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~ An Order Downdating Algorithm for
Tracking System Order and Parameters
in Recursive Least Squares Identification

Daniel W. Apley and Jianjun Shi

Abstract—In this correspondence, a new fime and order recursive
method for on-line tracking of system order and parameters using
. recursive least squares (RLS) is presented. The method consists of two
parts: a time updating portion that uses existing RLS inverse QR
decomposition algorithins and a new computationally efficient “order
downdating” portion that calculates the model parameters and residual
error energies for an entire set of models with order varymg from oae fo
some prespecified maximum model order.

Index Terms—Model-order identification, QR factorization, recursive
least squares, system’ identification.

1. INTRGDUCTION

Recursive least squares (RLS) is a widely used method for tracking
model parameters in system identification and parametric spectral
estitation, In many applications, the system order, in addition to
the parameters, may be time-varving or otherwise unknown. One
common example is in adaptive control of robotic structures, where
new modes of vibration are introduced when the robot changes
configuration or the payload changes [1]. Other examples come from
the ared of on-line machine diagnostics. New modes of vibration
can be introduced when machine components become weakened
or loosened, which changes the system order. On-line detection of
component failure requires tracking system order changes. In chatter
detection in machining of metals, chatter can occur at simultaneous
multiple frequencies [2], which also requires on-line tracking of the
system order. Consequently, an efficient RLS scheme for tracking
system order and parameters would be useful.

Most of the existing research on “order recursive” methods has
been in the context of off-line batch least squares (LS} modeling
[3]-[5]. The common idea behind these methods is to iteratively
identify models with successively increasing order. The various order
models are compared along the way, and the procedure can be stopped
when one of the models is deemed an adequate representation of the
data. While these methods are efficient as batch methods, they are
not suitable for on-line, time recursive identification. In [6] and [7],
some of the concepts in the above order-recursive batch methods were
extended to develop time- and order-tecursive LS methods. However,
these methods have two drawbacks. The computational expense per
timestep is much larger than that of standard RLS, which is used to
identify the highest order model. In addition, the methods apply only
to growing length or sliding rectangular windows on the data and not
to the widely used exponentially weighted RLS.

This correspondence introduces a new method for obtaining the
RLS solution to a set of models of various order: up to some
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predetermined maximum model order ». The various order models
can then be compared to select the most appropriate one, providing
an efficient means of on-line tracking of systerh-order and parameters.
The method relies on the straightforward geometric interpretation of
the QR decomposition in LS. '

The new method has a number of attractive features.

1) The computational expense is only slightly larger than that of
standard RLS (using, e.g., Bierman’s UDU! algorithm [8])
applied to the highest order model—roughly 2n?, as opposed
to 1.5n%, multiplications per timestep.

2) The method is generic in the sense that it can be applied to
arbitrary RLS situations, such as ARX, ARMAX, or impulse .
response modeling with single or multiple inputs.

3) The method can be applied to exponentially weighted RLS.

The format of the remainder of the paper is as follows. Section II

provides a brief background on the QR decomposition in LS and its
geometric interpretation. By exploiting this geometric interpretation,
the main order-recursion algorithm is developed in Section III.

II. INVERSE QR FACTORIZATION IN LEAST SQUARES

Consider the following general
problem, Let {x;(#}}i ;.

linear least squares (LS)
y{t} be t-dimensional column vectors

x(t) = (A tay (1), At_2x¢(2), . x,—(t)]T,_y(t) =
A1y, A 2y(2), -, w(0]T,  and et XH(t) =
[%:(8), %2(8), -+, (] = L,2,---,m). A € (0,1] is a

forgetting factor. Here, the superscript T indicates transpose, and ¢
is taken to be the time index. Assume X" () has rank n. The goal
at time t is to find the i-dimensional column vector #;{t) defined as
X' (18]

gi(t} = agg min“y(t) - (3 =12, n) 4y

where || e ||z is the standard Euclidean norm. The set {f,(¢)}r,
of LS coefficient vectors forms a set of candidate models that can
be compared in order to select the most appropriate model. To have
suitable criteria for comparison, it is also desirable to have available
e:(t) = y(£) = X ()6 (1) and a.(t) = eF (t)e:(t). e:(f) is thus the
residual error vector associated with the sth-order LS problem in (1},
and o (1) is the residual error energy.

