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Fixture fault diagnosis is a critical component of currently evolving techniques aimed
at manufacturing variation reduction. The impact of sensor location on the effective-
ness of fault-type discrimination in such diagnostic procedures is significant. This
paper proposes a methodology for achieving optimal fault-type discrimination
through an optimized configuration of defined *‘sensor locales.’’ The optimization is
presented in the context of autobody fixturing—a predominant cause of process
variability in automobile assembly. The evaluation criterion for optimization is an
improvement in the ability 10 provide consistency of best match, in a pattern recogni-
tion sense, of any fixture error to a classified, anticipated error set. The proposed
analvtical methodology is novel in addressing optimization by incorporating fixture
design specifications in sensor locale planning—constituting a Design for Fault
Detectability approach. Examples of the locale planning for a single fixture sensor
lavout and an application to an industrial fixture configuration are presented to

illustrate the proposed methodology.

1 Introduction

An automobile is a complex piece of machinery, particularly
when considered in the assembly context. The structural frame
of the automobile, the Body-In-White (BIW). is made up of
up to 800 distinct oriented surfaces. This requires a complement
of 150-250 different fixtures with multiple tooling elements to
assemble. A complexity consideration such as this coupled with
a statistical likelihood of 150 assembly flaws per average pro-
duction day (or in one of six cars) due to body discrepancies
alone. makes it apparent that overall design intent needs to
encompass detection and localization of such errors. (Similar
complexity in a broader manufacturing context are brought up
in Ayres, 1988.; The largest identifiable chunk of all assembly
defects. expressed as problems per 100 vehicles, is attributable
to process variability in the BIW (J. D. Power. 1994). These
account for in excess of 30 percent of all utility vehicle defects.
Flaws or error manifestations in cases involving process vari-
ability take the form of dimensional variation in the product.
A study on the autobody assembly involved in utility vehicle
assembly (Ceglarek and Shi. 1995), reveals that as much as 72
percent of all defect root causes are attributable to failures of
the assembly fixtures. Such fixture failure modes. present pre-
dictable means of assigning failure rypes to specific part/tooling
element failures in the fixture. This characteristic is of signifi-
cant help in diagnosis.

While recent advances in fixture design ( Asada and By, 1985:
Menassa and DeVries. 1989 ) have resulted in improved fixtures
in terms of general design objectives, fixture related dimensionaj
faults continue to be the dominant root cause of flaws directly
influencing process variability. This is in spite of concurrent
advances in Optical Coordinate Measuring Machine (OCMM)
gaging technology for the BIW. which now provides exhaustive
per part measurement for 100 percent of parts in critical auto-
body assembly areas in many plants. Analysis of variability
content in the BIW does not require imposition of constraints on
the actual positioning of the OCMM laser sensor to accomodate
practical considerations such as assembly task requirements etc.
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Consequently, for purposes of discussion a sensor location is
not distinguished from an assigned measurement point location
in a sensor locale.

The wealth of dimensional information generated (frequently
as many as 100 sensor locations in an OCMM set up for the
BIW) presents a challenge on two fronts:

1. Meaningfulness of Sensor Data: While exhaustive per

part sensor measurement is useful, the information can

be put to meaningful use in diagnosis only if it conforms

to a diagnostic framework designed to:

(a) exhaustively identify all fault types occurring due
to tooling element failures;

(b) obtain a representation of the signature of each
fault type. as registered by a candidate sensor set;

(c¢) obtain a sensor set “‘locale”” which highlights the
fault causing the largest measure of error; and

(d) to optimize consistency in obtaining a resulting
best match.

Root Cause Localization: The need is to svnthesize a

sensor pattern of "‘effect’”” data and map the result onto

the space of ““causes’’ as identified from the geometry

and location of tooling elements on the fixture.

)

The requirement of such a comprehensive root cause isolation
and diagnosis methodology is to identify the failure of a single
functionality from the set of fixture element functionalities. This
is achieved through a sensor reading interpretation in the light
of variation patterns-—combining 1 and 2 above (Fig. 1).

