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The sheet metal drawing operation is a complex manufacturing process involving
more than forty process variables. The intricate interaction among these variables
affect the forming tonnage which is measured by strain gages mounted on the press.

A fault is said to occur when any of these process variables deviate beyond their
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specified limits. Current detection schemes based on thresholding do not fully exploit
the information in the tonnage signals for the detection and isolation of multiple fault
condition. It is thus an excellent case study for demonstrating the implementation of
the detection methodology presented in Part 1. By partitioning the tonnage signature

into disjoint segments, mutually exclusive sets of Haar coefficients can be used to
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1 Introduction

The three-dimensional forming of sheet metal is a process
which uses a pair of top and bottom die sets to shape the sheet
metal into its final form under considerable pressure. Most decp
drawing dies have separate outer binders to regulate the flow
of material as the inner punch draws the material into the lower
die. Both the forces generated by the outer blankholding binders
and the inner punch have significant impact on the quality of
the part produced. These forces are also highly sensitive to
changes in a number of process variables {1], [4]-[5]) [10}
which may be broadly classified under: material properties, die
set variables, press variables and interactive variables. Tonnage
signatures are altered either directly by changes in these process
variables or indirectly by occasions of splits, wrinkles or slugs
in the drawing stage. A typical tonnage signature indicating the
different features of the process is shown in Fig. 1.

Although monitoring systems for peak loads and tonnage
variation as a function of time, ram position or crank angle [2],
[3] are quite common, they do not incorporate any kind of fault
isolation or diagnostic algorithm. They feature upper and lower
control limits on the tonnage variation over the entire press
cycle and automatically stop the process when these thresholds
are exceeded. Fault diagnosis is seldom quantitative and de-
pends on the experience of the technician who ‘‘cycballs'’ errant
signatures for some indications of the fault.

Some attempts have been made to develop some kind of
diagnostic tool for the forming process based on tonnage signa-
tures. Martinez-Heath and Bortfeld [7] used the number of
threshold crossings of the control limits of the template signa-
ture to discriminate between good and bad processes. Seem and
Knussman [9] used the statistical measurements of peak ton-
nage to detect wom dies. Both of these methods however are
only effective for faults with significant amplitude changes.
Faults which alter only the frequency content of the tonnage
signal (for example, gib chatter) would escape detection by
the amplitude-based control limits. Furthermore, both papers
addressed only the detection of a specific fault and do not dis-
cuss the impact of multiple faults on their detection schemes.
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isolate faults in each stage of the process.

This paper demonstrates how the detection methodology pre-
sented in Part 1 can be implemented as an on-line (automatic)
fault detection and isolation scheme for the stamping process.
The implementation of the detector is discussed in section 2
and the detector performance is evaluated in section 3. The
conclusion is found in section 4.

2 Implementation of the Haar Detector

The stamping process is a good example of a manufacturing
process where a priori information on most fault signals is
seldom available. Structural faults rarely occur if the press has
been properly operated and maintained. Such faults include bro-
ken pitinans, cracked uprights and loose tic-rods. When faults
do occur, the press is often shut down almost immediately by
the tonnage monitoring system. It will be shown that the Haar
coefficients which acquire new ‘‘highs’” [4] under fault condi-
tion can be successfully used as detection signals. The statistical
properties of fault signals become superfluous.

Using the reasoning in section 3, Part 1, the problem can be
formulated by the following hypotheses:

Case 1. No fault condition:

H,:c ~N(m,, o?)
Case 2. Fauit condition:
Hy:c ~ N(my, o3)

where c is the observation of ¢; arriving at the detector. The
mean values of ¢; under H, and H, are denoted by m, and m,
respectively. It is assumed that the process noise represented
by the variance o2 remains unchanged throughout.

The Haar detector is implemented as follows.

Step 1. Segmentation of Signal
Partition the tonnage signal, X = {x;
segments, (S;}/I{, such that

i=%, into J disjoint

x=Usy
J

Each segment S; covers a parﬁcular stage of the forming process;
and a set of faults, F;, is associated with this process stage. The
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Fig. 1 Typical tonnage signature of a double-action, overdrive press

&
segments {S;}/5/ are partitioned a&cording to the motion curves
of the press. These segments will be referenced by the crank angle
of the mainshaft. For an N-bit angle decoder, there will be n =
2" data points for each press cycle or 360 deg of crank rotation.

Step 2. Select Sets of Haar Coefficients

If [x, : x;] is the width of the data segment and [k, : k;] is
the region of support for any Haar function, then a Haar function
which lies within the segment S; is bounded by the condition
(10) in Part I.

h=xn) 0 (k=)

A set of such functions can be found and the corresponding
Haar coefficients denoted by C;. Consequently, J disjoint sets
of Haar coefficients { C;}/Z{ can be found where

aGNC =0, Yk + 1

These disjoint sets of Haar coefficients allow detection of multi-
ple faults occurring at different stages of the process during the
same press cycle. A further reduction in the dimensions of C;,
J=1,..., Jcan be achieved by sensitivity analysis (Part 1,
section 2.5) if the fault signals are known in advance, or by
simply neglecting higher indexed coefficients which represent
the process noise. :

Step 3. Establish Detection Threshold

The UMP threshold for each Haar coefficient is computed
from (30) in Part 1, using data collected during normal opera-
tion of the press. The mean and standard deviation of a Haar
coefficient ¢; can be determined from (14) and (15) in Part 1.
The value of \ is read off a table [6] when a level of signifi-
cance, a, has been predetermined.

