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This paper expands previously developed assembly fivture fault diagnosis methodology (Ce-
glarek and Shi, 1996) by considering the impact of measurement noise on the diagnostic
results. The proposed solution provides a new analytical tool 10 address the diagnosability
issue during the assembly process design stage. An evaluation of fault diagnosis index as a

function of noise, fixture geometry, and sensor location is presented. The index isderived from
the general class of covariance matrices describing 1ooling faults. Simulation based on the
real fixture is presented 1o illustrate the proposed method.

1 Introduction

Failures of assembly fixture critically affect the dimensions of
an automobile. In automotive body assembly, dimensional accu-
racy is one of the most important quality and productivity factors.
Studies on the assembly of a sport utility vehicle showed that 72
percent of all dimensional failures were attributable to fixtures
(Ceglarek and Shi, 1995). )

Ceglarek and Shi (1996) developed a methodology of fixture
failure diagnosis using Principal Components Analysis (PCA)
based on the in-line measurement data of critical points on the
assemblies and geometrical models of fixtures. This methodology
isolates the root causes of a dimensional failure in the fixtures
based on the: (1) geometrical model of the fixture failure patterns,
(2) the fault variation pattern obtained from in-line multisensor
data, and (3) pattern recognition of the fault by mapping fault
variation pattern to the fixture failure model.

The fixture diagnostic methodology provides an analytical tool
to control the assembly process. However, effective utilization of
this method is still a challenge. These challenges can be summa-
rized as follows:

(1) Sensor svnthesis in the dimensional analysis considering
measurement noise: Variation patterns of a part’s orientation and
position can be identified by dimensional sensors (Tlusty and
Andrews. 1983) and modeled using geometrical information about
fixture and sensor readings (Ceglarek and Shi. 1996). However, no
analysis including measurement noise in modeling variation pat-
terns and PCA analysis has been conducted. This omission is
especially important because general measurement data captured
on the plant floor are affected by noise.

(2)  Integration of error analvsis, advanced statistics, and en-
gineering knowledge for root cause isolation: Pure statistical
methods. without knowledge about the product and process, are
not sufficient to identify the root cause of a fault (Schwarz and Lu,
1992). Integration of engineering knowledge with statistics is
especially important during dimensional diagnosis of a multi-
fixture system such as an autobody assembly (Hu and Wu, 1992;
Ceglarek et al.. 1994). However, industrial utilization of the diag-
nosis method requires consideration of the impact of noise on the
diagnostic results. Currently, no assembly fixture model and PCA
for diagnostic purposes takes the measurement noise into account.

This paper tries to resolve the above mentioned challenges. It
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expands upon the earlier developed fixture fault diagnostic meth-
odology (Ceglarek and Shi. 1996) by considering the impact of
measurement noise on diagnostic resuits. The developed approach
evaluates the diagnosability of the fixture diagnosis method by
estimating the error of fault variation patterns caused by additive
noise. An evaluation of fault diagnosis as a function of noise.
fixture geometry, and sensor location is presented. The proposed
solution provides a new analytical tool to address the diagnosabil-
ity issue during the design stage of assembly process.

The paper is divided into five sections. Section 2 briefly reviews
the fixture diagnosis methodology. Section 3 derives relations of
fixture geometry with: (1) measurement data (covariance matrix).
and (2) fault variation pattern (eigenvalue-eigenvector pair) af-
fected by additive measurement noise. Section 4 presents the
fixture failure diagnosis with additive uncorrelated noise. Finally.
Section 5 draws the conclusions and summarizes the conducted
study.

2 Review of Fixture Failure Diagnosis

This section briefly reviews the fixture failure diagnostics es-
sential for our study on impact of measurement data noise.

