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Recent years have witnessed marked improvements in auto-
mated in-process sensing and data-collection technology. Such
technology is widely implemented in manufacturing and often
provides high-throughput measurement—100% inspection for
discrete parts processes or high sampling rate for continuous
flow processes—of a large number of product/process features.
The resulting volume of multivariate data creates tremendous
potential for monitoring and diagnosing quality-related prob-
lems in the manufacturing process.

Consider the autobody assembly process, which provides
a prime example of the use of multivariate in-process sens-
ing for quality improvement. Laser measurement stations built
into the assembly line are now widespread. Figure 1 illustrates
one such measurement station. At this stage, the autobody is
referred to as the Body-in-White {BIW) and consists mainly
of the bodysides joined to the underbody and roof. Each laser
sensor 1S set up to measure a key point or feature on the
autobody and can measure one-, two-, or three-dimensional
coordinates of the point. To measure a point, the laser beam is
fanned into a plane and projected onto the autobody. A charge
coupled device (CCD) array built into the laser sensor then
records an image of the laser on the autobody, and, from
rudimentary image processing and triangulation principles, the
dimensional coordinates can be extracted. Since the measure-
ment station is built into the assembly line, every autobody is
automatically measured. There can be multiple measurement
stations per line, typically located after major subassembly
stations, and as many as 150 measured coordinates per station.
Consequently, a tremendous amount of multivariate data is
available for monitoring and diagnosing root causes of dimen-
sional variability.

The BIW is constructed from a large number of stamped
sheet-metal panels. Usually one or two panels at a time
are added to the subassemblies until major subassemblies
(e.g.. complete bodysides or the underbody) are formed. The
BIW is formed by joining the bodysides to the underbody in
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a framing station and then adding the roof and reinforcement
spot welds. Thousands of tooling elements are used through-
out the process to join the components and subassemblies,
The major tooling elements are fixture components (ie.,
clamps, blocks, and pins, for locating parts) and robotic
resistance spot-welding guns. When tooling elements fail, the
dimensional integrity of the BIW can be severely affected.
The most commonly encountered tooling faults are loose.
worn, or broken locating elements; misaligned weld guns:
and malfunctioning clamps.

A typical BIW has 150 to 200 sheet-metal components,
and the assembly process may involve over 60 assembly sta-
tions, 2,000 locating elements, and 4,000 spot welds. A failure
in any tooling element may be a root cause of dimensional
variability, and several different tooling faults may be present
simultaneously. Following the detection of a fault (or faults)
through effective statistical process monitoring, the goal is to
identify and eliminate the root cause(s) and bring the process
back in control as soon as possible. The complexity of such
production processes presents challenges for root-cause diag-
nosis, which is the focus of this article. We present a technique
for extracting diagnostic information from the measurement
data to facilitate identification and elimination of root causes
of process variability.

Although we illustrate with examples from autobody assem-
bly, similar scenarios exist in many other manufacturing indus-
tries. For example. laser-optical, X-ray, and vision systems
are commonly used in printed-circuit assembly to measure
the dimensional integrity of wet solder paste, solder joints,
and chip features. In more traditional machined-parts manu-
facturing, machine-tool probing attachments for automatically
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laser sensors
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Figure 1. Laser Sensing at the BIW Stage in Autobody Assembly.

inspecting machined parts are increasing in popularity. In both
of these situations, process data and multiple potential causes
of process variability are abundant.

Most of the existing multivariate statistical process control
(SPC) research (see Lowry and Montgomery 1995 and Mason,
Champ, Tracy, Wierda, and Young 1997 for reviews) relates
to process monitoring with limited diagnostic capabilities.
A number of well-researched multivariate statistical analysis
techniques, in particular principal components analysis (PCA)
and factor analysis (Jackson 1980), relate more closely to
the diagnostic problem this article addresses. Hu and Wu
{1992) and Ceglarek and Shi (1996) applied PCA to variation
diagnosis in autobody assembly. PCA works well when a
single fault is present but yields results that may be noninter-
pretable when multiple faults are present (see Sec. 2). Since
multiple faults are a common occurrence in many processes,
including autobody assembly, PCA has severe limitations.
Factor-rotation techniques (e.g., see Jackson 1981; Johnson
and Wichern 1998) attempt to improve “interpretability” with
multiple factors (i.e., multiple faults) by forming orthogonal
linear combinations of the factors obtained from PCA. The
method presented in this article bears resemblance to factor
rotation. In contrast to existing methods, which use somewhat
artificially contrived measures of interpretability [e.g., the
varimax criterion (Johnson and Wichern 1998))], the proposed
method uses a more physically meaningful interpretability
criterion that produces results that relate more directly to the
actual faults. This representation facilitates the ultimate goal
of monitoring and diagnosis—to track down and eliminate
root causes of variation.

