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Statistical concepts and methods have played a critical
role in speeding the pace of industrial development over the
last century. In return, industrial applications have provided
statisticians with incredible opportunities for methodologi-
cal research. The richness and variety of these applications
have had a major influence on the development of statistics
as a discipline; consider, for example, the extensive research
in statistical process control (SPC) and changepoint detec-
tion, dating back to the pioneering work of Shewhart in
the 1920s, and developments in automatic process control,
design of experiments, sequential analysis, reliability, and
so on. Recent efforts by manufacturers to adopt sustained
quality and productivity improvement programs have gen-
crated a renewed interest in and appreciation for statis-
tics in industry. In fact, fundamental statistical concepts
such as understanding and managing variation form the
backbone of popular quality management paradigms and
practices.

Many of the traditional SPC concepts and techniques
grew in response to the manufacturing environments preva-
lent several decades ago. Current advanced manufacturing
and high-technology industries, however, operate under a
much more complex and diverse set of conditions. These
changes have important implications for research directions
in industrial statistics, not only in terms of identifying new
problems and developing new methods, but also in reevalu-
ating the paradigms that inspired earlier approaches. In this
vignette we use applications from automotive and semi-
conductor manufacturing to illustrate various issues and to
discuss future research needs and directions. The discussion
is limited to a few selected topics and is inevitably slanted
toward our own experiences.

1. THE ENVIRONMENT OF
ADVANCED MANUFACTURING

Pressures from the competitive marketplace are forcing
manufacturers to continuously reduce product development
cycle times. In parallel, the underlying technology of prod-
ucts and processes are becoming increasingly complex to
keep up with consumer demands. Thus manufacturers fre-
quently move from design to full-scale production well be-
fore the technology and the fabrication processes are com-
pletely understood.

Consider the manufacture of semiconductor devices. The
critical dimensions of integrated circuits (ICs, or chips) are
very fine: newly developed ICs have features as small as
.16 pm, and any company hoping to remain competitive
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will have plans to reduce these sizes to as little as .01 pm
in the next 5-10 years. Given the scale of these devices, ICs
are fabricated in a “clean room” through a process involving
hundreds of separate steps and lasting several weeks. The
various steps are rarely stable, as is commonly assumed in -
the SPC paradigm, and they frequently interact in unex-
pected ways. Such complexity and instability are typical in
advanced manufacturing applications.

2. VOLUME AND COMPLEXITY OF THE DATA

Massive amounts of process and product quality data
are now collected routinely, made possible by advances
in computing and data acquisition technologies. Much of
these data have special structures; images, functional data,
marked point processes, and high-dimensional time series
are all common.

In IC fabrication, several hundred chips are fabricated
simultaneously on a wafer, and the wafers are themselves
processed in groups called lots. Large manufacturing plants
can start thousands of wafers each week. A wide range of
measurements are made on each wafer, including particle
data, in-line electrical measurements, and final probe test
data even before the wafers are shipped to be packaged.
The final probe test alone generates a vector of 15- to 20-
dimensional measurement for each chip. In all, as much as
1.5 Gb of data per week are gathered in a typical fabrica-
tion. It is well known that problems in different manufac-
turing steps will leave telltale spatial signatures (which can
vary within and across lots), so the wafer map data must be
treated as inherently spatial objects.

In the automotive industry, reducing auto body “dimen-
sional” variation is a major quality challenge. Auto body
assembly involves several hundred parts and more than 100
assembly stations. With the implementation of in-line op-
tical coordinate measurement machines (OCMM), tremen-
dous amounts of dimensional data are now routinely col-
lected. The OCMM measures 100-150 points on each ma-
jor assembly with a 100% inspection rate. These data ex-
hibit both spatial and temporal dependence. Both the vol-
ume and the complexity of the data dictate the need for
fast and flexible methods of analysis, as well as appropriate
environments for computing and visualization.

3. PROCESS MONITORING FOR DATA WITH
COMPLEX STRUCTURE

Although there has been a tremendous amount of re-
search in process monitoring, much of it has focused on
new and more powerful tests for detecting changes in pro-
cess means and variances. The real need in advanced manu-
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Figure 1. A Tonnage Signal Collected From a Sheet Metal Stamping Process. One complete forming cycle is displayed (b). The response Is
the total forming force measured by all the tonnage sensors mounted on the stamping press (a).

facturing applications, however, is in dealing with processes
where the observations have complex structure. Due to the
lack of appropriate statistical methods and software tools
for analyzing such data, practitioners typically force the
problem into a more traditional framework, often resort-
ing to simple overall summary measures that ignore the
structure in the data. In so doing, valuable opportunities for
process improvement are lost.