It is assumed that the LS modeling is to be done time recursively.
In other words, at time £+ 1, the new “input” data {x1 (¢+1). z2(t+
1), «-+5 xa (¢ + 1)} and “output” data y(¢ 4+ 1) becomes available,
and X"{t+ 1) and y(¢ -+ 1) are given by

AX™(t)
X"t+1) = .
zi(f+1) a2({t+1) Zn(t+1)
and
yt+1) =Dy" () g+

Consider the QR factorization of X7, ie., X" = QR, where
Q=[a a Q5 | is a £ X n matrix with orthogonal columns,
and R is an n X n upper triangular matrix with ones on the diagonal.
The time index ¢ has been dropped for notational simplicity. Note that
Q and R are more commonly defined so that Q has orthonormal
columns, and the diagonal elements of R are positive but not
necessarily one.

In the context of the LS problem (1), Q and R ! have an
important interpretation that will subsequently be exploited to develop
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an efficient method of solving (1) for all of the various order models.
Define J = Q7Q = diag({/;}7;) and

1 ws ws -+ w,
1
W=R"1'= 1
0
1

Here, J is a diagonal matrix, and w; is a column vector of length i — 1.

It is well known (see, e.g., [8, p. 50]) that the following relationships-

between W, Q, and the LS problem holds:

Wi =~ arg min lizi — X7 w2y @i = % + Xy,

and

Ji=dq a. - @)

holds. In other words

w; mnegative of the LS coefficient vector in projeciing x; onto
the column space of X' ';

q; emror vector associated with the LS projection;

Ji  residual emror energy.

There exist numerous algorithms for time updating J, the last row
of Q, and R in the inverse QR factorization of X" (e.g., [9]
or Bierman’s UDUT algorithm [8]). The inverse QR factorization
algorithms can also be vsed to directly obtain fn in (1) as follows [9].
Suppose that instead of factoring X", the inverse QR factorization
of the augmented matrix A = [X" y] was available. By analogy

with (2)
Wny1] exactly —0n:
Quip1  EITor vector;
Jag1  residual error energy.

From (2), it is apparent that in some sense, order recursiveness
is built into the inverse QR factorization algorithms. The LS coei-
ficients, residual errors, and residual error energies for the various
order input prediction problems of projecting x; onto the column
space of X1 = 2,3, -, n) are automatically available. In
RLS applications such as system identification and parametric spectral
estimation, where the order of the model is unknown a priori or is
time varying, what are needed, instead, are the LS solutions to (1)
for projecting y onto the column space of X* (1 = 1, 2, ---, n). The
following section presents a computationally efficient algorithm for
accomplishing this.

M. OBTAINING THE LS COEFFICIENTS ViA ORDER DOWNDATING

The method presented in this section for obtaining {d;}, relies
on the inverse QR factorization of A after its columns have been
rearranged in the manner described in the following paragraphs.
Define, for 1 < i < n, A* = A™Ipit!
X" y], where P*** is the permutation matrix exchanging the :th
and (¢ + 1)st columns of the matrix it operates on, ie., P**! is
the identity matrix with its ith and (¢ + 1)st columns exchanged, It
follows that A*' = [X* 'y x; x4 - Xl

Let the following variables be defined similarly to those in
Section 11, except that the superscript “4” indicates they are with
respect to the (inverse) QR factorization of A7 {1 <3 < n + 1)

Ai = QiRi

3 =(Q)'Q' =diag({J}}7H))

with A™t! = A =
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and . . ,
I wy ws whp]|
W'=(RHY'= 1
0
1

where W' is a column vector of length j — 1. Let q (i =
1,2,---, 7+ 1} denote the jth column of Q, w, ; denote the
kth element of wJ, and qf . denote the kth element of qj.