1.} Optimal Sensor Layout. Efficient fault isolation
hinges on an effective sensor layout. The configuration of the
sensor layout becomes relevant when multiple sensors are used
to provide a comprehensive problem description. Multiple sen-
sor usage usually requires a strategy on sensor data fusion/
integration. This has been taken to mean a combination of
available state variable estimates used to provide an estimate
of a variable (Chryssolouris et al., 1992). or simply the system-
atic use of such data to assist in a single task (Luo and Lin.
1988). Sensor position optimization has been performed ( Tara-
banis et al., 1991) to integrate and satisfy vision task require-
ments with specific depth-of-field or field-of-view tvpe con-
stratnts, and, through use of Gaussian maps. to resolve issues
of object occlusion.
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Fig. 1 Root cause isolation: methodology outline

Sensor planning has traditionally taken the form of a search
method. a simulation method, or a synthesis approach ( Zussman
et al.. 1994: Cowan and Kovesi. 1988). The first involves a
heuristic-based search for (a) sensor location(s). accompanied
by tests for the satisfaction of a task related need. The simulation
approach utilizes a set of sensor and object scenario descriptions
lo converge on a satisfactory sensor distribution. The approach
in the synthesis method is to utilize a set of specified constraints
on the task to analytically arrive at a constraint-fulfilling solu-
tion. which may then be deemed an optimal configuration. The
approach outlined here combines elements of all of these ap-
proaches in that object and sensor descriptions are used as the
basis: constraints on sensor locations are introduced to avoid
“*blacked-out’" areas (ineligible as a sensor locale due to manu-
facturing/design constraints ), and there is the option of heuris-
tic use to limit locales through a constriction of the optimization
space. However, sensor synthesis for diagnosis has certain
unique requirements. While a method of describing the location
of an assembled part is still required; locarion is no longer
viewed as a unique or optimal position. but as the range of
posltions which, as dimensional variation. represents a specific
fault type. Most current implementations utilize an approach
which corresponds loosely to one proposed by Shekhar et al.
(1988) for object localization, coupled with the use of engi-
neering judgement to determine feasibility.

1.2 Problem Generality Considerations. The problem
which Shekhar et al.’s object localization addresses (that of
localizing an object as in a manipulator end-effector, utilizing
sensory information), diverges from part-fixturing in certain
crucial aspects:

1. BIW components have arbitrary shapes. often not amena-
ble to quadrangle form representations.

2. Location of measurement points cannot, for practical rea-
sons, be artificially constrained to comer points;

3. Failure patterns can be arbitrary combinations of transia-
tions or rotations in 3-D space, not necessarily a single
rotation of the component.

While their conclusions remain valid for object localization,
force fitting this method to fixture fault localization is not feasi-
ble. The approach proposed here provides an effective solution
when few simplifying assumptions can be made regarding either
part/fixture geometry or fault nature/complexity.

2 Problem Setting: Autobody Part Fixturing

A part fixture serves to ensure locational and clamping stabil-
ity, deterministic part location, and total restraint. A fixture
under evaluation may be deemed *‘correct’” if these conditions
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are met. as has been shown in Asada and By (1983). To esti-
mate the extent of realization of these desirable characteristics.
we characterize the fixture through defining a layout of Tooling
Elements (TE). which include locating pins (P) and block
locators with clamps ( C). The totality of Ps and Cs are respon-
sible for *“correct’” fixture function and thus for dimensional
repeatability of parts in assembly operations. For the rigid part,
the layout used is based on the 3-2-1 principle. The principle
provides for part motion constraint through the use of three
groups of locators laid out in two orthogonal planes. as shown
in Fig. 2. These serve to achieve

1. a combination of X and Z direction constraints in the
primary (X Z ) plane. through a fixed diameter or conical
(four-way constraint providing ). locating pin P,;

2\. a unidirectional (Z) constraint. through the (two-way
constraint providing) pin £- in the primary plane:

}1 a Rdirection constraint. through the set of block locators
(C,. C:. C3) on the secondary (Y Z) plane.

2.1 Fixture Faults. Tooling faults are directly attribut-
able to one or a combination of failure conditions associated
with each of the TEs. Such TE fault conditions are in wm a
direct cause of part mislocation in assembly. TE faults have
been found to be of both the inherent-in-design and the devel-
oped-through-process-life forms. Instances of the former in-
clude poor clamp design/manufacture. block locator-clamp mat-
ing mismatches and off-dimension locating pins. Failures of the
latter form may occur from locator wear. inclusions on and
pitting of mating surfaces. and degradation in applied clamp
pressure levels due to part fatigue over time.

A part-control axis for 2 TE defines a critical direction for
that TE. TEs may offer redundant contro] along certain axes.
as has been seen (in the case of the Z axis above ). In this context
Complementary Tooling Elements (CTE) may be defined as
the set of constraint providing complements to a given Tooling
Element (TE) for a specified axis =. This is the subset of
TEs constraining motion along E. with excludes the TE under
consideration.