There has been significant prior work on analysis of

dimensional coordinate data. Dowling, Griffin, Tsui, and

Zhou (1997), and the discussion that followed provided
an excellent overview. Most of the existing research (e.g..
Etesami 1988: Hulting 1992; Wang, Gupta, Hulting, and
Fussell 1998) focuses on modeling geometric surface features
of manufactured parts and fitting parameterized models to
the measurement data. The model is fit to single parts,
separately, and the model parameters are used to evaluate the
conformance to tolerance of the geometric features for each
part. The method presented in this article has significantly
different emphasis—data from a sequence of parts are used
collectively to analyze part-to-part variation patterns and to
subsequently diagnose root causes of the variation.

The remainder of the article is organized as follows.
Section 1 describes the model used to represent the effects
of process faults on variability. Section 2 discusses the
capabilities and limitations of PCA and factor rotation for
process diagnosis. Section 3 discusses methods for estimating
the number of faults that are simultaneously present. Section 4
presents the main results of the article, a technique for
estimating the effect of each individual fault when multiple
faults are present, and an example. In Section 5, the statistical
properties of the estimates are discussed.

1. A FACTOR-ANALYSIS MODEL FOR
PROCESS VARIABILITY

One of the keys to diagnosing variability faults is the incor-
poration of a suitable fault model. This section presents the
model structure that is assumed throughout this article and
illustrates with an example from autobody assembly.

Let x = [x,, x,...,x,]” be an nx 1 random vector that
represents a set of n measured features from the product or
process. Let x;,, i = 1,2,..., N, be a random sample of N
observations of x. It is assumed that x obeys the model

(1)

where C = [¢;,¢;,....¢,] is an n x p constant matrix,
v={v,vp,..., vp]T is a p x| zero-mean random vector
with covariance matrix 2, =1, and w is an n x 1 zero-mean
random vector that is independent of v and has covariance
matrix 2, = o*I. I denotes the identity matrix of appropriate
dimension.

The interpretation of the model is that there are p separate
uncorrelated faults that affect the measurement vector X. Each
fault has a linear effect on x that is dictated by the corre-
sponding column of C. Together, c,v; describes the effect of
the ith fault on x. The direction of ¢; indicates the nature of
the variation pattern caused by the ith fault. Specifically, it
indicates how the fault causes the different measured features
to vary with respect to each other. ¢, will be referred to as the
“fault geometry” vector. Since the elements of v are scaled to
have unit variance, ¢; also indicates the magnitude or severity
of the ith fault. w represents the aggregated effects of mea-
surement noise and any inherent unmodeled variation in the
manufacturing process. It is assumed that p < n and that C
has full rank p. The focus of this article is on faults that act
as sources of variation, as opposed to mean shifts. All random
variables are assumed to be zero mean. If not, the mean of x
should be estimated and subtracted from the data.

The objective is to estimate the number of faults p that are
contributing to process variability, as well as each of the p
fault geometry vectors in C, using the set of multivariate
observations of x. The presumption is that, if C can be
accurately estimated, it may be used to diagnose each of
the p faults and aid in the identification and elimination of
their root causes.

The model and the objective of estimating C are similar
to the standard linear orthogonal factor-analysis problem
(Johnson and Wichern 1998), in which the elements of v are
referred to as the factors, C is referred to as the factor loading

x=Cv+w,
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matrix, and X, is typically only assumed to be diagonal.
For the method presented in this article to produce esti-
mates of the fault geometry vectors that have the desired
interpretability. it is necessary to assume X, = o’I. This
can be assumed without loss of generality if %, is known
up to a constant scalar multiple. Although this assumption
may not be reasonable for typical applications of factor
analysis. it 1s often appropriate for SPC of manufacturing
processes. because essentially it is equivalent to assuming
that a sufficient quantity of data has been collected when the
process was known to be in control (i.e., when there were
no faults present so that x = w). In this event, the sample
covariance matrix of the in-control data would provide an
estimate of X . Before applying the method of this article.
the data would first be transformed via 27 '/?x, where £-"* is
any positive definite square root of 2. The noise covariance
matrix for the transformed data would then be the identity
matrix. After estimating C for the transformed data. the
estimates should be transformed back by premultiplying by
31’2 before interpreting the results.

Although factor analysis is widely used in the social sci-
ences and other fields,. it is seldom used as a tool for diagnos-
ing variability in manufacturing processes. The applicability
of the model is illustrated with the following example from
autobody assembly. Figure 2 shows the layout of 26 measure-
ment points (labeled 1-26 in the figure) taken at the BIW stage
of the assembly process. All three coordinates (X, y, and z in
the figure) are measured for each point, except for points 10
and 23, for which only the x and z coordinates are measured.
Thus. the measurement vector x has a total of n =76 elements.
The cross-member. roof header, and plenum (in addition to the
roof, underbody, cowl, and additional roof bows, which have
all been omitted from the figure for clarity) join the left and
right bodysides to form the BIW.