By analogy with (2), the desired order recursions can be obtained
from the inverse QR factorization of A' (1 < i < n+1): Specifically,
LS coefficient vector, the error vector, and residuval error energy in
the projection of y onto the column space of X' are given by

9"_ 241 +1

41
P —Wit1s € =4q;41,

and o, = Ji. (3}
The following proposition provides an efficient method for deter-
mining W*, Q°, and J*, given W*T', Q"' and J*+2. It is assumed
that W™+ Q"+ and J°* are time updated from their values at
the previous fimestep-using, e.g., the algonthm of [9].
Proposition:

Q' =Q™q,
-Wi :Pi+1Wi+1Qi
and
Ji — (Qi)TJi+IQi (4)
‘where
) VY 0
1+1 &
2 Wit 4
Q= e 4
0 I'nfz
; Jit
g = T ] ]
T+ (with )2
and
witl it+1
. g J
A 12 Ul (5)
I

Proof: Define G = QM'Q and H = prHlywiti Qi
Then GH 1 _ Qz-}-le(Qt) 1R1+1P1.+1 _ Q1+1Rz+1P1+l =
AYHPH — A By the uniqueness of the QR factorization, the
preof will be complete if we show that the columns of G are
orthogonal and H is upper triangular with ones on the diagonal. That
the columns of G are orthogonal follows from

G'e=(Q) Q") Q
= (Qz)TJI+1 Qt
=ding(Ji1, -, L TP i)+ T T
+ IO T, TR ©

which also gives the expression for J°. The last equality follows by
simple algebra after substituting in the expressions in (5). That H is
upper triangular with ones on the diagonal can be easily verified by
substituting (5) into the definition of H, completing the proof.

The previous. proposition and the preceding paragraphs pro-
vide a method for obtaining a solution to all of the various
order LS problems in (1). Starting with the time update of
W (=W"T!), J(=I"1), and the last tow of Q(=Q"*?), the
solution to the nth-order LS problem is immediately available from
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(3) with ¢ = n. Only the last clemcnt of e, which represenits the nth-
order ocutput prediction error (y{ —[21(£) zalt) -+ 2o (t)]6n(t)
at the current time, is available in the time-recursive sitwation. The
solution to all of the lower order LS problems can then be calculated
time recursively by order downdating via the above proposition.

The order downdating can be efficiently. carried out by noting the
following, The solution to the ith-order LS problem is given by the
(i + 1)st columns of W, J* and Q"' It is not necessary to
order downdate any of the columns to the right of the (7 4+ 1)st
column since they are not needed in the subsequent lower order
recursions. In addition, the first i columms of Q'+, W*+1, and J***
are unchanged from those of Q, W, and J. Consequently, the portion
of (4} necessary to obtain all the lower order LS solutions, starting
with the bighest order solution and working downwards, is

T =0+ ()"
i+1

wl 41 Wy,
i1 .
. Wa it - Wa, §
1 2
w; = . — Wi i1
i+1 L,
Wi_1,i41 Wi-1,¢
and -
i _ i1 i+1 .
G, i =@ i1 — Wi i @890 )]

Quantities that do not have superscripts it (7) are from the original
time updated matrices Q, W, and J. The expresswn for J! follows
from (6). qt, ; denotes the last element of q. {63y, {ou}ey, and
{e:}iz1 are then directly available from (3), where e; = yi(t) =
[21() 2o(t) -~ @i(£)]6i(t) is the last element of -€;.

The completc algorithm for time updating W, J, and the last row
of Q and performing ail the order downdating is given in Table 1.
All quantities in the iable are scalars, and the time index ¢ has
been included for clarity. The time updating portion of Table I is
the algorithm of [9], which is very similar to Bierman’s algorithm,
and requires 1.5 + 6.5n + 2 multiplications per timestep. The
additional computational expense of the order downdating portion
is 0.5n + 2.5n — 3 multiplications per timestep. Thus, the total

computational expense for solving all of the LS problems of (1) is

“only 2n® 4+ 9n — 1 multiplications per timestep.