The characteristics of a correctly functioning fixture. including.
locating and clamping stability. deterministic part location. and
total restraint (Chou et al., 1989), are directly realized through the
tooling elements (TE) of a fixture. i.e., locating pins (P) and NC
blocks (noted as C = NC locator + clamp)' (Fig. 1). We assume
that P’s and C’s have primary responsibility for the correct func-
tioning of a fixture, and therefore, for the level of product dimen-
sional variation. TE faults are any tooling discrepancies that cause
part mislocation. TE faults can be caused by locator wear, inclu-
sions on the locating surface of locators. or clamps that do not
properly force the part/subassembly against the locators (Ceglarek
and Shi. 1996). These faults manifest themselves in the measure-
ment data of the final product in the form of different variation
patterns such as, mean shift, variance change, spikes, cycle, mix-
ture, and so on. The concept of tooling element fault allows us to
deal with the dynamic nature of the assembly process such as
process maintainability or dimensional variation reduction.

The methodology for diagnosing fixture related dimensional faults
in the assembly process is based on a three step procedure (Fig. 2): (a)
deriving the variation pattern model based on the fixture layout

' NC blocks/NC locators describe planar locator(s) perpendicular to the intended
constraining direction. The terms “NC block” or “NC locator™ are used commonly in
automotive industry, and was historically derived from the term NC-Numerically
Controlled, as all locators supposed to be machined by NC machine tools.
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Fig. 1 A 3-2-1 fixture layout and an example of fault manifestation

geometry (CAD data). (b) determining the variation pattern of the
unknown fault based on the measurement data, and (c) mapping the
fixture fault based on the minimum distance classifier.

Fixture Layout and Hypothesis of the Fixture Faults. The
most common fixture layout is 3-2-1 principle, which locates part
by three groups of locators (TEs), laid out in two orthogonal
planes. As shown in Fig. 1 these three groups usually include: (1)
a four-way pin P, to precisely position the part in two directions
on the first plane. (2) a two-way pin P, or NC block to locate the
part in one direction laid in the first plane, and (3) all remaining
NC locators (C,. C,. and C:) to locate the part in the second
plane. Therefore. a six fault system constitutes a complete set of
potential root causes of the dimensional faults in the fxture.

Each TE controls a part in the defined direction-control axis. For
example, the Z axis is the control axis of the locating pin P, (Fig.
). Furthermore, for each tooling element (TE,) can be defined a
compiement tooling element (CTE) in the given control axis =, as
any other tooling element (TE) of the fixture, which controls the
part in the same Z axis, except the tooling element TE,. Dimen-
sional faults caused by TE failures manifest themselves in specific
pre-determined ways: (1) translation along the = axis; if the

"number of CTEs, nere = 0. for example, failure of P, in X axis,

off-line in-line
CAD data easurement
data
| y
Information Determination of
about tooling elements unknown fault pattern
Y Y
Mapping unknown fault
M(.)del of pattern to pre-détermine
vanation pattern fault pattern

Root cause'of the fault

Fig. 2 Outline of the fixture failure diagnosis method
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(Figs. 1(a) and 3): (2) rotation along the axis defined by one
complement tooling element, if the number of CTEs, new = 1
(failure of P,; Figs. 1(a, ¢) and 3): and (3) rotation along the axis
defined by two complement tooling elements. if the number of
complement tooling elements to TE, n: = 2 (failure of C: Figs.
I(a) and 3).

Diagnostic Model of Variation Pattern for 3-2-1 Layout
Fixture. The manifestations of the TE faults are represented by
sensors M, (M., M,,, M..) and their standard deviations o (0,
O, 0.), 1 = 1,2, 3 (Fig. 1(b)). The magnitude of dimensional
variation captured by the sensor i (a,) depends on the severity of
the fault described by the standard deviation of the TE. Ot as well
as on the geometrical relations between the location of the sensors
and the TEs. These relations can be summarized as (Ceglarek and
Shi. 1996): o1 = k,0,, where k, = f,(ncre, d(TE. CTE). d(CTE.
M))), and d4(CTE, TE), d4(CTE, M) are distances between
TE-CTE. and CTE-M, respectively. ) is a function defined in.
Ceglarek and Shi (1996).

