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Multiple Fault Detection and
Isolation Using the Haar
Transform, Part 1: Theory

Most manufacturing processes involve several process variables which interact with
one another to produce a resultant action on the part. A fault is said to occur when
any of these process variables deviate beyond their specified limits. An alarm is
triggered when this happens. Low cost and less sophisticated detection schemes based
on threshold bounds on the original measurements ( without feature extraction) often
suffer from high false alarm and missed detection rates when the process measure-
ments are not properly conditioned. They are unable to detect frequency or phase
shifted fault signals whose amplitudes remain within specifications. They also provide
little or no information about the multiplicity ( number of faults in the same process
cycle) or location (the portion of the cycle where the fault was detected ) of the fault
condition. A method of overcoming these limitations is proposed in this paper. The
Haar transform is used to generate sets of detection signals from the original measure-
ments of process monitoring signals. By partitioning these signals into disjoint seg-
ments, mutually exclusive sets of Haar coefficients can be used to locate faults at
different phases of the process. The lack of a priori information on fault condition
is overcomed by using the Neyman-Pearson criteria for the uniformly most powerful

Jorm (UMP ) of the likelihood ratio test (LRT).

1 Introduction

Many detection schemes based on thresholding of the mea-
sured signal have several limitations which result in high rates
of missed detection and false alarms. A method is proposed in
this paper to overcome some of these shortcomings which are
common in manufacturing processes where: (i) fault detection
is highly dependent on the experience and skill of the person
and thus prone to human error, (ii) there is a high level of
process noise from lack of process repeatability, (iii) fault sig-
nals are frequency or phase shifted with no change in ampli-
tudes, (iv) a priori information on fault conditions are normally
unavailable for setting thresholds, and (v) multiple faults are
found within the same cycle.

The approach in this paper is based on the orthogonal Haar
transform and has four major advantages: (i) it is not depen-
dent on a priori knowledge of the statistical properties of the
fault signals, (ii) it can localize the position of the fault, aiding
in its identification, (iii) it can detect faults which do not affect
the amplitude of the process signal, and (iv) it can detect
multiple faults occurring within the same cycle. Unlike the
more familiar orthogonal Fourier transform which uses com-
plex exponentials as its basis functions and is ideal for sinusoi-
dal narrow-band signals, the Haar transform is especially well-
suited to represent spectrally wide-band signals {5]. Fault sig-
natures which are frequency or phase shifted, and invisible to
time domain control limits, can now be easily detected. The
Haar transform is defined over the entire signal length, and
its wavelet structure allows the detection of multiple faults
occuring within the same press cycle. The Haar transform is
also one of the most efficient transformation algorithms in
terms of computational speed and memory usage [2], [7],
and thus ideal for implementation as an on-line monitoring
system.

This paper is the first of a two part series, and is organized
as follows. Section 2 introduces the Haar transform and
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derives the mapping between the time and Haar domains.
The development of the global detector is described in
section 3 and the summary and conclusion are found in
section 4.

2 The Haar Transform

2.1 The Continuous Haar Transform. The Haar trans-
form is a member of a class of nonsinusoidal orthogonal func-
tions [1]. It consists of rectangular waves distinguished by time
scalings and time shifts. The set of continuous Haar functions
{A(r, m, t)} is periodic, orthonormal and complete, and was
proposed by Alfred Haar in 1910. The Haar orthonormal se-
quence is defined on the open interval [0, 1) and can be gener-
ated by the recurring relation (1):

h(0,0,t)=1, t€[0, 1)
2772, m-—lst<m-—1/2
27 27
hir,m, 1) = o m——1/2<t<ﬁ 1)
’ 27 B 27
0, elsewhere Vr € [0, 1)

where r € 0 = r < log, n is the scale, n is the number of
subintervals in [0, 1) and m € 1 = m = 2’ is the number of
functions with scale r.

The first eight continuous Haar functions are shown in Fig.
1. Points of discontinuity are defined as the average of the limits
approached from both sides of the discontinuity.