Fixture faults can be defined in terms of the influence exerted
by CTEs on part location in the event of a TE failure. Succinctly
put. part mislocation due to a TE fault is defined by the CTEs
of a TE in the Z axis. This is immediately obvious from the
observation that when a TE controlling a certain axis on a rgid
part fails, then the extent of the dimensional mislocation is
determined by all other TEs controlling that axis. An analysis
of fault types (Ceglarek and Shi. 1996} leads to the following
generalized fault induced resultant motion:

Cy,Ca.Cs :wmmvmmm
P, : Pin Locator constraining X & Z direction part motion
[ : Pin Locator constraining Z direction part motion
M,, My, M, : Candidaie SensorMeasurement Locale
Note: Dotted lines represent Control Axes. 74 X
4
My (y, My, Msy) [—

My (M My, M)

CalXpp Yop 2ep)

C,(x,,.y,,.l,,) “!mu M\y Mu)

Fig. 2 3-2-1 fixture layout
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Fig. 3 3-2-1 fault manifestations

l. resultant translation along the = axis—if the comple-
mentary tooling elements to TE (neg) is 0;

2. resuliant rotation along the axis defined by one comple-
mentary tooling element—if the complementary tooling
elements to TE (ne) is 1; and

3. resultant rotation along the axis defined by two comple-
mentary tooling elements — if the complementary tooling
elements to TE (neg) ts 2.

These fault manifestations are summarized in Figure 3: arrows
indicating the direction of resultant part motion.

2.2 Fault Classification and Diagnosis. The dimensional
extent of the fault as captured by a sensor lavout is a function
of fault severity as well as the geometry of the layout of the
sensors and TEs on the fixture. A fault signature may be defined
for each fault type in terms of a particular TE lavout and a
sensor locale. A ““sensor locale™ is defined as the complete set
of XYZ coordinate descriptions of sensors associated with the
fixture constituting a candidate layout. The generalized fixture
of Fig. 2 provides the basis for a generic fault type categoriza-
tion:

Type 1 Fault:
Type 2 Fault:
Type 3 Fauit:
Type 4 Fauit:
Tvpe 5 Fault:
Tvpe 6 Fault:

P, failure in the Z control axis:
P, failure in the X control axis:
P tailure in the Z control axis:
C, failure in the Y control axis;
C, failure in the Y control axis:
C; failure in the Y control axis.

Three axis measurements at each of three sensor locations. pro-
vides nine sensor variable measures. A set ofdiagm)slic\\'ecto(s
can now be defined as the set of (sensor) vectors associated

with each of these faults for a given tooling configuration ant’

sensor locale. A diagnostic vector (Ceglarek and Shi. 1996)

d(i)=(dy,....d»)" (1
has n entries (where n is the number of sensor variable mea-
sures) describing a variation pattern caused by a type / fault.
Elements d... (j = 1. ... n) represent a ratio of the standard
deviation in a component direction to the overall sensor standard
deviation associated with the fault type. If x, represents the
measured variable, then:

228 R .
d,=-— tor j=1. .. .. ] (2
a
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where o, is the standard deviation of variabie y,. and o =
Vi 0, 2

OCMM measurements. reflecting dimensional behavior of
the BIW assembly, are described by measurement vectors [y,
X2+ - .« Xale. where ¢ represents the number of measured automo-
tive bodies. x,, x2, ... x, are measures of deviation from
nominal on each of the r bodies—an inherent measure of fault
trends in the fixturing. (e.g. faults involving repeatability about
some, non-nominal. mean). The set of diagnostic vectors can
be represented as a single diagnostic matrix D; which for the
generic 3-2-1 fixture of Fig. 2, takes the form:

D =d(1),d(2),....d(6) (3)
d dy di |
di d < dy,

The index taking values I. ..., 6 in the second subscript of
the matrix elements in Eq. () corresponds to the six fault tvpes.
and the first subscript indexes the i = 1. .. .. n seasor variable
measures. For the n = 9 sensor variable measures (for three
sensors each with three axis measurements | in the generalized
fixture configuration. the measurement vector y based on all
sensors M, (i = 1. 2. 3) may be expressed as:

X =[x X2 X5 Xs X5 X6 X- X3 Xol (5)
= [M, M, M. M, My, M. M., M., M.] (6

Vectors d(i} can be obtained in terms of the dimensional mea-
sures of the tooling layout and the sensor locale. These are
provided here without derivation. but can be obtained through
relating Eq. (2) with the component direction dimensicnal mo-
tions and the corresponding resultant component direction stan-

Fig. 4 Framing assembly process schematic

Pa(2)

M 3 (x.2)

Py Pin Locator constraining X & Z direction part mation
p’ (x.2) Pz Pin Locator constraining Z Sirection part motion
M M, Ma: Cancidate SensoMeasurement Locale