The diagnostic model of the 3-2-1 fixture layout describes the
part variation pattern in terms of the TE’s and the measurement
layout. A total of 9 variables y,, i = I, 9 (3 sensors, each
measuring 3 axes) are used to describe the 3-2-1 fixture. The model
of the variation pattern for the 3-2-1 fixture is described by
diagnostic matrix D = (d(1), .. .. d(6)), where d(i) = (d,,, .. .-
d,)" is a diagnostic vector describing a type-i fault (Fig. 3), with
n (=9) entries corresponding to the measured variables x4, =
oo, j = 1,..., n, where 0, is the standard deviation of
variable x,, and o = 2. o,

A major advantage of the proposed model is that the fixture
faults can be determined based on the CAD data available during
tooling design, before the start of production.

Statistical Representation of a Variation Pattern. The vart-
ation pattern caused by an unknown fault is described by multi-
Sensor data using a multivariate statistical approach, Principal
Component Analysis (PCA) (Jolliffe, 1986). PCA describes @
variation pattern by finding p < n linear transformations of 7
variables. Each variable represents measurement data from one of
three sensors (M,, M, and M,) in one axis (X,Yor2),ie.n=
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Fig. 3 Fault manifestation of variation pattern for 3-2-1 layout fixture

9. Eigenvectors al = (a;, ..., a,) represent variation patterns.
Geometrically, the first eigenvector points in the direction of the
greatest variability in the data, and the orthogonal projection of the
data onto this eigenvector is the first eigenvalue.

The dominant eigenvector (a,) of the variation pattern described
by the TE failure and obtained from the measurement data, is equal
to the diagnostic vector {d(i)} describing the failure of this TE and
obtained based on the fixture geometry.

Fault Mapping Procedure.
based on a minimum distance classifier designed for each fixture
based on the model of the variation patterns. The mapping proce-
dure minimizes the distance between one of the diagnostic vectors
d(i) and the variation pattern of the unknown fault described by
eigenvector a. defined as discriminant function (Ceglarek and Shi,
1996):

g.(a) ={d"(a — 0.5||d(})

1y, i=1.2.3. (1

Evaluation of the fault mapping procedure is based on index 7.
7 is the relative distance between the unknown fault pattern
obtained from the principal components (a), and the closest pre-
determined type-/ fault pattern (d(i)):

7 = 2| g(a) —~ g(d(i))||- 100% @)

3 Impact of the Additive Uncorrelated Noise on the
Estimation of Fault Variation Pattern

This section presents a method for estimating the variation
pattern error causad by the noise of measurement data.

The diagnostic of fixture is conducted based on the measure-
ment data from multisensors. Each sensor measures different
points located on the measured stamped part/subassembly. Addi-
tionally, each sensor is an independent device, which measures
stamped parts/subassemblies independent from each other. Fur-
thermore, it is assumed that all measurement gages, before they are
allowed to be used for taking measurements during production,
need to pass repeatability and reproducibility (R&R) test (Down et
al.. 1995). By passing both tests the measurement gages should be
“in statistical control™ with all data being independent from each
other. This mean that the variation in the measurement system is
due to common causes only and not due to special causes (statis-
tical stability). Therefore. we assumed that the measurement noise
generated by each sensor could be considered as uncorrelated. The
problem of noise, however, is highly nontrivial both from the
conceptual as well as from the mathematical points of view. Noise
may mean one or all of these factors: inaccuracy of the model,
measurement errors, unknown effects, nonlinearities, any casual or
random factors which cannot be modeled and of which no further
information is available. etc.

The impact of noise on the variation pattern can be estimated
through the following two steps: (1) derive the relation between
the diagnostic model of fault variation patterns obtained from the
(i) fixture layout geometry and (ii) the covariance rhatrix of mea-
surement data (Section 3.1), and (2) derive the error of lh'e
eigenvalue-eigenvector pair (statistical represema;ion of faplt vari-
ation pattern) caused by additive uncorrelated noise (Section 3.2).
The notation used in this section is presented as follows.