2.2 The Discrete Haar Transform. The corresponding
discrete Haar functions are obtained by sampling the continuous
Haar functions in Fig. | at the middle of each subinterval to
produce an array:
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Fig. 1 Continuous Haar functions for n = 8 subintervals
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The discrete Haar transform array is denoted by Hj where n
= 2% is the number of discrete data points. Each row of HJ is
a discrete Haar function, A;, obtained by sampling the corre-
spondmg continuous Haar function, h(r, m, t). The matrix
HY is orthonormal by definition.

fFX =[x x x5 ... x,}7is a vector sequence of n
discrete points, and the correspondmg set of Haar coefficients
is C = [c, C; €3 c,]7 for the Haar basis functions hi,

i=1,2,...n,then X and C are related by the transform pair:
é; = Ebé; = :2 qu (3)
i=1
and
C=HX (4)

2.3 Properties of the Haar Transform. The Haar trans-
form has several nice properties which make it particularly
attractive over other orthogonal transforms for this kind of de-
tection problem.
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1. Computational Efficiency. [t can be performed in (2n
— 2) additions and subtractions and is considerably less than
the n log, n multiplications for the fast Fourier transform. Fast
algorithms for computing the Haar transform can be found in

(21.[7]. (8]

2. Signal Bandwidth. While the more familiar orthogo-
nal Fourier transform is ideal for sinusoidal narrow-band sig-
nals, the Haar transform is especially well-suited to represent
spectrally wide-band signals [5] with step-like discontinuities.

3. Data Reduction. The uncertainty of process repeat-
ability makes it undesirable to monitor the process at a particular
fixed instant. The lower indexed Haar functions have large re-
gions of support and are proportional to the signal averages
over these regions. Consequently, it is sufficient to monitor
selected Haar coefficients rather than a long vector of consecu-
tive time domain data. Also, most manufacturing systems are
large inertia systems which act as low pass filters. The frequency
content of the process signals are therefore concentrated in the
lower harmonic range. Hence, higher-indexed Haar coefficients
represent mostly noise and may be neglected resulting in a
further reduction of data.

4. Measure of System Entropy. The complexity of a sig-
nal with respect to a given discrete basis can be defined as the
Shannon entropy of the basis expansion coefficients [6]. The
Haar coefficients can be used to estimate the entropy of the
system.

5. Isolation of Fault. Unlike the other orthogonal trans-
forms such as the Fourier, Rademacher, Walsh-Hadamad and
the Discrete Cosine transforms, the Haar functions possess a
wavelet structure which enables it to isolate localized events in
the time domain.

2.4 Mapping Between the Time and Haar Domains.
The mapping functions between the Haar and time domains
determine the regions of support for the Haar functions and
consequently the Haar coefficients to represent different seg-
ments of the press cycle [3].

X =[x x x,] is a data vector of length n = 2V
points, and the discrete Haar function &; in (1) is indexed by i
= 2" + m, the region of support k, <k < k, is given by

(m— 12" =k <2¥m

where ky = (m — 1)2" 7 and k, = 2% "'m — 1.

Conversely, the Haar functions whose regions of support
overlap a given data segment can be determined as follows. If
the data falls completely between one of the binary boundaries,
then i can be determined from

(3)

rZN_[log(kz—kl+l):| 6)
log (2)
and

m = (k + 1)/2%" &)

In general, the data segment of interest, S = {x}/5¢ € X,
do not always lie between any convenient binary intervals. Tn
this case, the discrete Haar functions 4; which completely or
partially span S must satisfy one of the following conditions

{ki<plNip=k =gq)} (8)
(p=k=q}N{k>q} 9
(ki =ptN{q=k) (10)
thh=p}N{g=k) (1)

where k, =< k =< k; is the region of support for h;.
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The process monitoring signal can be divided into several
disjoint segments. Condition ( 10) ensures that the sets ot Haar
coefficients for disjoint data segments are also mutually exclu-
sive.

2.5 Moments of the Haar Coefficient. A Haar coeffi-
cient is a linear combination of consecutive points in the original
data. Its statistical properties are therefore dependent on the
behavior of these points. From the analysis in section 2.4, A,
can be expressed as -

ﬁ! = [hxl htZ h[nl (12)
where { = 2" + m and hy is the jth element of h;. The Haar
coetficient, c;, which is the projection of the discrete signal X
on 4, is given by
C = '(ﬁn £> = 2 hijxi (13)
j=1
The expected value and variance of ¢; are thus
Ele]) = E[X hyx] = X hyE[x] (14)

j=1 =1

and

var [¢; = var [}, h;x]
j=1
> (hy)’o} + P hyhy cov (x5, x)  (15)

j=t j=1 k=1
j*k

I

Equations (14) and (15) determine the control (or threshold)
limits on the respective Haar coefficients. Since c; is a linear
combination of several random variables, x;, j =1, ... n, with
finite mean and finite variances, the Central Limit Theorem
implies a normal Gaussian distribution for ¢;, i = 1, ... n, if
n is sufficiently large. However, if we assume that x; is Gaussian
for all j, then c; is also Gaussian for all i without the requirement
of n being sufficiently large.