Step 4. Monitor the Sets C;,j = 1,2,...,J

Apply the UMP to detect jumps in the selected Haar coeffi-
cients, that is, all ¢; € { C;}/Z{. A counter is used to record the
number of times a coefficient exceeds its threshold. The UMP
threshold for the cumulative threshold crossing or hits for each
of the Haarsets C;,j = 1, ..., J, is also determined using the
threshold (30) in Part 1. Let &, j = 1,. . ., J be the cumulative
hits for the Haar sets C;, j = 1, ..., J after every stroke. The
mean cumulative hits under normal condition is zero (since
there should not be any hit under normal condition). The stan-
dard deviation is simply estimated from the number of hits
under normal conditions.

Step 5. 1dentify Location of the Fault
When &, crosses its UMP threshold, an alarm is registered at
the output of the detector for segment ;. The use of cumulative
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threshold crossing (of the coefficients in C;) has un uyeruging
effect on the process noise. The number of false crossings due
to noisy processes is thus significantly reduced.

3 Test Results

The following test results were obtained from a set of surro-
gate signals generated from 150 consecutive cycles of a Clearing
double-action overdrive press. Surrogate signals are normal ton-
nage signals modified to duplicate the kind of features expected
in the fault signatures. They retain the characteristics ol the
original process noise and are reasonably good surrogates of
real fault signals.

Four types of surrogate fault signals were tested (Fig. 2).
They are typical of process variables which are frequently en-
countered in the stamping process {8]. They are (a) F,—mate-
rial too thick (b) F,—material too thin (¢) F3—loose tie rods
and (d) Fs—worn bushings. Both (a) and (b) arise from
changes in the material thickness process variable, and they
are time-shifted versions of each other. They are difficult to
distinguish by eye without alignment. Fault types (c) and (d)
are related to process variables under machine adjustments.
They have almost the same magnitudes and differ only by an
additional low amplitude sinusoidal component in (d). It is
nearly impossible to visually differentiate between (c) and (d).

1. Segmenting the Signal
Each realization is 2" = 512 data points long and segmented
using the motion curve for the press (Fig. 3).

2. Selecting the Sets of Haar Coefficients

The disjoint sets of Haar coefficients for data segments S,
and S, were determined from the condition: (&, = %} N {k
= x,}. A total of 94 coefficients for C, and 32 for C; were
obtained, The distribution of {¢;} € C;, C; in the original set
C is indicated by the numbers on the vertical axis of Fig. 4.
Higher indexed coefficients (>44 for C; and >14 for C;) may
be neglected as they represent mostly process noise information.

3. Establishing the Detection Threshold

The mean (&;) and standard deviation (o,) for each coeffi-
cient in C, and C, are estimated from the normal data using
(16) and (17). An unbiased estimator is used to determine o; .
A threshold based on a = 0.01, and hence A = 2.3, can be
found for each ¢; € Cy, G;.

(® (b)
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Fig. 2 Fault signais used in the test. Template signature (----) is shown
superimposed on a sample of the faults (a) F,—material too thick (b)
Fy—material too thin {c) Fy—loose tie rod (d) F,—womn bushing. Faults
F, and F, are found in segment S, while F, and F, are found in segment
S, in Fig. 3.
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Fig. 3 Motion curves and tonnage signature. Faults F, and F, are found
in data segment §, and faults F, and F, are found in data segment S;.
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Fig. 8 Cumulative alarms for full sets of Haar coefficients for segments
{8) Sy with threshold, Aoy = 4.808, and (b} S; with Ihmhold, Aoy = 1,868
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4. Fault Sensitivity

A counter was used to track the number of times a Haar
coefficient exceeded its threshold Ao; (30). The “*hits’” or num-
ber of threshold crossing recorded for each coefficient is shown
in Fig. 5. The maximum count of 30 represents a 100 percent
hit rate as there were 30 samples for each type of fault. Some
coefficients were more sensitive to one type of fault than an-
other. For example, coefficients ¢;, i € [300 : 350), appear to
be more sensitive to faults F, and F, (Fig. 5(a). (b)) while
remaining quite unaffected by faults Fy and F, (Fig. 5(c), (d)).
This is consistent with the fact that highly localized faults affect
only Haar coefficients in their support region.

Under no-fault condition, the distribution of hits is quite uni-
form among all the 512 coefficients (Fig. 5(e)). There is no
bias in the probability of threshold crossing for any coefficient
since the threshold is determined by the variance of each coeffi-
cient under normal condition.