Let x,. x% .... x. denote the vectors of the true values
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The fault mapping procedure is

(without noise) of those items measured by sensors 1..... n
respectively, where x;7 = [x], x0. ..., x4l is a sample of N
measurements of the true values that would be measured by the
i-th sensor without noise present. There is also the assumption that

Xi» X5 - .., xs constitutes a random sample, and x;" ~ N(0. al).
i=1,...,n. Furthermore, let x,, x:. . . . . x. represent the real
values measured by sensors 1, ... . n, where x, =[x, v oo

x,] is a sample of N measurements of the i-th sensor. The
difference between the measurements with and without noise are
error vectors €,. €., ..., €,, where e, = [e,, €. ..., e ] 1s an
i-th error vector with an individual error for each measurement. In
light of the previous definitions, we can write:

Xi=X1n+el (3

The elements of the error vectors e; follow normal distributions
with zero means, i.e., e, . ~ N, ¢2), i = 1,..., N. In this
section it is assumed that ¢, = o Vi. A similar measurement
error model was investigated by Grubbs (1948) and Thompson
(1963). See Anderson (1965) for a general background on the
subject. Based on the results obtained by Thompson (1963). the
covariance matrix of the measurement error mode!l expressed by
Eq. (2) is equal to:

2=2;’+afl 4

where I, 2, and X7 are identity matrix, covariance matrix of the
data with noise. and covariance mairix of the data without noise.
respectively.

3.1 Relation hetween Fixture Geometry and Covariance
Matrix. This section investigates relations between fixture ge-
ometry and the covariance matrix X°, assuming the occurrence of
a single fault without any measurement noise. Let us define the
elements of the covariance matrix as:

o;=E[(x,— Xx)(x,~ Xx;)] oras samplé covariance

N
o= L(N=1) D (xu— X)xu — %) (5)

k=1

where x,, is a k-th measurement of the i-th sensor.

Ceglarek and Shi (1996) stated that the magnitude of the di-

mensional variation captured by sensors depends on: (1) the se-
verity of the fault (afe), and (2) the geometrical relations between
the sensors and location of TE’s. This statement can be generalized
by deriving relations between the elements of the covariance
matrix and the fixture geometry.
Theorem 1. The relations between fixture geometry and covari-
ance matrix, during failure of the tooling element TE, are de-
scribed by measurement data without noise from sensors M,, M,,
M, as follows:

(1) E)avhen the number of complement tooling elements nc =
Vi, j (©)

(o'l’:E i= o.l'j

(2) when the number of complement tooling elements ncre =
1
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Fig. 4 Geometrical relations during rotation of a rigid part

_ d(CTE, M,)d(CTE, M)
gy = d*(TE, CTE)

af)? Vi (D
where d(a, b) is the Euclidean distance between points
a and b.

(3) when the number of complement tooling elements n o =
2

<

_ d(CTE,;. M,)d(CTE,,, M)
Ty = d*(TE. CTE,,)

(o) Vi, j (8

where CTE,; is the axis between complement tooling
elements 1 and 2.

Proaf. The proof for Eq. (7) is conducted. Equations (6) and (8)
can be proven following the same procedure. Eq. (7) presents the
case when ncy; = 1. which describes the fault that causes the
variation pattern represented as a rotation around the CTE. Let M I
M. M, and M\, M, M, be the points located on the component
before and after rotation of that component respectively (Figs. 1
and 4). And let 8,, §,, 8, describe the distance of each of the M,
M, M, points from the center of rotation O. Simultaneously £, is
the distance between points M, and M’ (i=1,2, 3).

First, observe that in general £,/8, = &,/86, = £,/8,, holds for
rotation of the part, so this relation can be rearranged as:

§l’l = (61*]/81)61 = Klgl

where k, = $,.,/8, is a constant. After rearranging Eq. (9) and

fori=1,2 ©)]

substituting &€, = x, for the k-th measurement, the following
relationship is obtained:
X = (8,/8)x, =k, xy fori,j=123

cand k=1,...,N (10)

Substituting Eq. (10) into Eq. (5), the covariance of points M, and
M, can be calculated as:

N

w= VN = 1) 2 (e = %) (x5 — %)

k=1

3
]

N
V(N = 1) X 8/8,(xy ~ %)% = 6,/8,07

k=

Il

(1D

where 8, = d(CTE, M,) is the distance between CTE (=P,; Fig.
4) and M,. From Eq. (4) in Ceglarek and Shi (1996):

o, = [d(CTE, M }/d(TE, CTE)]lo % (12)

Therefore. substituting Eq. (12) to Eq. (11), we obtain Eq.
(7). Q.E.D.