2.6 Sensitivity Analysis. The number of Haar coeffi-
cients to be monitored can be further reduced by selecting only
the Haar coefficients with high sensitivity to process changes
but low sensitivity to process noise. Two sensitivity indices are
therefore required. The first index, &, is a measure of the sensi-
tivity of coefficient ¢; to fault F;. Assuming homogeneity of
variance [3], £; can be defined as

Elci|H] - El[c|H,]

Te.

i

&y = (16)

where H, and H; are the respective hypotheses for no-fault and
fault F; condition, and o, is the standard deviation of the coeffi-
cient ¢; (15) under H,.

If f,(¢) and f,(¢) are the continuous process signals under no-
fault and fault conditions, from the definition of ¢;

E[c;|H,] =fE[ﬂ(t)]h(r, m, t)dt
and

Elc:|H)) — Elci|H,] = fE[ﬁ-(t) = Jo(D1h(r, m, t)dt

= fE[e,(t)]h(r, m, t)dt

For a sufficiently large value of scale 7, the support region
for A(#, m, t) is very small compared to the interval [0, 1). If
f() = s(t) + n(z), the signal of interest s(r) will appear
to be slowly changing over A(?, m, t) and the corresponding
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coefticient will represent mostly the process noise n(r). A sec-
ond index. {,. can be used to measure the sensitivity of the
coefficient ¢, to the process noise. This index is simply the
standard deviation of the coefficient under normal condition,
and is a function of the process noise over the region of support
of ¢;. Thus
g' = O'I.’ (17)
For a given region of support, 0 = p < g < 1, a subset of
{h(r, m, 1)} exists which spans the region [p : ¢]. Of these,
an optimal subset of Haar coefficients [3] can be found which
maximizes ( 16) and minimizes (17).

3 Developing the Haar Detector

One of the main challenges in the detection of process faults
is the lack of a priori information on most of the faults. Some
faults never occur at all if the equipment has been properly
used and maintained. And, when faults do occur, the machine
is often shut down almost immediately by an overload device.
As a result, samples of fault signatures are rare to come by for
statistical analysis. In this approach, Haar coefficients, which
change abruptly in the presence of process changes, are used
as detection signals. The statistical properties of fault signals
are therefore unnecessary.

The jump in the value of a Haar coefficient c¢; can be modeled
as a mean shift or a variance shift or both. Assuming that ¢,
has a normal Gaussian distribution under all conditions, the
problem can be formulated by the following four hypotheses:

Case 1. No fault condition:

H,:c~ N(m,, c?)
Case 2. Change in mean:

H :c~N(m, c?)
Case 3. Change in variance:

H,:c ~ N(m,, c3)
Case 4. Change in mean and variance:

Hy:c~N(my, o?)

where c¢ is the observation of ¢; arriving at the detector. The
mean values of ¢; under (H,, H,) and (H,, H;) are denoted by
m, and m, respectively. The variance of c¢; under (H,, H,) and
(H,, Hy) are denoted by o2 and o2 respectively.

Different algorithms can be derived for each of these hypothe-
ses. In practice, it is easy to estimate the values of m, and o2
using (14) and (15), but there is often no way of estimating
m, and o} with confidence. It will be assumed that the process
noise remains unchanged throughout so that o7 = ¢2. Hence,
the fault condition can be modeled by hypothesis H,, and the
fault detection problem consequently reduces to distinguishing
between hypotheses H, and H,.