Figure 1 illustrates a tonnage signal collected from a
sheet metal stamping process. The signal corresponds to
a complete forming cycle and measures the total forming
force from all of the tonnage sensors mounted on the stamp-
ing press. This is a typical example of the kind of Junc-
tional data that are now being collected and used to mon-
itor and diagnose problems in manufacturing processes. A
traditional approach that treats the data as a vector of multi-
dimensional observations and applies standard multivariate
SPC techniques has been shown to be quite inadequate in
this application (see Jin and Shi 1999, 2000). We return to
this application later in the vignette.

Figure 2 demonstrates why spatial patterns are important
in IC data. The rightmost wafer in this figure is a display
of binary (pass/fail) probe test results collected at the end
of the fabrication process. This map can be viewed as the
superposition of the two wafer maps on the left: a cluster of
defective chips representing a special or assignable cause,
with a pattern that helps identify the responsible machine
or area, and (essentially) random defects resulting from the
overall cleanliness of the fabrication line. A traditional SPC

Figure 2. A Graphical Model for Overall Wafer Yield. The delective
chips in the middle wafer occur essentially at random, whereas those
on the lett are “clustered,” reflecting a process problem. The final probe
map is a superposition of these two processes.

approach would simply summarize the observed test results
with a single measure, wafer yield. Such an analysis clearly
misses critical spatial information about yield loss. Hansen,
Nair, and Friedman (1997) described methods for monitor-
ing binary spatial processes to detect the presence of spatial
clustering. Because the null hypothesis of complete spatial
randomness is too simplistic, they use a Markov random
field to characterize null situations with mild spatial clus-
tering. This spatial process monitoring effectively comple-
ments the information from control charts that track only
yield. However, as was shown by Hansen et al. (1999), this
spatial monitoring tool is only the first step in fully exploit-
ing the spatial character of these data.

4. BEYOND PROCESS MONITORING: THE REAL
OPPORTUNITIES FOR STATISTICS

4.1

The primary emphasis in SPC has been on monitoring
and changepoint detection. The development of failure di-
agnostics and root cause determination have typicaily been
considered to be the domain of experts with subject matter
knowledge. In advanced manufacturing applications where
the processes are not well understood, even the subject mat-
ter experts are increasingly relying on in-process and prod-
uct quality data for diagnosing process problems. From a
statistical viewpoint, there is more information in the data
when a process goes out of control than when it is in con-
trol. This is where the real opportunities are and where we
can make important contributions. Unfortunately, statisti-
cians have been slow in recognizing these opportunities,
and much of the exciting work is being done by nonstatis-
ticians in the engineering community.

To provide a concrete example of the role that statistics
can play in this area, consider again the IC application. The
monitoring scheme for spatial data discussed earlier will
trigger an alarm when there is significant spatial cluster-
ing as in Figure 2, but it will not provide any information
about the nature of the clusters. As discussed by Hansen
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et al. (1999), spatial patterns provide tremendous informa-
tion about potential process problems. For example, if the
defects concentrate in the center of the wafer, then there
is likely a problem in controlling the thickness of a chem-
ical “resist” deposited on the surface of the wafer prior
to lithography. Hansen et al. (1999) described statistical
techniques for extracting spatial signatures of defect pat-
terns and using them to immediately identify one or more
likely root causes. These methods have been successfully
deployed within Lucent Microelectronics. Since our orig-
inal involvement in this area, many new techniques have
appeared, and SEMATECH recently sponsored an entire
conference on spatial statistics and pattern recognition in IC
fabrication (see www.sematech.org/public/resources/stats/
Symposium/1999/index.htm).

4.2 Combining Detection and Diagnosis

In high-volume manufacturing environments, there is a
need to diagnose process problems as they occur in real
time. The usual two-stage approach of detection followed
by diagnosis, typically done off-line, is not adequate in
this setting. Ideally, we should integrate statistical meth-
ods with underlying engineering knowledge about potential
faults and failure diagnostics to develop a combined ap-
proach to detection and diagnosis. It is reasonable to view
this as a classification problem in which the different classes
represent different possible faults or states of the “system”
(including the null state). An initial specification of these
states can be obtained during the design and development
stage, and the specifications can be constantly updated as
on-line process and product quality data are collected and
analyzed.

Jin and Shi (1999, 2000) provided a good example of
this in the context of the tonnage signal data for stamping
processes (see Fig. 1). Their methodology segments the ton-
nage signal according to the different stages of the forming
cycle and exploits information about the potential faults and
how they will manifest themselves on the tonnage signal.
For example, a flat peak is the result of a loose tie rod,
whereas an oscillating peak indicates a worn bearing (see
Fig. 1). Jin and Shi (1999, 2000) described a wavelet-based
statistical analysis for feature extraction and used these fea-
tures to do process monitoring and fault diagnosis.