Note: M, :s a non-coiiocazaa sensor

Fig. 5 L-H aperture pin and sensor layout
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dard deviations for the generic case of Fig. 2 (Ceglarek and
Shi. 1996). The standard deviation components of the d(i)
being proportional to distance measures. they can be expressed

in the form:

[N - Qla, =0 (14)

where X, is the eigen value of the ith principal component. I is
the identity matrix. and a; is the ith eigen vector corresponding

dily=d. d dv dy ds de d- de du)?
_ P Mo 0 x(Pe My (P M) 0 x(PoMs) (Po.Msy 0 x(P-. M) 1)
VAN (P M)+ dP(Py. Ma) + dY(Pa. M) \
d(2)=(d: d dv. di: dw de: d- de dp)T
=[0577 0 0 0577 0 0 0577 0 0] (8) .
did) = (d: d dyn di ds de d- de des)?
_LdP M) 0 x(PM) P M) o'.'\-XPL‘M:) :(’P,.M;)v 0 x(P.MH]” 9,
VAP M)+ dR(P M)+ dz(Pl.‘/'VI;,) .
did) = td, d. du di di de de de des)T ‘
_10 diCi M) 0 0 d(Cis. M) 0 0 d(Coo My) 017 (10)
Vd(Cae M) + d(Cazo Ma) + d7(Con. M)
di5) = (d« do du dis dss des drs des des)T
_10 d(C;;.‘M]) 0 0 d(Cs. M) 0 0 d(C.. M) 07 (n
VA(C M)+ dHC Mo + d3(Ca M)
di6) = (di dv di di ds de duw dy des)T
_10 diC M) 0 0 diC M) 0 0 diCu M) 0] (12
VAN C M) + d(Cao Ma) + d3(Cra. M)

where z(P.. M,). x(P,. M,). eic.. represent component
distances from P. to M, along axes Z and X respectively,
and where d(Cy2, M,). d(C». M>). eic.. represent the shortest
(perpendicular) distance from M,. M. to the axis joining
C: and C.. respectively. All distance measures are computed
in a Euclidean distance sense. with the distance measure be-
tween points a_and b being computed as d(a. b) =
VX = X)T (3, — ¥)7 4 (24 — 2)°. Thus, for a set of tool-
ing layouts and sensor locales, it is possible to obtain a descrip-
tively complete matrix representation of all associated tooling
faults. Data synthesis 1o obtain a set of points which have high
fault magnitvde. may be carried out through a point-by-point
esumate of data variation for each sensor variable in the form
of a 6-sigma value. o, =VvIN,(x;, — ¥)*/(N — 1). and where
X. is the ith measurement from a sensor and ¥ the mean of the
sample size N values.

A second requirement is to group measurements based on a
single root cause from within the sensor data set. This is based
on a covariance analysis. For data pairs, say x, and {, , elements
of covariance matrix Q

2 00 =06 -0

COVX‘; = = ~
\/2l (xi =~ X" 2 - )
= i=1

for a sample of size N, with ¥ and { representing data means
over the N samples. Measurements exhibiting a high covariance
measure may be grouped together. The rationale is that strong
covariances are indicative of variations linked to a single root
causd.

If x € R" represents N measurements from the n sensors
with matrix Q, then we can define § € R” for p, as a transforma-
tion of x such that ¥ = xA; where A = [g,],,, with X defined
as in Eq. (5). The ith column of A, represented as a; = [q,,

. a,]". is the ith eigen vector of Q, obtained as:

(13)
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to A, . The predominant fault. modeled based on sensor M,. Ma,
M; measures, is described by a first eigen value-eigen vector
pair (a,. \;) (Ceglarek and Shi. 1996 ) —functions of d(i),
obtained in Eqs. (7)—(12). The first eigen vector points in the
direction of the greatest variability in the data, and the orthogo-
nal projection of the data onto this eigen vector is the first eigen
value.

2.3 A Case In Point: An Industrial Fixturing Configu-
ration. The problem and the solution method are best illus-
trated in the context of industrial fixturing. such as those utilized
as part of the framing operation in automobile assembly. The
major assembly task in autobody framing assembly is performed
at a framing station where the vehicle underbody is welded to
the R-H and L.-H apertures (the Right and Left aperture assem-
bly fines) and the Roof Bows (Fig. 4).

A Geometric (position-setting ) station is utilized for each of
the subassemblies involved. including the L-H aperture. The L-
H aperture fixture was utilized as a test fixture for ongoing
analysis and optimization, as it is characteristic of the general-
ized class of n-2-1 fixture layouts. Also, the relatively large
part size and weight of the fixtured sheet metal increases sensi-
tivity to TE-induced errors. L-H aperture fixturing assumes
completed welds and deterministic part location in other fixtures
in assembly which locate its subcomponents. The associated
CAD system layout and the corresponding candidate sensor
locale set is shown in Fig. 5.