Before the bodysides and connecting members are welded
together, they must be accurately located with respect to one
another with fixtures and then clamped into place. The body-
sides are positioned in the x—-: plane with pins rigidly attached
to the fixtures. Each pin mates with either a hole or slot in the

-
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Figure 2. Measurement Layout at the BIW Stage.
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autobody panel so that the panel position is constrained but not
overly constrained. Through repeated use (a thousand panels
per day may be placed into each fixture), the pins frequently
become worn or loose. In this event, the panel will no longer
be constrained to lie in its proper location when it is placed
into the fixture. For example, suppose the pin that constrains
the right bodyside in the x direction becomes loose. When a
bodyside is placed into the fixture, it may be positioned too far
forward (in the positive x direction) by, say, one millimeter.
When it is subsequently clamped into place and welded to
the rest of the BIW, it will retain the incorrect position. For
the next autobody, the right bodyside may be positioned too
far aftward (in the negative x direction). From autobody to
autobody. the loose pin will cause a distinct variation pattern
in the BIW dimensions. The elements of x that represent mea-
surements in the x direction on the right bodyside will reflect
this pattern when the BIW is measured. If we refer to this
loose pin as fault 1, v, is the random variable representing by
how much the right bodyside translates in the x direction for
each autobody (scaled to have unit variance). All elements of
¢, that do not correspond to x direction measurements on the
right bodyside would be 0. All elements that do correspond
to x direction measurements on the right bodyside would be
the same constant value, equal to the standard deviation of the
bodyside translations.

Likewise, suppose a second pin became loose or worn and
caused the right bodyside to rotate in the x—z plane before
being welded to the BIW. The second fault would also cause
a distinct variation pattern in the BIW measurements that is
well represented by Model (1). The ¢, vector would be deter-
mined by the measurement layout and the geometry of the
panel and fixture. Apley and Shi (1998) provided details on
how to analytically model the effects of tooling faults and
a justification for the linear structure of Model (1). Techni-
cally, the rotation of a panel is nonlinear in the parameters but
is closely approximated as linear when small angles of rota-
tion are involved. The linear model structure is quite versatile
and provides a good representation of a variety of commonly
encountered faults, including those that are not rigid body
translations and rotations. This includes variability introduced
by stamping, welding, and material-handling faults, in which
case Model (1) can be viewed as a linearization of a more
exact nonlinear model (Aplev and Shi 1998).

We point out that it is not necessary to analvtically model
the faults to use the method presented in this article. This is
the main distinction between this work and that of Apley and
Shi (1998), which assumed that an exhaustive set of potential
faults can be analytically modeled off-line to obtain the C
matrix. The problem then reduces to one of fault classifica-
tion, where. based on the on-line measurements. one seeks to
identify which of the modeled faults are present. The method
of this article attempts to estimate C directly from the data,
with no a priori knowledge of the faults, and use the results
to gain insight into the root causes of the variability.

To uniquely estimate C with no a priori knowledge of the
faults. an additional assumption must be made regarding the
structure of C. The reason this assumption is necessary is dis-
cussed in Section 2. It is assumed that C has the ragged lower
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riangular form

Ciy
€1 G
C=|%1%263 . (2)

cp. 1 cpf_’ Cp. I cp_ I

where ¢, ; is an n; % 1 vector with n, > 2 and 2 on =
The interpretation of this structure is that there exists a sub-
group of n, measurements {X;, X2 .-« Xy } that are affected
hy only one fault and not by the remaining p — 1 faults. Fur-
thermore. there must exist a second subgroup of n, measure-
ments {X, _y Xy s200 0 X, o) that are affected by only one
of the remaining p — 1 faults, Note that these measurements
may also be affected by the first fault. There must also exist
4 third subgroup of measurements affected by only one of the
remaining p — 2 faults, and so on. In the previous example,
I S <, } could be taken to be any set of z-direction
measurements on the right bodyside. Such a group would be
affected by fault 2, which causes the right bodyside to rotate,
but not by fault 1, which causes only an x-direction translation
of the bodyside and does not affect the z-direction measure-
ments. Upon appropriate reordering of the measurements and
faults. C has the structure in (2). If the faults are such that C
does not have the assumed structure (2), the method of this
article cannot be applied. When n is large relative to p, this
structure is often satisfied in autobody assembly. An additional
example in which this is the case will be given in Section 4.3.