For comparison, consider the algorithm of [5]. Although it was
developed for time-recursive baich LS, parts of it can be combined
with the algorithm of [9] ([9] for time updating the backward predictor

coefficients and [5] for the order recursions) to provide {f;}",
and {e;}i—; time recursively. For the order recursions, we need
15, (29), (33), (33)~(55), (103), and Fig. 1], where (29), (33), and
(103) must be modified for the case of time recursive LS with
exponential weighting. The computatiopal expense for the order
recursions is 2n° +3n — 5 multiplications, which, when used with
the algorithm of [9], results in a total computational expense of
3.5n% 4 9.5n — 3 multiplications per timestep. To the best of our
knowledge, this represents the most computationally efficient of the
existing algorithms for solving the above problem, requiring slightly
less than double the computational expense of the algorithm of this
correspondence. )

IV. CONCLUSIONS

A new time and order recursive method for on-line tracking of
system order and parameters using recursive least squares (RLS) has
been developed. The method relies on the geometric properties of
the QR and inverse QR decomposition in least squares problems and
consists of two parts: a time updating portion, which uses existing
inverse QR decomposition algorithms, and a new “order downdating”
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TABLE 1
ALGORITHMN FOR TIME RECURSIVELY SOLVING THE SET OF 1 LS PROBLEMS IN (1)

Time update W(t), J(t), and the last row of Q{t): (see [9])
initialize x,441(8) = ¥(t), £1() = 910 = (D, ® =1,
and gy(t) = 0 (i=1,2,...n)
1 = 23D + ()
fori=2,3,...,ntl
g(t) = xl(t)+ 2“1x,(t)wjj(t—l)
bi(t) = Qg 3.1 VI
7i®) = %10 — i1 (Ob(0
q;.i(t) = &i(Ovi(®)
5O = 22401 + 10 ()
forj=1,2,...,i-2 (skip fori=2)
£ = gi() + w1 (Ob(D
end
g1t =bi(®)
forj=1,2,.. i1
w; (1) = w; i(t-1) — gi(Deilt)
end _

Perform order downdating:
initialize J i(t) Jusa(t), q?;ll(t)zq;,n+1(t)
and wiil ()=wina(®) 1,2,
fori=nn-l,..,2
. . N 2
ri=ritho+{with®) 7: 1)
a} in=afil O-with®a0
forj=1,2,.. i1
wii®=with(O)-with(Ow;i)

end
end
fori=1.2, ... n set

8. = ~[withy) whtha(®) — with®]"
ei(t)=apih ()
ai()=Til(®)

portion, which calculates the model parameters and residual error
energies for an entire set of models with order varying from one to
some prespecified maximum. model order. The various order models
can then be compared to select the most appropriate one, providing an
efficient means of on-line. tracking of system order and parameters.
Advantages of the new method are its low computational expense
per timestep and its generality, which is applicable to arbitrary RLS
identification sifuations. The total computational expense (2n® +
9n — 1 multiplications per timestep) is only slightly larger than that
of standard RLS (1.5n% + 6.5n + 2 multiplications per timestep
using, e.g., Bierman’s UDUY algorithm) applied to the highest order
model.
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On the Implementation of Nonseparable
Two-Dimensional Haar Wavelet Transforms

Patrick Lenders and Anne Sjistrim

Abstract— We introduce a trandformation o localize the equations
defining the succesdive levels of the Mallar pyramid for two-dimensional
(2-I) Haar wavelets. We propose a methodology for Implemeniing ihese
wavelet transforms in parallel architeciures like systolic arrays. More
specifically, we show that there is a perfect match between the wavelel
algorithms and the multiphase multirate array (MPRA) architectures.