The aim of the diagnostic procedure is to first identify the
failure patterns and then utilize these to isolate a fault root
cause. Mathematically, the optimal set may be obtained through
a procedure involving constrained iterative maximization. The
distance between failure patterns represented by the diagnostic
vector, d(i). is maximized for different sensor locale sets. This
diagnostic vector is equivalent to the dominant eigen vector
computed for the measurement data as Eq. (14) from Q [Eq.
(13)]. Each fault is manifest as a variation pattern based on
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measurement from all sensors in a locale set, and described by
eigen vector a,.

3 Optimization

An optimal sensor location can be obtained by maximizing
the distance between each dominant eigen vector, obtained for
each of the tooling faults. The connotation of the maximization
premise is to increase the power, or the degree of reliability, of
the discriminant. The discriminant may be viewed in a transtor-
mation setting, as a mapping from the dimensional pattern space
to the fault type artribute space. Here the discriminant serves
in a pattern recognition sense. as an estimator of the fault type
class membership of an observed or hypothesized fault type
identified in dimensional space. Efficient fault discrimination is
thus possible if the sensor locale provides a maximal spread of
fault type classes in space. In the event of sensor noise or
multiple fault type coexistence, the primary fault type assoctated
with the prominent eigen vector can be readily distinguished.

3.1 The Diagnosability Index. A diagnosibility index is
proposed which quantifies the ability of the system. with sensors
at a candidate sensor locale, to isolate faults. The diagnosability
or fault isolation index J. may be defined as a function of the
minimum distance between pairs of diagnostic vectors, d(i) i
=1,...6[Egs. (7)-(12)], over all such pairs:

S X Idh - d(pl

=l 6=l 6

J = V,., min (15)

The index J is thus an estimate of the closest pairing of fault
type manifestations (in fault space) for a candidate sensor lo-
cale. The desirability criteria can now be formulated in terms
of a search in dimensional space for a sensor locale, which
when mapped into fault space, resulrs in the maximization of
J. The {d(i), d(j)} pair. corresponding to smallest Euclidean
distance, varies during the iterative search procedure. This rep-
resents a search for the ““maximal spread’” referred to earlier.
The problem may be succinctly formulated as a constrained
optimization. where the objective function is sought to be max-
imized subject to inequality constraints:

Jop = V... max [min Z W, d(i) ~ d(j)i]

st. Glx,v.2) =0 (16)

Gix, v, 7) represents the constraint set on sensor locations
corresponding to ““blacked-out’” areas on the fixture alluded to
earlier. Constraints can be formulated from CAD data to directly
reflect positions on the fixture which for one reason or another
may be infeasible as a candidate sensor locale. The optimization
as proposed is generic to 3-2-1 fixtures; weights W, are intro-
duced to provide fixture-specific control on the relevance of
specific tooling faults to the fixture under consideration. These
may take on binary (1/0) values. 1o reflect the absence of a
certain fault type in a configuration: or real values, to represent
the relative importance of the detection of a certain faplt thpe.
constituting a Design for Detectability. This design approach
complements design for the fundamental function of part posi-
tioning, accomplished through conventional TE selection. to
ensure a stable part location. To provide an optimal level of
detectability. an optimal sensor locale plan is incorporated into
the design, using the designed TE locations to guarantee the
best level of fault type detection and isolation. By utilizing the
Jo index. the spread and location of the d(i) are optimized to
obtain such a locale.

Optimization on the J,, index is implemented using a set of
functions from the Matlab ( Matlab. 1994 ) 1oolbox. implement-
ing a Sequential Quadratic Programming method ( the code run-
ning in a Solaris Unix environment on a Sun SPARC 20). The
optuimization performance of the functions is seen to be robust
to changes in the starting set in terms of convergence, with
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Fig. 6 3-2-1 optimization impiementation: outline

problems of consistency as due to local minima in the multi-
dimensional space not being encountered. A block diagram of
the optimization implementation is shown in Fig. 6.

3.2 Sensor Noise Considerations. The fundamental
premise of optimization on the discrimination function is that
the mapping of the predominant sensor-based fault (obtained
as the first eigen value-eigen vector pair of the covariance matrix
Q) on the appropriate d(i) be made as invariant as possible to
noise in the set y. Optimization to achieve a maximization on
Jop (Op_func4 in Fig. 6) has the effect of maximizing the
overall dispersion of diagnostic vectors d(i). for all i. For
example. a design for a spectfic noise-insensitivity is frequently
required to best isolate a specific fault vector. d(i)". in the face
of sensor noise.