o LIMITATIONS OF PCA AND FACTOR ROTATION

From the model structure and assumptions, the covariance
matrix of X is

.= E[(Cv+wW)(Cv+w)] =CC +0o’L (3)
Let z.i=1.2,....1 denote an orthogonal set of unit
norm eigenvectors of S, LetA.i=1 2.....,n, denote the

corresponding eigenvalues. arranged in descending order. It
follows from (3) that A, = Ay = -~ 2 A, > ol = =
A,,=--=A, and span {z.}l., = span {edr,

PCA can also be used tc decompose S in terms of its
eigenvectors and eigenvalues as

n P n
s =Y azz =2 (A - o2z, + 0 ) 1
i=1 i=1

i=1
=Z,[A,— o 1Z,+ a’l, 4)

where Z, = (2,22, - - ,z,).and A, = diag{Ays Aze - Ap)
Comparing (3) and (4), it is obvious that one possible estimate
of Cis Z,[A,— o1]'/2. Other possible estimates that would
preserve the covartance structure are Z,A,— o*1}'/2Q, where
Qisany pxp orthogonal matrix.

When there is a single fault present. PCA is an effective tool
for diagnosing process variability. 2, has a single dominant
eigenvalue and a unique estimate of C(=¢,) is ,[A, — o)
o can be taken to be any of the smallest n— 1 eigenval-
ues. In practice, one must work with the sample covariance
matrix. In this case it may not be clear how many eigenval-
ues are “dominant,” and thus how many faults are present.

- e

Methods for estimating the number of faults from the sample
covariance matrix are discussed in Section 3.

When multiple faults are present (p > 1), the fault geometry
vectors will not correspond one-to-one with the eigenvectors
unless the fault geometry vectors happen to be orthogonal.
PCA does provide an estimate of the number of faults that
are present (refer to Sec. 3). but estimation of C is less
straightforward. As discussed previously the estimate is not
unique. Treating the eigenvectors as (scaled) estimates of
the fault geometry vectors may yield‘nonimerpretable results
and provide little useful diagnostic information. To improve
interpretability. a commonly used procedure 1S factor rotation
(Jackson 1981: johnson and Wichern 1998). The standard
factor-rotation problem is to find the p X p orthogonal matrix
Q so that the resulting estimate of C (typically of the form
7,A,°Q) provides the clearest interpretability. What is meant
by “interpretability” is subjective. but the most widely used
criterion is the varimax rotation (Jackson 1981: Johnson and
Wichern 1998). The varimax criterion for best interpretability
is that each column of Z,,A},"ZQ should consist of elements
that are either very large in magnitude or very small in
magnitude with as few moderate-sized elements as$ possible.

For diagnosis of manufacturing variability, there is little jus-
tification for the varimax criterion. The Q matrix that results
in the clearest interpretability would be such that Z,JA, -
o?1]'/2Q = C, whose columns are the physical fault geome-
try vectors themselves. That is. knowing the fault geometry
vectors for the actual faults will surely provide the most effec-
tive root-cause diagnosis. As shown in Section 4, C may be
uniquely identified if it has the structuré assumed in (2).

3. ESTIMATING THE NUMBER OF FAULTS

The method for estimating C that will be presented in
Section 4 requires an estimate of the number of faults present.
If p faults are present, A=Az Z A oP=A =
= A,. Thus, a natural means of estimating p 18
[A})_, of the sample covariance

matrix %, Throughout. the symbol «~ will be used to
denote an estimate of 2 parameter. A number of methods
for estimating p have been suggested, the most popular of
which can be classified as either maximum likelihood based
or information based. Strictly speaking, these methods require
that the data are multivariate Gaussian.

Anderson (1963) developed results for the asymptotic distri-
bution of eigenvectors and eigenvalues of a sample covariance
matrix for Gaussian data, which yields an asymptotically valid
(for large enough N) likelihood ratio test of the null hypothe-
sisthat A, =A== A,. for some fixed m, versus the
alternative hypothesis that not all of the n — m smallest eigen-
values are equal. Note that when m > p the null hypothesis
holds. For m=0,1,...,n—1.one calculates the test statistics

A(m)=N(n- m)log (g'—")

m

Apor =
to look at the eigenvalues

where a, and g, are the arithmetic and geometric means,
respectively, of the n—m smallest eigenvalues of S .. Under
the null hypothesis. A(m) is asymptotically chi-squared dis-
tributed with (n —m)(n—m+ 1)/2—1 df. A set of thresh-
olds n(m), m= 0.1,....n—1 are specified, typically based
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on the null distribution. The suggested procedure for estimat-
ing p is. increasing m sequentially from 0, to choose p to be
the first m for which A(m) < n(m).

To improve the chi-squared approximation to the null dis-
tribution for finite N, Lawley (1956) introduced the modified
statistic

|, m 2(n—-m)*+(n—m)+2
A’“""(m)“[l N 6N (n —m)
1 & a :
_ _Om Am),
+N§</\,-—a,,,)] (m)

which has the same asymptotic chi-squared null distribution
with (n —m)(n—m+1)/2—1 df. The procedure for estimat-
ing p is the same.