5. Detector Output

The cumulative alarms, &/}, j = 1, 2 for segments S, and $;
were computed for each press cycle. Figure 6 shows the trajecto-
ries of &, j = 1, 2 over 150 test cycles for the full sets of Haar
coefficients C; and C,. The standard deviations for &, and
&, were estimated from the hits registered in Fig. 5(e). The
thresholds for &, and &, are respectively 4.808 and 1.868. The
detector outputs for S| and S, are shown in Fig. 7. There were
2 false alarms but no missed detection for §, [Fig. 7(a)] and
11 false alarms and 3 missed detection for S, [Fig. 7(b)].
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Fig. 7 Output of UMP detector for full sets of Haar coefficienta for
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6. Detector Performance

The performance of a Neyman-Pearson detector is completely
defined by the values of Prand Py. The variation of Pr and P,
as a function of the dimension of C; is shown in Fig. 8. For
example, when the dimension of C, is 20 in Fig. 8(a), the false
alarm rate is zero.

The detector was able to detect the presence of faults £, and
F; in S, with any number of coefficients in C, [Fig. 8(a)].
There is no distinctive trend in the number of false alarms
although zero false alarm was possible using just the first two
coefficients of C;.

The detector performance for S, dropped slightly when the
dimensionality of C, exceeded 12 in Fig. 8(b). There appears
to be two distinct regions of performance. The boundary of the
two regions is around the transition in scale of the coefficients
in C; [Fig. 4(5)]. The number of false alarm increases mono-
tonically in both regions. This trend is typical of the *‘curse of
dimensionality’’ which describes the phenomena of deteriorat-
ing performance with increasing number of features used.

The ROC (receiver operating characteristic) curves for seg-
ments S, and S, are shown in Fig. 9. The value of «a is derived
from [6] for 2.0 = A = 4.0. The probability of detection, Pp,
defined as the ratio of the number of detection to the number
of fault cycles, is 60. The large gap between the cumulative
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Fig. 9 ROC curves for segments (a) S, and (b) S,. The horizontal axis
shows the probability of false alarm P, = a corresponding to 2.0 < \ <
4.0. The vertical axis shows the probability of detection, P,.

alarms for no-fault and fault conditions in S, [Fig. 6(a)] ex-
plains why the probability of detection, P, = 1 for all dimen-
sionality of C,. That is, for all {¢;} € C,,i=1,2,..., 94,
Pp = 1. The situation is different, however, for S: where the
cumulative alarms for both conditions are not so well separated
[Fig. 6(b)]. As the dimensionality of C, is increased, the ROC
curves indicate a slight deterioration in the detection rate due
to the *‘curse of dimensionality’’.

An alternative way of presenting the ROC is to plot the actual
detection rate, Pp, against the actual false alarm rate, Py, where

_ Number of detections
® "~ Number of fault cycles

and

P = Number of false alarms
*” Number of normal cycles
Figure 10 shows such. a plot of the ROC curve for segment
S5, for different dimension of C,. There is a drop in detector

perfom.lance as the dimension of C, increases with more and
more higher indexed terms. Eventually, i reaches a value when
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Probabilly of False Alarm

Flg. 10 ROC curves for segment S; based on the actual number of
detections and faise alarms. The corresponding dimensionality of C, are
{a) 10 (b) 15 (c) 20 (d) 25 (e) 30 and (f) 32.

subsequent coefficients represent only the noise in the data. The
performance of the detector is nevertheless superior to that of
a randomized test as the ROC curves are all concave downwards
and lie above the P, = P, line in Fig. 10.

4 Conclusion

The complexity of the stamping process and the number of
variables that affect the process pose a very difficult challenge
for any kind of on-line fault detection systems. It is an excellent
case for the application of detection methodology developed in
Part 1. It was shown that Haar coefficients, if properly selected,
can perform remarkably well with a UMP detector based on
the Neyman-Pearson criteria. The performance of the detector
was evaluated. with respect to threshold, dimensionality and
false alarm rate. This approach can be extended to other manu-
facturing processes with multiple fault condition.
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Fig. 9 ROC curves for segments (#) S, and (b) S,. The horizontal axis
shows the probability of false alarm P, = o corresponding t0 2.0 = \ =
4.0. The vertical axis shows the probability of detection, Pp.

alarms for no-fault and fault conditions in S, [Fig. 6(a)] ex-
plains why the probability of detection, P, = 1 for all dimen-
sionality of C,. That is, for all {(¢,;} € C,i=1,2,... ; 94,
Pp = 1. The situation is different, however, for S, where the
cumulative alarms for both conditions are not so well separated
{Fig. 6(b)]. As the dimensionality of C, is increased, the ROC
curves indicate a slight deterjoration in the detection rate due
to the *‘curse of dimensionality’’.

An alternative way of presenting the ROC is to plot the actual
detection rate, Pp, against the actual false alarm rate, Pg, where

- Number of detections
Number of fault cycles

D

and

_ Number of false alarms
*” Number of normal cycles

Figure 10 shows such a plot of the ROC curve for segment
Sy for different dimension of C,. There is a drop in detector
performance as the dimension of C, increases with more and
more higher indexed terms. Eventually, i reaches a value when
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