If a, is the eigen vector corresponding to the first eigen value
of the covariance matrix Q [Eq. (14)]. then the objective is to
ensure high fault match efficiency of the specific d(i)° with
unknown fault eigen vector a,:

min Ja, — d(iH)"° (17)

which is equivalent to maximizing the discriminant function
g(a;) (Fukunaga, 1972). where:

glap = [d(i)")7a, — L d(iv)? (18)
. for the specific d(i). A discriminant function tor identitication
of a fauly, type with sensors subject to noise. 7, has been pro-

posed in Ceglarek (1996):

" n = 2ig(a) — g(d(ir; x 100% (19)

to estimate if identification of a type i fault (for a specific d(i))
is robust to the sensor noise. Robustness levels are considered
adequate if the attained discriminant ( ) satisfies 7 = ... where
no depends on the vanability of the fault. An 7, value of 0
percent would correspond to zero noise robustness. requiring a
faithful manifestation of d(i) by the sensor set for fault identifi-
cation. As n;, approaches 30 percent. corresponding to a theoreti-
cal maximum robustness. noise levels increasingly drive up the
probability of a misinterpretation of a fault manifestation as a
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Fig. 7 (a) Candidate fixture geometry (b) an alternative geometry

neighboring fault type. instead of as d(i). An estimate can be
obtained of increase in the threshold level 7, for d(i). given i.
as a consequence of optimization. This may be considered an
enhancement of discriminant g(d(i)°):

(d(i)’) ~ g(d(D)®) (20)
where d(i)’ is a vector obtained as:
min Jd(j) — d(i)Y Vj=i 21)

This 1s performed as a sub-optimization (as Op-func2 in Fig.
6). on Euclidean distance for a fixed i. An example of the
implication of optimization for a threshold level increase in
fault detection is provided in the next section.

4 Scenarios

Two example scenarios are presented here to illustrate the
outlined procedure. The first involves an implementation of the
sensor jocale selection approach on the familiar 3-2-1 configu-
ration with assigned positions of TEs. and starting from a prior
experience-based. informed choice of sensor positions. This
candidate sensor locale was chosen to correspond loosely to the
locations chosen for sensor positioning in industrial fixtures of
this configuration. The second example involves the implemen-
tation of the algorithm to the L-H aperture framing station fix-
ture in a utility vehicle assembly line. Geometrical data corre-
sponding to the critical features on the fixture are as represented
in a CATIA-Solid Modeler' design environment.

4.1 An Example of Sensor Planning in the Generic 3-2-
1 Case. In this example a set of TEs consisting of 3 block
locators. a single one-way iocator, and one two-way locator are
chosen. The initial sensor layout with this TE configuration is
shown in Fig. 7(a). We aim to obtain the coordinate measures
Mooy Moz Ms ., comresponding to the optimal sensor
locale.

' Computer-graphics Aided Three-dimensional Interactive Appiication—a de-
sign environment deveioped by Dussault Systems. France, and supported by IBM.
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Table 1 Generic fixture (A) optimization results

Coordinate | [nitial Sensor Locale | Optimal Sensor Locale
M, 50.0 79.42

M 50.0 101.261

M, 850.0 856.24 '
My, 500 153.23 |
M. 850.0 712.03 ;
Ma, 550.0 335.37 |

The measure of the fault isolation (diagnosability) index for
the informed guess candidate sensor locale ( minimum distance
of fault type pairings) was first obtained as:
Jow = 14770

: (22)
» . \ .

The optimization procedure was carried out utilizing the Matlab
function sets for constrained multivariables ( Nelder and Mead.
1965: Powell. 1978). Results of optimization are in Table 1.
The optimized sensor locale is seen to be in the area of the
informed guess location for sensors M, and M,. but not for M;.
The new J:

Jop = 1.8515 (23)

corresponds to an approximately 25 percent improvement in the
overall fault isolation. The J,, index reflects the pessimistic
(worst-case) scenario. in terms of isolating the closest {d(i),
d(j)} eigen vector pairing. should both faults represented by
the vector pair exist on the fixture.

Additional runs were perforrned with a change in TE posi-
tions to correspond to an alternative part-holding scheme pro-
viding the same part-holding functionality. For this configura-
tion, shown in Fig. 7(b), (results in Table 2). the corresponding
Jinit:

Jiniz = 1.2131 (24)

and Jou:

Jopz = 1.6507 (25)

For all fault pairings. the level of worst-case isolation achieved
(Jopiz ) 18 lower than that for the original. These resuits (Fig. 8)
provide additional insights into the influence of fixture design
on fault isolation performance. A significant performance differ-
ence is registered between results corresponding to J,, and
Jopi2- The original TE configuration performs approximately 53
percent betier when compared to the unmodified alternative
configuration.