Index Termi— Multirate arrays, systolic arrays, VLSI synthesis,
wavelets,

I. INTRODUCTION

In [3), Grochenig and Madych present Haar bases for n-
dimensional wavelets. Some of these wavelets are monseparable,
which is a characteristic that has advantages over their separable
coumterparts (cf. for example [4]). In the present paper, we propose
a2 methodology for implementing two-dimensional (2-D) Haar
nonseparable wavelets. 'We propose specific implementations that
generalize the Mallat pyramid algorithm (cf. [8]) and whose buffering
and delay requirements are independent of the size of the data set.
The key idea of the present paper is 10 localize the equations defining
the successive levels of the pyramid 10 enable the implementation in
parallel architectures like systolic amrays.

There is a large body of research on the systolic implementation
of 2-D wavelet transforms {(cf., for example, [1], [7]. and [10]), but
| to our knowledge, very litthe work has been done in the area of the
| parallel implementation of nonseparable wavelet transforms.
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1. MULTIRESCLUTION ANALYSIS

Wavelel bases can be constructed through muliiresolution analysis
(MRA, cf., for example, [3]). To define an MRA, we will use the
notion of dilation. A linear transformation A is a dilation if A
leaves £ invariant and has cigenvalues A, such thar )] > 1,
These properties imply that [det A] = ¢ > 2. We will also use
the notion of translation. The tanslator operator 7, is defined by
nfiz) = f(z - ).

An MRA associated with (2", A} is an increasing family ... C
V-1 €V, € Vigu... (j € Z) of closed subspaces of L*( R™) with
the fol!owm,g propertics:

* Ujez V) is dense in L*(R™), and [, V; = {0}).

. j{r} €V, if and only if f{Ax) £ I_.H.

L iai.nvuimuundu Ty for all 4 in 27,

* There exists a function ¢ € V5 (the scaling function) such that

{r,é,-; € 2"} is a complete orthonormal basis for V.

Let ¢ = |det{A}. It can be shown that there exist (g — 1‘
wavelst fanctions ¥ € L7(R") such that their translates {=, ¢, |
i €[L2,....¢= 1],y € Z"} form an orthonormal basis in W,
Grischenig and Madych [3] present a method 1o build a set of (- 1)
wavelet functions from the scaling function.

We will present a generalization of the Haar wavelst in two
dimensions. In this case, the scaling function is the characteristic
function of a measurable set ). The chamacteristic function of a
bounded measurable set () is the scaling function of an MRA
associated with (Z", A) il and only if the sct Q i such that (cf,
[3]) we have the following.

1) QN(Q+k) =0, Yk #£0, and k € 2",

2) There is a collection of ¢ lamice points k; that are repre-
sentatives of distinct cosets in 27 /AZ" such tha AQ =
Ul (ki + Q).

3) Uieza(@ + k) = R".

Let us assume that ¢ is a scaling function for an MRA associated
with (2™, A). We are interested in the case where the scaling function
is the charsctenistic function of a measurable sct . We will show
how we can calculste the wavelet transform of a function f(r)
with a cascade of lowpass and highpass ﬁIm.Durll;u'iﬂun it a
generalization of Mallat's pyramid algorithm, If f{=) is in subspace
V., we have f{z} = L“:(,... depp( A"z = k). We multiply by
$A"x = k) and integrate 10 obiain

oa= [feoz-ndz=g [ gorax=pm

AT 2= kG

where we define f.(k) as the average value of f(x) when = €
ATT(Q + k). We are interested in the 2-D case (n = 2). At the
finest level of detail (for example, r = 0), a compurer image is
composed of pixels. Following [2], we define a grey-scale image of
finite resolution as a map p : P = [0, 1]. where F is the set of
pixels, and u(k) is interpreted as the grey tone of the pixel k, We
postulate that the function (k) is the function fo(k), which is the
average of the function f(x) (the image) for z € @ + k. In other
words, the shape of the pixel approximates the set ). The wavelet
transform of a function f(x) is the st of values b, ; & such that

flz) = 3 biyavi(A'z = k).
N
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