Theorem 1 extends the linear relation between variances and the
fixture geometry presented in Ceglarek and Shi (1996) into more
general relations between elements of the covariance matrix and
fixture geometry. '
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Class of Covariance Matrices Representing Failure of TE,
In general, the obtained results allow the creation of a general
covariance matrix representing a single TE fault. For example a
type-3 fault (failure of P,; Figs. 1(a, ¢) and 3), which corresponds
to a fault with one complement tooling element (n = 1) can be
derived from Eq. (7) and presented in the following form:

2

a* ab ac ad ae af

ab b bc bd be bf
,_low)lac be ¢ cd ce of
2= |ad bd cd 4 de df
’ ae be ce de e’ eof

af bf of df ef f°

where a, b, ¢, d, e. f, and g can be derived from Eq. (7) (Ceglarsk.,
1994). The covariance matrix shown in Eq. (13) represents the
general class of covariance matrices for any single tooling element
fault in the fixture. Eq. (13) is used in the next section to analyt-
ically estimate the eigenvector error caused by additive uncorre-
lated noise.

(13)

3.2 Eigenvalue-Eigenvector Pair Error Caused by Addi-
tive Uncorrelated Noise. The eror of the eigenvalue-
eigenvector pair directly reflects the error of the diagnostic vector.
since its elements are the elements of the eigenvector. This section
analyzes the error of the eigenvector caused by additive uncorre-
lated noise in two cases: (1) noise with identical variance for each
sensor, and (2) nonequal noise variances for each sensor. For these
two cases, the eigenvalue-eigenvector pair for data with and with-
out noise is compared.

The eigenvalues A, A, ..., A, (data with measurement noise)
are computed by solving the characteristic polynomial and then
compared with the eigenvalues, Aj, A%, ... . AL, computed for the
data without noise in the following way (Jolliffe, 1976):

[2°-ATJa=0 [S-Alla=0 (14

The above equation was solved by using MAPLE V software
package (Char et al., 1991). The result is a sequence of the
eigenvalues, their algebraic multiplicity, and the set of basis vec-
tors for the eigenspace corresponding to each eigenvalue. The
dominant eigenvector a, (or a?) is obtained by solving the follow-
ing linear systems with and without noise respectively:

(@ (Z-ADa, =0 (b)) (E°-ADa’=0, (15

where A, (A7) is the largest eigenvalue.

In the case of 3-2-1 fixture failure diagnosis, covariance matri-
ces of dimension 6 X 6 are considered. The size of the matrices
was selected to allow for the analysis of measurement data from
three sensors each with data in the X and Z axes. Since the
measurement data in the Y axis are independent from data in X and
Z axis, they can be analyzed separately (Ceglarek and Shi. 1996).
The eigenvalues and eigenvectors are calculated for a class of
covariance matrices 2° [Eq. (13)] derived in Theorem I.

Uncorrelated Noise with Constant Variance for Each Sen-

sor. From Eq. (15b):
2°a) = ASIa? (16)
Multiplying Eq. (4) by aj, it is obtained:
2aj=(2°+ ga’ an
Substituting Eq. (15b) to Eq. (17), gives:
Zaj=(AT+ gl)a’ (18)

which is equivalent to the equation (X — (A} + o))Da? = 0,
defining the system described by the following eigenvalue-
eigenvector pair: (A,, a,) = ((A! + ¢?), a°). Comparing the
dominant eigenvalues A{ and A, for data with and without noise
respectively, it can be said that A, = A? + g2
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Theorem 2. Independent, uncorrelated and additive noise with
constant variance for each sensor (1) causes eigenvalue errors
equal to the noise variance o7, i

M= A0+ o) (19)
and (2) does not cause error in the eigenvectors:
a, =a (20)

Finally, it can be concluded that diagnosis of the TE failure is
not corrupted by unccrrelated additive noise as long as all sensor
noises are uncorrelated and have the same variance. This situation
usually occurs when using the same type of sensors, with the same
number of working hours, on the same maintenance schedule.