The extent of this improvement in fault detection capability
can be explained using an analysis in terms of the noise ro-
bustness consideration. As an example. consider the case of a
Type 3 fault involving the failure of locating pin P. in the
generic fixture configuration. This causes variation in the entire
component part. Corresponding to Jn . the diagnostic vector
closest to fault type 3 is found to be fault type 1. with a corre-
sponding estimate of

Table 2 Generic fixture (B) optimization results

Coordinate | Initial Semsor Locale | Optimal Sensor Locale
M, 50.0 0.76

M. 50.0 204.07

M, 850.0 873.76

M3, 50.0 204.07

My, 850.0 873.77

My, 550.0 511.46
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Fig. 8 Optima for the (a) candidate fixture geometry (b) aiternative ge-
ometry

g(d(ir") = 1.6172 (26)

This can be intuitively appreciated as Type | and Type 3 faults
both cause rotations in the Z axis. After optimization on sensor
locale, corresponding to an overall J,, measure of 1.8515, we
obtain:

gld(i)’') = 1.8574

This corresponds to an enhancement. in Euclidean distance
terms. of 0.2402 or 4.9 percent ( Egs. 23, 27).

As noted. the worst-case effect of noise on the sensors is the
identification of the closest pairing of Type 1 fault in lieu of
Type 3. A new boundedness estimate can now be placed on the
threshold of n, as, in the worst case, the increase in n, now
tolerable due to J,,. The new 1y is thus:

(27)

no = 1.149m, (28)

The implication is that an enhanced level of noise insensitivity
to Type 3 faults 1s now achievable. A common. experience-
based choice of n, is 40 percent. a conservative estimate on the
50 percent exact bisector of the fault types in space. Under
normal circumstances. noise levels which cause the vectors,to
push the bisecting envelope by approaching 50 percent on eithes
side would lead to frequent misidentification of fault-tvpes. An
optimized sensor locale now allows for identical fault discrimi-
natory capabilities as before and correct fault classification to
up to 46 percent.

Ceglarek ( 1996) derives a relation linking 7, and the 6-sigma
of allowable sensor noise. The graphical study reveals that at
the 40 percent upper limit. allowable design noise for the com-
ponent sensors is 1.734 mm for the generic fixture configuration.
It follows that the enhanced 7/ raises allowable design noise to
1.917 mm. an increase of !l percent. It is also apparent that
particular configurations of TEs offer better fault isolation prop-
erties in conjunction with an optimal sensor locale than others.
This underscores the importance of fixturing design. not merely
to achieve efficient part holding. but also for efficient design
for detectability.
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Fig. 9 Geometry and sensor location for the L-H aperture fixture

'

4.2 Sensor Locale Optimization for the L-H Aperture.
The “‘real-world"" L-H Aperture fixturing can be similarly opti-
mized, accommodating requirements peculiar to the configura-
tion. The configuration of an initial candidate sensor locale with
the CATIA TE configurations ( corresponding to Fig. 5) for two
approaches to optimization is shown in Fig. 9. Unlike the ge-
neric cases where all sensors provided a complete ( three coordi-
nate ) measurement set, OCMM sensors often provide unidirec-
tional measurements at certain locations. Sensor M. is an In-
stance of this. where physically noncollocated measures are
provided at sensor locations M- (x) and M- (7). giving unidirec-
tional X and Z measures. respectively. Two independent optimi-
zations were carried out. The first involved a rearrangement of
such existing unidirectional measurement sensors to obtain an
optimal locale. Unidirectional sensor usage is usually a solution
to a manufacturing (especially fixture-specific) constraint on
sensor locations at certain measurement points. Conventional
muitidirectional sensors may still be used in areas other than
those "“blacked-out™" for such measurement. The second optimi-

282828

®)

Fig. 10 Optima for the L-H aperture fixture {a) noncollocated sensor
optimization (b) collocated sensor optimization
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Table 3 L-H aperture fixture optimnization results

| Coordinate | Initial Sensor Loeale | Optsmal Sensor Locale 1| Optimal Sensor LacaIcT]
M. : 50.0 127.05 50.05 f
M, : 128.65 i 191.53 423.93 |
Mo : 2708.37 }' 30365 2699.90 E
Ma, | 808,65 1; 819.66 616.98 |
Mae f 2878.28 | 3021.85 2878.30 |

L, ! 723.65 | 1103 61 384.34 |
Mys i 2305.0 ‘ 2180.96 -

', ! 50.0 | 55.3 -

zation approach provides an optimal sensor locale uftlizing a
complement of such multidirectional sensors. subject to con-
straints on the optimization reflecting explicitly the existence
of such blacked-out areas.