3.1 The Likelihood Ratio Test. The likelihood ratio test

(LRT) for ¢; can be expressed as .
1 e—(R—ml)zlzaf "
2 1
A(R) = 2’:"' 2z (18)
H,

— 2 2
—(R m.) /2L7” 2

e

where R is a particular value of ¢. Taking the natural logarithm
of (18),
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(R —m,) - Py (R - m,)?
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o

P

I‘I'

Z log (1)~ log (a,) + log (o)) (19)
H,

Assuming homogeneity of variance, o2 = g? = ¢2in (19), so
that

H,

l: (R-—m)* 2 log (7) (20)

1 \
I(R) = F (R —m,)” —

20 H,
or
" 252 log (7) + (m} — m2)
RzZ e mim) o i s a
H, 2(’”1 - mr))
and so
il 2 22
Rs2rloem+(mi-mph ifm <m, (22)

H, 2(my — m,)

where 7 is a function of 7, m, and m,. The jump in the value
of R is the same as having a Gaussian density with a larger
absolute mean.

It is clear from the structure of the test (21)-(22) that an
ordinary LRT can be designed for a particular m,. However,
my is not a predictable value and therefore cannot be part of
the test. The uniformly most powerful (UMP) form of the LRT
is used to circumvent this obstacle. A UMP test must be as
good as any other test for every m, and exists if and only if
the LRT for every m, can be completely defined (including
threshold) without knowledge of m, [9]. The existence of the
UMP in the sense of the Neyman-Pearson criterion is proven
in the following section.

3.2 Proof of Existence of the UMP. Using the Neyman-
Pearson criterion, the probability of false alarm is denoted by
Pr = a, where a is the prespecified level of significance. For
the case where m, > m,

Pr = Pr[choose H,|H, true]

1 —(Rem Y202
= e )2 AR
fy QZWU

erfc [L‘ﬂ] - (23)
a

where erfc is the error function integral [4]. Therefore
Y=m, + oerfc! (a) (24)

Let X = (y — m,)/o. A value of \ can be found for a given o
[4]. Rewriting,

Y =m, + \o (25)
and substituting into (21)
Hl
R-—m,=\o (26)
H,

where Ao = 0 always. The UMP test now reduces to the form
of a mean change detector.
If m; < m,, then

Y
1 2 2
P - f e—(R—mu) 120 dR
’ —m; o

= erf [7_‘1'3] = (27)
o
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and
vy=m, + oerf ! (a) (28)
so that
Hl
R—m,s -\ (29)
H

o

From the sensitivity analysis of the Haar coefficients in sec-
tion 2.6, R is known to be highly dependent on the shape of
the signal. The same fault would therefore affect the Haar coef-
ficient the same way it occurs each time. This satisfies the
condition that for the UMP test to exist, R can take on only
values greater than or equal to m, (26), or R can take on values
less than or equal to m, (29), but not both at the same time for
the same fault.

Taking advantage of the symmetry of the two directional
tests, (26) and (29) can be combined as a test of the absolute
difference between R and m,, that is

Hl
|R—m,| = \o (30)
HO

The probability of detection, Pp, is defined as
Pp = Pr[choose H,|H, true]

* 1 29,2
= e'(R_"'l) 120 dR
fy \—/27r0

erfc [y_—m'-] (31)

g

It

Equation (31) gives an upper bound on the power of the test
for any value of m;.

The threshold y (24) is indepengdent of the value of m,. The
performance of the test, P, varies with my (31), but knowing
m, will not make it better. This is the uniformly most powerful
form of the LRT. The necessity of estimating the magnitude of
the fault has been avoided by using the UMP test.

The relationship between the threshold () and the probabil-
ity of false alarm (P = a) is shown in Fig. 2. The higher the
threshold, the smaller the likelihood of false alarm and vice
versa. Hence the two quantities are almost inversely propor-
tional to each other. The receiver operating characteristic
(ROC) curve for the UMP detector is plotted as a function of
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« in Fig. 3 with values of 0 = a < 1, and m, = 0, 02 = 1.
The detector performance is clearly superior to that of a random-
ized test indicated by the P, = Py line.

4 Conclusion

The complexity of a manufacturing process and the number
of variables that affect the process pose a very difficult challenge
for any kind of on-line fault detection system. A solution has
been proposed which exploits the information in the monitoring
signature using the orthogonal Haar transform. The resulting
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coefficients, if properly selected, can perform remarkably well
with a UMP detector based on the Neyman-Pearson criteria.
The Haar coefficients are ideal detection signals for a wide
range of different faults. The location of these faults can be
determined by partitioning the original data into disjoint seg-
ments; and associating each segment with an exclusive set of
detection signals. The UMP algorithm takes care of fault signals
whose statistical properties are not known in advance. The per-
formance of the detector was investigated with respect to thresh-
old and false alarm rate.
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