Alternative procedures for estimating p are based on
the Akaike (AIC) and minimum description length (MDL)
information criteria introduced by Akaike (1971a), Schwartz
(1978), and Rissanen (1978). For the problem of estimating
the number of significant factors in PCA, the AIC was applied
by Akaike (1971b, 1987) and Wax and Kailath (1985) and
the MDL criterion by Wax and Kailath (1985). The AIC and
MDL tests require calculation of, form=0,1,...,n—1,

AIC(m) = N(n—m)log ( > +m(2n - m),

m
and

MDL(m) = N(n—m)log( >+m(2n— m) log(N)/2.

m
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Using the AIC or MDL criterion, p is chosen to be the m that
minimizes AIC(m) or MDL(m), respectively.

One major advantage of using either the AIC test or the
MDL test is simplicity. For the likelihood ratio tests one
must select, somewhat arbitrarily, the set of thresholds. The
information-based tests do not require this.

Certain properties of the various methods of estimating p
are well known. The likelihood ratio methods often lead to
overestimating p and choosing a higher number of factors
than can be interpreted (Basilevsky 1994). The MDL and AIC
criteria are less dependent on the validity of the asymptotic
chi-squared approximation. On the other hand, the AIC esti-
mate is not consistent (in the sense of yielding the true number
of faults with probability 1 as N approaches infinity), whereas
the other three methods do produce consistent estimates (Wax
and Kailath 1985). The AIC method slightly overestimates p
asymptotically.

For some problems of typical scale (i.e., typical n, N, and p)
in autobody assembly, we present a Monte Carlo comparison
of the different methods. Ten thousand Monte Carlo trials were
used for all simulations, and the generated data were Gaussian.
Note that, as shown in Appendix A, the distribution of each of
the four test statistics depends on only n, N, and {)\ / U"} -
and not on the individual eigenvectors. Tables 1 through 3
show the probability mass functions of p for various cases
when at least one fault is present, using AIC, MDL, and A, 4,
respectively. The values are rounded to three decimal places.
The results using the unmodified likelihood ratio statistic A
are not shown. Except for the case in which n =40 and N =

Table 1. Probability Mass Function of p From AIC for Various n, N, and {);/a°}}_,

p; = probability {p = j}

n N A/, Po Py P2 P3 P Ps Ps
40 50 {11,11,11} 0 0 0 .951 .046 .003 0
40 50 {5,5,5} 0 .002 .067 .892 .037 .002 0
40 50 {3,3,3} .084 334 .394 .18 .008 0 0
40 50 {11} 0 975 .024 .001 0 0 0
40 50 {5} .006 .973 .02 .001 0 0 0
40 50 {3} .365 621 .014 0 0 0 0
. 40 100 {11,11,11} 0 0 0 .941 .058 .001 0
40 100 {5,5.5} 0 ¢] 0 .947 .052 .001 0
40 100 {2,2,2} .294 .446 22 .039 001 0 0
40 100 {11} 0 .962 .038 0 0 0 0
40 100 {5} 0 .961 .039 0 0 ¢] 0
40 100 {2} .608 379 .013 0 0 0 0
40 500 {11,11,11} 0 0 0 .906 .091 .003 0
40 500 {3,3.3} 0 o] 0 914 .083 .003 0
40 500 {2,2,2} 0 0 0 927 .071 .002 0
40 500 {11} 0 914 .085 .001 0 0 [¢]
40 500 {3} 0 917 .082 .001 0 [¢] o]
40 500 {2} 0 .918 .081 .001 0 0 0
200 250 {11,11,11} 0 0 0 0 0 0
200 250 {5,5.5} 0 0 0 0 0 0
200 250 {3.3,3} .003 122 567 .308 0 4] 0
200 250 {11} 0 1 0 0 0 0 0
200 250 {5} 0 1 0 0 0 0 0
200 250 {3} 181 .819 0 0 0 0 0
200 800 {5,5,5} 0 0 0 1 0 0 0
200 800 {3,3,3} 0 0 0 1 0 0 0
200 800 {2,2,2} 0 .009 319 672 0 0 0
200 800 {3} 0 1 0 0 0 0 0
200 800 {2} 047 .953 0 0 0 0 0

NOTE: The numbers corresponding to the actual value of p are indicated by bold type.

