from differences in the corre-
sponding diagonal elements of [CTC]! (see Corollary 2).
Since the diagonal elements are similar for all three faults, the
detection results for faults 2 and 3 are very similar to those for
fault 1 and are not shown. The detection results for fault 2 are,
in fact, slightly better than for fault 1, since [C'C) 3} is smaller
than [C7C]7}.

5 Experimental Results

This section presents experimental results for applying the
algorithm to fixture diagnosis in autobody panel assembly. Fig-
ure 5.1 shows the points that are measured on the right-hand
bodyside. Both the x- and z-directions of Points M, through M,
are measured. The x-direction of points M, through M; and the
z-direction of points M, and M, are also measured. A similar
measurement scheme is used for the left-hand bodyside. The z-
direction is upwards, and the x-direction is towards the rear of
the vehicle. The measurements are taken after the framing sta-
tion, in which the left and right bodysides are joined to the
underbody and roof. Pins P, and P, locate the bodyside in the
x-z plane at the framing station, P, mating with a hole in the
bodyside and P, mating with a slot. The goal is to detect fixtur-
ing errors in the framing station due to P, and P, faults.

Although the bodyside is rigid in the x-z plane, it is not
completely rigid in the y-direction. Consequently, more than

My(2)

three blocks are used to constrain the bodyside position in the
y-direction. These blocks, which are not shown in Fig. 5.1, are
positioned in such a way that the x-z plane is a *‘slip’’ plane,
i.e. locating error in the x-z plane due to P, and P; faults does
not cause locating error in the y direction. Thus, for the purpose
of simplifying the analysis, attention was focused on P, and P,
faults, and all y-direction measurements have been ignored.

The nominal x-z coordinates of the pins and measurement points
are shown in Table 5.1. The 14-dimensional measurement vector
for each autobody is defined as X(1) = [M(x) My(x). .. M;(x)
M, (2) My(2) My(z) Mi(z) My(z) Mio(2)]”. Two fixture faults
will be considered: a P, failure in the x-direction (fault 1) and a
P, failure in the z-direction (fault 2). Note that fault 1 causes a
translation in the x-direction and fault 2 causes a rotation about
P,. From the panel geometry (i.e., the nominal coordinate data in
Table 5.1) and the definition of x(-), it follows that the fault
matrix is

]'0.354 0.057
0.354 —0.026
0354 0
0.354 —0.004
0.354  0.046
0.354 —0.087
c- |0354 —0024
= 0354 0.043
0 0187
0 0361
0 0
0 0535
0  0.495
| 0 053 |

The results of the fault detection algorithm, applied recur-
sively to a total of 14 measured autobodies, are shown in Fig.
5.2. As each new autobody was measured, the sample size N
from which the test statistics are calculated increased by one.
Thus, the parameters for the algorithm were n = 14 (14 mea-
Surements per autobody) and p = 2 (2 faults tested for), with
N increasing from 1 to 14. The threshold v was selected to
provide a probability of false alarm of 0.001. Specifically, for
each value of N, y was chosen to be the 0.999 percentile of
the F(N, 12N) distribution. As N increases, y decreases, as
illustrated in Fig. 5.2.

Figure 5.2 shows that F, crossed the threshold when the
second autobody was measured and afterwards remained sig-
nificantly above the threshold. In contrast, F, remained signifi-
cantly below the threshold. The results indicated that fault 1
(P, failure in the x-direction) was strongly present and fault 2
was absent. Further investigation of the framing station revealed
that fault 1 had, indeed, occurred. Through extended use, pin

L7

——

M,(x) M
I7vI4(x,2) 00—

M,(x.2)

v

2z
M,(x,z)

L/

H-He

M,o(2) Ms(x)2 M,(x)

M:(x,z)

Fig. 5.1 Key points on the right-hand bodyside. M, through M,, are points measured
on the bodyside after the framing station, where the letters in parentheses indicate the
directions(s) that are measured. Py and P; are pins that locate the bodyside in the x-z

plane at the framing station.
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Table 5.1 Nominal x-z coordinates for measurement points and pins

nominal
point | coordinates (mm)
X z
M; 3134 1200
M, 4015 1618.5
M3 2184 1489
My 4895.3 | 15105
Ms 3721 1256.5
Mg 3264 1930
M, 4895 1608
Mg 4895.5 1273
My 4693.8 | 2228.5
Mjio 4899 1214.5
Py 2184 1489
P2 4680 1428

P, had become wom so that its diameter in the x-direction was
approximately 2.5 mm smaller than nominal. This caused the
bodysides to shift back and forth in the x-direction as they
were placed in the framing station fixture. P, was subsequently
replaced, and the problem was eliminated.