Ceglarek and Shi (1996) and Apley and Shi (1998) de-
scribed another application from the automotive industry
involving “fixture” failure diagnostics. Design and mainte-
nance of the fixturing process is an important problem, as
the “dimensional” variation in the auto body panels depends
critically on the quality of the fixturing process. Ceglarek
and Shi (1996) described how the engineering knowledge
about the fixture geometry and tooling design layout can be
used to develop a model that relates variations in the sen-
sor measurements to ditferent fixture faults. Apley and Shi
(1998) and Dong (1999) showed that incorporating this in-
formation provides tremendous advantage over traditional
SPC methods, not only in being able to detect the faults
quickly, but also in being able to diagnose the problems in
real time.
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In ongoing research on IC applications, we are studying
methods for developing a library of spatial templates that
characterize different process problems and for classifying
observed wafer maps with spatial clustering into one of the
templates.

5. DATABASES, COMPUTING, AND VISUALIZATION

As mentioned earlier, advances in sensing and data ac-
quisition technologies have made it possible to routinely
collect massive amounts of data about manufacturing pro-
cesses. Statisticians must be involved in all aspects of this
data collection process, ensuring that the right kinds of data
are being collected and stored, helping design appropriate
measurement systems (choices of sensors, their location and
number, etc.), assuring data quality, and so on.'We have seen
two trends in data acquisition and storage over the last few
years.

First, the various streams of data currently pool into dif-
ferent databases. Process control engineers have one source
for machine-level routing and maintenance information,
whereas yield enhancement engineers pull postproduction
tests results from another source. Recent years have brought
a move to centralize data collection, management, and ac-
cess, so that factory-wide information soon may be readily
applied to process improvement efforts. Besides creating
methods that make use of these new data sources (an in-
credible challenge in itself), statisticians have an important
role to play in helping design and implement effective data
warehousing solutions.

The second trend that we have observed relates to the
information content being stored in factory databases. As
both the complexity and volume of data increase, space
and computing considerations dictate some form of reduc-
tion before storage in a database. At a practical level, this
can represent a gain in efficiency, because the reduced or
compressed data might be more readily amenable to SPC
methods. (See, e.g., Jin and Shi 1999, 2000 for the use of
statistical techniques for feature-based data compression in
stamping processes.) In general, we expect that statisticians
will be called on to design specialized compression tech-
niques for storing only the most relevant information. This
poses an incredible challenge in that unlike traditional no-
tions of “sufficiency” for a parametric model, departures
from standard operating conditions can be quite complex
and often difficult to anticipate.

Finally, we comment on the role of statistical comput-
ing and graphics in advanced manufacturing. Naturally,
the practical success of any industrial application depends
largely on acceptance of new statistical methods by engi-
neers in the factory. In our IC work, visualization was crit-
ical, as was the development of a convenient computing
environment in which to express quantitative ideas about
in-line and postproduction fabrication data. This led to the
creation of a software platform, called S-wafers, that makes
use of the object-based facilities of the S language. As a ve-
hicle for technology transfer, S-wafers supports a range of
tasks from generating automated reports (disseminated via
the Lucent intranet in the form of HTML documents and
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Java applets) to interactive, specialized analyses on one or
more lots. Engineers familiar with S can immediately aug-
ment their routine data analysis (based on a summary-like
yield) with spatial information. We believe that our experi-
ence is not unique and that industrial statisticians who take
the challenges of technology transfer seriously are regularly
called on to make use of and to create new and novel tools
for computing and visualization that can be transferred to
the engineers responsible for manufacturing.

6. SUMMARY

We close by mentioning two other challenges that face in-
dustrial statisticians. First, a major consequence of the drive
to reduce product development cycle times is that manufac-
turers are moving away from physical experimentation and
testing to computer modeling and CAD/CAM tools. This
presents a wide array of research opportunities for statis-
ticians, ranging from mode} validation and verification to
efficient design and analysis of very high-dimensional com-
puter (or virtual) experiments.

Second, statisticians have too often worked in isolation
and developed fragmented approaches that ignore impor-
tant information and interactions present in sequential, mul-
tistage manufacturing processes. The complexities of ad-
vanced manufacturing environments dictate that we must
work closely with engineers and take a systems approach
to process improvement. Ceglarek, Shi, and Wu (1994), for
examplc, have described a knowledge-based system for *di-
mensional” control that has been very effective in improv-
ing the quality of new auto body assembly processes. The
methodology captures information about the multilevel as-
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sembly process and tactory Jayout through a hierarchical
structural model. Combining statistical analysis of the in-
process data with information about the assembly architec-
ture and sequence allows the root causes of process vari-
ability to be diagnosed quickly and efliciently.

As all of these examples suggest. statistics has an ex-
tremely important role to play in industry as we move into
the data-rich twenty-first century. These are indeed exciting
times for our profession, with a wide array of interesting
research opportunities.
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