TECHNOMETRICS, FEBRUARY 2001, VOL. 43, NO. 1



A FACTOR-ANALYSIS METHOD

Table 2. Probability Mass Function of p From MDL for Various n, N, and {A,/0?}Y,
p, = probability{p = j}
n N A ey, Po ps p: P: p. Ps Ps
40 50 {11,11,11} 0 0 .008 992 0 0 0
40 50 {5.5.5} .39 405 168 037 0 0 0
40 50 {3.3,3} .995 .005 0 0 0 0 0
40 50 {11} 0 1 0 0 0 0 0
40 50 {5} 577 423 0 0 0 0 0
40 50 {3} 997 .003 0 0 0 0 0
40 100 {11,111} 0 0 [¢] 1 0 0 0
40 100 {5,5.5} .005 .029 233 733 0 0 0
40 100 {2.2.2} 1 0 0 0 0 0 0
40 100 {11} 0 1 0 0 0 0 0
40 100 {5} 047 953 0 0 0 0 0
40 100 {2} 1 0 0 0 0 0 0
40 500 {11111} 0 0 0 1 0 0 0
40 500 {3.3.3} 0 0 0 1 0 0 0
40 500 {2,2.2} 931 067 .002 0 0 o] 0
40 500 {11} 0 1 0 0 0 0 0
40 500 {3} 0 1 0 0 0 0 0
40 500 {2} .96 .04 0 0 0 0 0
200 250 {11,11,11} 0 0 0 1 0 0 0
200 250 {5,5,5} 995 .005 0 0 0 0 0
200 250 {3,3.3} 1 0 0 0 0 0 0
200 250 {11} 0 1 0 0 0 0 0
200 250 {5} 1 0 0 0 0 0 0
200 250 {3} 1 0 0 0 0 0 0
200 800 {5,5,5} 0 0 0 1 0 0 0
200 800 {3,3,3} 1 0 0 0 0 0 0
200 800 {2,2,2} 1 0 0 0 0 0 0
200 800 {3} 1 0 0 0 0 0 0
200 800 {2} 1 0 0 0 0 0 0

NOTE: The numbers corresponding to the actuat value of p are indicated by bold type.

500. this method greatly overestimated the number of faults
and will not be considered further. For the A4 method, all
thresholds were chosen to be the upper .001 percentile of the
appropriate chi-squared distribution. The values of e
were chosen to span the range of what can be considered small
(in terms of the tests having difficulty detecting the faults) to
large (in terms of the tests detecting the faults with high prob-
ability). Note that for the case p = 1. cc, /ot =\ /o7 = 1.
¢)c, /o’ can be viewed as the total variance (summed over
all n measurements) due to the fault, divided by the average
variance (averaged over all n measurements) due to the noise.

Table 4 shows the probability of correctly concluding that
p =0 when there are truly no faults present. This situation is
of particular interest if an eigenvalue test is used to detect the
presence of a fault. In this event. the probabilities shown in
Table 4 are equal to 1 minus the Type 1 (@) error. The values
in Table 4 are also rounded to three decimal places.

The results in Tables 1 through 3 agree with the fact that
the MDL and A,,,, methods provide consistent estimates of p,
whereas the AIC method asymptotically overestimates p (con-
sider the n = 40, N = 500 cases). On the other hand, the AIC
method was generally able to detect much smaller magnitude
faults than either the MDL or A, methods. For example,
consider the case when n =40, N = 100. and three faults
are present with {A;/0%}_, = {5.5.5}. The AIC method cor-
rectly estimates p with .947 probability, whereas MDL and
_Amod correctly estimate p with only 733 and .639 probabil-
ity, respectively. Consider also the cases in which n = 200,
N =250, and {A,/0?}_, ={5.5.5). (3.3.3}. {5}, or (3}. In

these situations. the AIC method provides much more accurate
estimates of p. Furthermore, for n large and N not sufficiently
large, Ao greatly overestimates p. Although not shown in
Table 3, for n =200 and N =250, Ap often estimated p to
be greater than 20.

These observations also extend to the case in which there
are no faults present, as shown in Table 4. The alpha error is
generally very low for the MDL method and slightly higher
for the AIC method. Note that for all cases the Type [ a error
is O to three decimal places for the MDL method. For large
N/n (e.g., n =20 or 50. N = 500), A (Which is consistent)
has a lower Type I a error than AIC (which asymptotically
overestimates p). For small N/n (e.g., n=100, N = 120),
AIC still has a very small Type | a error, whereas that for
A g 18 close tO 1.

In light of this, we suggest using either the AIC or MDL
methods. If small-magnitude faults are expected and need to
be detected, the AIC method is more suitable. Otherwise, the
MDL method is preferable.