6 Conclusions

In this paper, a method for diagnosing fixture related faults
in panel assembly was developed. The faults considered are
panel positioning errors resulting from worn, damaged, or mis-
located locating elements. A model relating the fixture faults to
the displacement of measured points on the panels was pre-
sented and used to develop a least squares based algorithm for
detecting and classifying multiple faults. Implementation of the
algorithm requires off-line product/process design information
regarding the geometry of the panel and fixture (used to con-
struct the fault model) and in-line dimensional measurements
obtained, for example, with an OCMM.

The algorithm has a number of advantages over existing algo-
rithms for fixture diagnosis. Specifically, the algorithm of this
paper can detect and classify multiple fixture faults and amounts
to an F-test that is both easily implemented and analyzed. Due
to the simplicity of the test and the well known properties of
the F-distribution, the test performance (in terms of probability
of detecting faults and probability of false alarm) can be com-

25 T

20-

test statistics

0 2 4 6 8 10 12 14
number of autobodies measured, N

Fig. 5.2 Experimental results for detection of two potential faults in
autobody panel assembly {fault 1 was present; fault 2 was not)
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pletely determined off-line and used to easily and reliably select
the test threshold to ensure a desired probability of false alarm.
Moreover, there exists a clear physical interpretation of the
detectability of the faults, in terms of their signal-to-noise ratios.
The test performance for a 3-2-1 rigid body fixturing example
was analyzed theoretically, demonstrating that the test has ex-
cellent detection capabilities. The performance was also verified
experimentally by applying it to fixture fault detection in auto-
body panel assembty.

Extensions of the method to other types of tooling failures
are being investigated. Specifically, dimensional variation due
to misaligned weld guns and clamps are under consideration.
The effect of such failures is a resultant force applied to the
panel at the location of the failing tooling element. If the effects
of such forces on the panel deformation can be linearized and
put into the form of (2.2), then the model and algorithm devel-
oped in this paper may be applicable to these types of tooling
failures as well.
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APPENDIX

The proof of Theorem ! is provided in this appendix. Substi-
tuting (2.2) into (3.1) gives
V() = v(j) + [CTCIT'CTw())
~ N(0, K, + 0L[C'C]™), (AD)

since v(j) is assumed independent of w(j). Thus, the ith ele-
ment of ¥( j) follows the normal distribution
% (j) ~ N0, o} + 0, [C'C]), (A2)

and its square is a chi-squared random variable multiplied by
a constant
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VIU) ~ Lof + a2[CTC) L 1x (). (A3)

Since v(j) and w(j) are assumed independent of v(i)and w(i)
fori #j,

N Z(N)
3 9i0) ~ [oF + o2iCTC)) X

j=1

6=

1
- 4
N (A4)
by the reproductive property of the chi-squared distribution, and
(i) is proven.

Substituting (2.2) and (Al) into (3.4) gives

() = [I - C(CC)"'Ciw()), (AS)
which implies
WINW() = wI(HIT - C(CTC)"'CTIw())
~ oux’(n —p). (A6)
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(A6) follows from the Fisher-Cochran Theorem (Rao, 1973),
since the matrix in brackets is both symmetric and idempotent
with rank n — p. Again, by the reproductive property of the
chi-squared distribution and the definition of &2, (ii) follows.

To prove (iii) first note that, from (Al) and (AS), %(j) and
W( j) are both zero-mean and Gaussian and V() is independent
of W(i) for i # j. 9(j) is also uncorrelated with W( j) since,
using (A1) and (AS),

E[%()¥()] = E{[I - C(CTC)~'CTIw(j)[v'(})
+wi(j)C(C'C)™']}

=1 - C(CTC)"'CTIE[w()HvI(N]
+ o[l - C(CTC)~'CTIC(CTC)™" = 0.

Since ¥(j) and W(j) are Gaussian and uncorrelated, they are
independent. Thus, 9( j) and W(i) are independent for all i and
J, which implies (iii).
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