For the class of covariance matrices shown in Eq. (13), which
represents a generic description of the TE failures in the fixture,
numerically dominant eigenvalue-eigenvector pair is as follows:

A =ai+bircirdir e+t ol
a,=[a/D b/D c/D dID e/D fID]T (21)

where D = Va  + b + ¢ +d + ¢ + [, and o, is the standard
deviation of the uncorrelated, independent noise with identical variance.

Uncorrelated Noise with Different Variance for Each Sen-
sor. The class of covariance matrices % [Eq. (13)] with different
standard deviations of noise @,;, ... 0,5 for each sensor respec-
tively can be represented as:

The detailed expressions of Egs. (23) and (24) are obtained using
MAPLE V and the results are presented in Ceglarek (1994).

The above relations are used in the following section to estimate
the error of fixture failure diagnosis.

4 Fixture Failure Diagnosis with Additive Uncorre-
lated Noise

This section presents the procedure for estimating the maximum
noise level, o,, which still allows for correct diagnosis of the
pre-determined TE faults. The fault diagnosis performance is eval-
uated by using the coefficient 0 [Eq. (2)]. This evaluation is based
on two criteria and is conducted through a series of simulations.

Criteria: The fixwre failure diagnosis procedure assumes that
only one major fault occurs in the system (assembly line). The
diagnosis procedure is based on the results and conclusions ob-
tained by Ceglarek and Shi (1996), which can be summarized as:

1. Correct fixture failure diagnosis can be reatized if n << 407,
2. In the case of type-i fault, eigenvector a” computed for data
without noise is equal to diagnostic vector di1):

a’ = d{)

(25)

For the purpose of this discussion, the coefficient n (Eg. (20 1s
modified to the form used during simulations. By substituting Ey.
(25) into Eq. (2), we have:

n = 2|g.(a) = g(d())] - 100% = 2|g.(a) — g(a)]- 1007

(26)
a’ oog” ab ac ad ae af
(o%)’
5 o8’
ab b-+ —3 be bd be bf
. (%)’
ac bc ¢t + o8’ cd ce cf
Fy2 3
Y= ‘iﬂf) () 2 2 (22)
- g , T8 . -
ad bd cd 4+ =2 de df
((TT[-;,)'
0'538:
ae be ce de e? . e
(0'%_)' f
af bf o df of s
- ’ (U'?E,) :-

where a. b. c. d. e. f. and g are the coefficients of covariance
matrices from Eq. (13) representing type-i faults of tooling ele-
ment (TE,). fori = 1. 2.....6. The o2, ol and o represent
variances of uncorrelated. independent noise for sensors 1, 2, and
3(M,. M.. and M) respectively. The other elements of the matrix
S are the same as in Eq. (13).

Comparing the dominant eigenvalues A, and A§ for data with
and without noise, the nonlinear impact of the noise on the eigen-
values can be seen. Similarly, the relation between the eigenvec-
tors and noise is nonlinear. In general, the eigenvalues can be
represented by function ¢ as follows:

A =dla, b, c.d e f, 8 Tcs Tey T ot (23)
In a similar manner, the eigenvectors can be represented by non-
linear function ¢ as follows:
(24)

F
a,=@la b.c.d e f g Oy Ters Te o) -
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Fig. 5 The geometry of the fixture used for simulations
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Fig. 6 Impact of the additive uncorrelated noise on the fault classification

Furthermore, by substituting Eq. (1) to Eqg. (26), the following can
be obtained:
(27)

n = 2[[d"(i){a — d())}]|- 100%

Based on the Cauchy-Schawarz 1nequa11ly (Strang, 1988), Eq.
(27) can be rearranged as:

n =2[d"(){a - d()}||- 100% < 2|la — d(;)| - 100%
(28)

Thus, finally inserting Eq. (25) to Eq. (28):

n=n*:=2a-a’-100% (29)

where a” is an eigenvector obtained from diagnostic matrix for a
given fault.