4. UNIQUE IDENTIFICATION OF MULTIPLE FAULTS

41 Estimating the Fault Geometry Vectors

Assume that x follows Model (1), where C has the structure
in (2), and that X, is known. Assume also that one has identi-
fied a subgroup of measurements that are affected by a single
fault, a procedure for which is given in Section 4.2. Define
the “latent” covariance matrix X, to be the component of £,
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Table 3. Probability Mass Function of p From A, for Various n, N, and {A,/a?}_,

p, = probability{p = f}

n N {A/a%Y, Po P; P Ps P4 Ps Ps

40 50 {11,11,11} 0 0 .033 .867 .034 .021 .021

40 50 {5.5,5} .002 AN 462 319 .04 .022 016

40 50 {3.3,3} .289 31 .202 099 .038 .022 .01

40 50 {11} .005 .878 .047 .027 .014 .011 .005

40 50 {5} 315 573 .047 021 016 .007 .01

40 50 {3} .678 212 .045 .02 .016 .008 011

40 100 {11,11,11} 0 0 0 .998 .001 .001 0

40 100 {5.5,5} 0 0 .358 .639 .002 .001 0

40 100 {2,2,2} .858 12 017 .004 .001 0 0

40 100 {11} 0 .999 0 .001 0 0 0

40 100 {5} 108 .891 0 .001 0 0 0

40 100 {2} .985 .013 0 .002 0 0 0

40 500 {11,11,11} 0 0 0 .998 .001 .001 0

40 500 {3.3.3} 0 0 0 .999 .001 0 0

40 500 {2,2,2} 0 .012 .669 318 .001 0 0

40 500 {11} 0 .998 .001 0 0 .00t 0

40 500 {3} 0 .998 .001 0 .001 0 0

40 500 {2} 419 578 .002 0 .001 0 0
200 250 {11,11,11} 0 0 0 0 0 0 0
200 250 {5,5,5} 0 0 0 0 0 0 0
200 250 {3,3,3} 0 0 0 0 0 0 0
200 250 {11} 0 0 0 0 0 0 0
200 250 {5} 0 0 0 0 0 0 0
200 250 {3} 0 0 0 0 0 0 0
200 800 {5.5,5} 0 0 0 .995 .005 0 0
200 800 {3.3,3} 0 .003 461 523 .004 .003 .002
200 800 {2.2,2} .289 475 .208 .025 .003 0 0
200 800 {3} .301 .693 .005 .001 0 0 0
200 800 {2} 939 .055 .005 .001 0 0 0

NOTE: The numbers corresponding to the actual value of p are indicated by bold type.

that 1s due to the underlving latent variables that represent the
faults; that is,

S, =Z,[A, -0 1|Z,=CC =3/ ¢c

C
Gy

C

P

!

[ci.lcvll'“

0

]+ 0

0
pYES

(5)

The last equality follows from the assumed structure of C.
Fronr (5). the upper left n, x n, block of X, is the rank-1

Table 4. Probability That p = 0 When No Fault Is Present,

for Various n and N

Probability {p = 0}

n N AIC MDL Ao
20 50 926 1.000 998
20 100 911 1.000 999
20 200 879 1.000 999
20 500 858 1.000 999
50 75 991 1.000 952
50 150 978 1.000 998
50 250 968 1.000 999
50 500 947 1.000 016

100 120 1.000 1.000 016

100 200 1.000 1.000 979

100 500 992 1.000 1.000

200 250 1,000 1.000 .000

200 500 1.000 1.000 961
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matrix ¢, ,c, ,, which has a single nonzero eigenvalue A, | =
, . . —1,;2

¢, ¢, , with eigenvector z, , = ¢, A, |". Thus, the first fault

geometry vector can be obtained from X, via

!/" c‘.l
Z A" G P , 0 0
2 = . [Cl.lcz.l"'c,xx]*‘ .
0 : 0 s»
Cp.l
€
’ i
¢ (¢ ¢ ) C
X =| | |=c.
0 :
Co

After identifying ¢, deflate the latent covariance matrix via

r 0 0
Io-ce =) ¢ =
i
[ 1:: [ 0 El:l
where
€
, ¢, 0 0
D B N [T R N .
: - T 0 E':”
c, -

The upper left n, x n, block of =¥ is the rank-1 matrix
¢, »¢, 5. which has a single nonzero eigenvalue A, , = ¢ -¢C; »
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. —1/2 - . .
with eigenvector z, , = €1 2A; ;- Thus. ¢. can be obtained via

0
[ZL —clc/l] Z:.:)\:-.]z2
0
0 0 0 0
c 5
= ) [0& c]+ 0o 0 O
c' 0o 0 =
p.2 N
0

The entire process can be repeated. each time deflating the
latent covariance matrix with the most recently identified fault
geometry vector until ¢, is identified. At the final stage, C is
completely determined.

In practice, ¥ will not be known, and the sample covariance
matrix 3, must be used instead. We suggest using the preced-
ing procedure with all quantities replaced by their estimates.
Let p denote an estimate of p. For/r\n Z, and A, from the p

largest eigenvalues/eigenvectors of 2., and estimate o° via
(6)

Anderson (1963) showed that (6) is asymptotically the maxi-
mum likelihood estimate of 0. An estimate of =, would then
be 3, =Z;[A; — °1]Z;. At each stage. the estimate of ¢; is

0

ez A (7)

[ R P ]

0

)‘1.: and zi.