Though differing in implementation detail. the first optimiza-
tion can be carried out in conceptually identical fashion to the
generic case. through accomodating M.(z) as an additional
member of the sensor locale set (identified as M, ) and changing
the diagnostic vector representation of Egs. (7) - (12) to reflect
a unidirectional measure from each of two sensors. The Joni for
this configuration was obtained as:

Jiw = 1.4947 (29)
The resulis obtained from the optimization (Fig. 10) reveal a
correspondence to the original intuitive layout (as suggested n
Shekhar et al.. 1988). requiring that sensors be placed at part
extremities. as can be seen from the X values in Table 3. but
balanced with a spatial spread in the Z direction to ensure that
Type 1 and 2 faults are effectively distinguishable. The corre-
sponding J, is:

Jopt = 1.6619 (30)
This corresponds to an 11 percent improvement in resultant
diagnosability over the trial-and-error based intuitive sensor dis-
tribution. As can be seen from Table 3. the optimized locale
differs significantly from the existing configuration in the x
positioning assigned to M, . A smaller x coordinate value allows
for an increased detectability of an inadequate Z constraint im-
posed by P.. The M.(z). M. positioning serves the identical
function for the P. failure type. while M-(x) in combination
with the other sensors. describes an X direction constraint fail-
ure. The optimal layout for M,. M. and M, bears out in large
part the designer’s experience-based decision on sensor loca-
tion. only repositioning sensors around the original locale to
better distribute the fault vectors in space.

The second optimization approach utilizing a set of three
mukidirecuonal sensors (closer to the generic implementation
of the previous section, but with the imposition of location
constraints ) provided a higher J,,—with a 30 percent diagnos-
ability improvement—for sensors configured at its optimal lo-
cale (Table 3):

Joo = 1.948] (31)

While the constraints on sensor position alter the optimal sensor
layout, this configuration retains the characteristic of a smal} x
for M, which along with M,, monitors X direction failures.
This example addresses a widely felt need in current auto
assembly measurement practice, to provide a systematic means
of distributing the OCMM Naser sensors without resorting to
tedious jterations on sensor placement 10 distinguish between a
few test-sample-error-types for the fixwure. The method is even
MOT® attractive in this CONteXt, as it offers an efficient means
of addfessing the sensor locale problem for a complete list of
EITOT types for the fixture. The example optimizations were
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performed with equal weight placed on all error types: le..
optimizing on the basis that it is equally important to our pur-
pose. to distinguish between errors of all different class types.
Even at this level of generality. it is apparent that significant
improvements can be made in fault diagnosis and in implement-
ing root cause solutions with the procedure. In practice. it i«
usually true that some fault types are more likely to occur
than others. or alternatively. that some faults are immediatels
obvious from a fixture study without resorting to sensor-based
data. This suggests that further diagnosability improvements
can be anticipated by suitably weighting the faul types in the
optimization as needed.

5 Summary and Conclusions

Ensuring the dimensional integrity of complex assembled
parts. such as the automobile BIW. has assumed critical impor-
tan®s in modem assembly. The efficiency of fixture diagnosis
techniques. utilized to diagnose dimensional faults. is contingent
on appropriate and precise sensor-based measurement. A new
formalized means of configuring dimensional sensors for effi-
cient and optima) fault type diagnosis in part fixturing has been
proposed here. An optimal sensor locale methodology has been
defined through estimating a maximal Euclidean distance spread
of fault types in space, to provide an efficient classification of
a manifest fault. The optimization function used in the approach
displays a useful resiliency to initial value assumptions. con-
verging to repeatable optima (insensitive to the starting parame-
ter set choice). The classification is based on an exhaustive
fault type set proposed for the fixture in the form of a Diagnostic
Matrix. The examples demonstrate the utility of the technique
in sensor planning. both for conventional generic sensor/ fixture
types. and in OCMM-based sensing. This allows for svstematic
planning without taking recourse in the prevalent trial and error
or judgment-based approaches. In addition. significant improve-
ments in diagnosability over existing fixture configurations.
from the use of the optimal sensor locale configuration. were
shown. This approach also addresses the developing need to
provide a rapid layout plan in an assembly system. to improve
the information content of data available from the emerging
trend towards 100 percent measurement of sheet metal assem-
bly.
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