Simulations and Case Study. A door inner fixture (locator
layout) is shown in Fig. 5. The simulations were conducted for a
failure of the locating pin P, (Fig. 5). The magnitude of the failure
measured by dimensional variation is o, = 3.16 mm. Failure of
the locating pin P. causes a variation of the whole component
registered by sensors M,. M,, and M,. To simulate the real
measurements captured by sensors, noise with magnitudes varying
from o, = 0 to o, = 3.16 mm was added to the data (sample size
of 400). The impact of the noise is shown based on the coefficient
n defined in Eq. (29). The simulations were conducted in two
steps. The objective of the first step was to estimate the biggest
error of the coefficient n for different configurations of the noise
levels for each sensor. The second step estimates the error level
needed to reach 7 equal 40% (criterion 1), using the most error-
prone configuration.

The results for the first step of the conducted simulations are
presented in Fig. 6. which shows simulations for 11 different noise

40 —
] Ga=0. 0645 =0
35 s —
104 C.= /ctluv:: 1 /(/
| i A
- | L
& 1 prd
= 20 )
15
10
,J(; Opr= 3.16 mm| ]
5 1 n'=40% ]
T
0 T
0 0639  0.396 1095 1266 1415 1.551 1674 1790
1.0 1.734

Noise standard deviation G =G, (mm)

Fig. 7 The relation between 7 and total noise standard deviation ¢,
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levels for each sensor. The 11 noise levels are simulated in the 3]
different configurations for different noises: ¢,,. ... and o..
added to the sensors M, M., and M respectively. The noise level

= 3.16 mm is equivalent to the standard deviation of the fault
level.

It can be said that the error of the coefficient n mainly depends
not on the standard deviation of noise for each sensor. but on the
difference between their standard deviations. The biggest error is
for o,, = 0,, = 3.16 mm, and o,; = 0, and is equal to 1 =
15.3% < m, = 40% (configuration 21 in Fig. 6).

The second step of the simulation was conducted for the se-
lected configuration 21, o,, = o,,, and o,, = 0. This is the
configuration that is the most sensitive to noise. Based on this
configuration. the error as a function of noise level is calculated.
The second part of the simulation estimates the maximum noise
level for conducting correct fault isolation. Fig. 7 shows the
relation between noise level and fault isolation bias coefficient .
In the case of the failure of locating pin P.. the maximum tolerable
noise is estimated as o,, = o., = 5.48 mm (total noise o, =
7.75 mm), which is equal to 173.4% of the fault variation level.

5 Conclusions and Summary

The assembly line is prone to failure because of its complexity.
high production levels, and rapidly changing requirements of the
assembly process. Preventing these failures from propagating in
finished assemblies requires continuous fault detection of tooling
equipment—fixture failure diagnosis.

This paper expands earlier developed assembly fixture fault
diagnosis methodology (Ceglarek and Shi, 1996) by considering
the impact of measurement noise on the diagnostic results. The
proposed solution provides a new analytical tool to address the
diagnosability issue during the assembly process design stage. An
evaluation of fault diagnosis index as a function of noise, fixture
geometry, and sensor location is presented. The index is derived
from the general class of covariance matrices describing tooling
faults. '

Based on the analytical results, simulation studies were con-
ducted to estimate the maximum allowable additive uncorrelated
noise level. Our analysis showed that the impact of noise depends
not only on the noise level, but also on the differences between
noise levels for different sensors. We point out that uncorrelated
additive noises with identical variances for each sensor do not
influence the elements of the diagnostic vector. Based on the worst
configuration of the noise magnitude between sensors, we estimate
that tooling faults can still be accurately isolated if noise standard
deviation does not exceed 173% of the fault magnitude standard
deviation.
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