; denote the dominant eigenvalue/eigenvector pair
of the n, x n; block of the deflated latent covariance matrix.
corresponding to the subgroup of measurements affected by
only one of the remaining faults. The subgroups can be iden-
tified by the procedure given in Section 4.2.

Although the upper left n, x n, Eubmatrix of X has rank 1,
the corresponding submatrix of X, will not necessarily. Its
rank will be close to 1. however, if X is sufficiently close to
... One eigenvalue of the upper left n, xn, block of ., will
then be much larger than the others, and it should be clear
how to choose A, ,. Likewise for A, i=2.3.....p This
issue is related to whether the subgroups affected by only one
fault have been appropriately selected (see Sec. 4.2).

4.2 Identifying Subgroups

The accuracy in estimating the fault geometry vectors
depends on, among other factors. whether the subgroups of
measurements affected by only one of the remaining faults
can be identified. This section discusses a simple procedure
to accomplish this.

I {x xa oo x, } is a subgroup affected by only one fault.
the submatrix of . corresponding to this subgroup is the
matrix ¢, ,¢, , having rank 1. Thus, to identify the first sub-
group it is necessary (O find a set of measurements whose
latent covariance matrix has rank 1. Define R 1o be the latent
correlation matrix associated with 2, obtained in the usual
way by scaling each element of X, by the square roots of
the corresponding diagonal elements. A submatrix of X will
have unit rank if and only if all elements of the corresponding
submatrix of R have unit magnitude. Consequently. finding
a subgroup of measurements whose latent covariance matrix
has unit rank reduces to finding a subgroup whose latent cor-
relation matrix has all elements equal to either 1 or —1.

In the event that ¥ is known, this subgroup can be tound by
inspecting the elements of R If X_is estimated. no subma-
trix of l’i( will have all unit magnitude elements with positive
probability. Therefore, ﬁ(, must be searched for submatrices
whose elements are all close to | in magnitude. If # is large.
we recommend using a clustering technique with the mag-
nitude of the latent correlation coefficients as the simularity
measure. We have found agglomerative hierarchical methods
with complete linkage to work well in practice (Everitt 1993).

The result of the clustering will be a set of candidate sub-
groups. one of which must be selected as the first subgroup
{x,. %s.. ... x, }. To accomplish this, we recommend calculat-

ing the eigenvalues of the submatrices of ., that correspond to
each candidate subgroup. For notational convenience, denote
the eigenvalues for a given subgroup (of size n;) as (AL,
arranged in descending order. We suggest choosing the sub-

group that maximizes the criterion
A
— n B
(=D~ 2l Aj

This criterion is the ratio of the largest eigenvalue to the aver-
age of the remaining eigenvalues, and helps to ensure that the
rank of the corresponding submatrix of X 1s close to 1. After
identifying the first subgroup. the first fault geometry vector is
estimated and X, is deflated as described in Section 4.1. The
preceding procedure can then be repeated on the deflated latent
covariance matrix to identify the second subgroup, and so on.

(8)

43 Fault Interpretation and lllustrative Example

The estimated fault geometry vectors can provide powerful
diagnostic tools for identifying root causes of process vari-
ability. as illustrated with the following example. Consider
again the measurement layout on the BIW described in
Section 1 and shown in Figure 2. The sample consists of
N = 200 autobodies. produced and measured over a four-hour
period. The measurements are in units millimeters. All three
methods discussed in Section 3 indicated that p =4. X, was
formed from the four dominant eigenvalue/eigenvector pairs.
with 62 = .040 estimated from the remaining 72 eigenvalues.
Using the clustering procedure outlined in Section 4.2, several
candidate subgroups were found. The subgroup {11X, 13X,
15X, 16X, 17X, 18X, 24X, 25X} was selected first since
it maximized (8). The eigenvalues of the corresponding
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submatrix of £, were {.2873,.0008,.0004,.0004,0.0,0.0}.
and the corresponding submatrix of R was

T 1 .994.997 991 .995 985 .993 998
994 1 .994 .985.997 982 .998 991
997.994 1 .996.998.994 997 999
.991.985.996 1 996 .989.993 .995
.995.997 .998.996 1 .987.999 .995
.985.982.994 989 .987 1 .989.994
1993998 .997 .993.999 989 1 .994
| .998.991.999.995.995 994.994 1 |

Thus, it appears that subgroup 1 is affected by only a single
fault. ¢,, estimated via (7), is shown graphically in Figure 3.
The length of each arrow is the “6-sigma” value, due to fault 1,
for that coordinate; that is, the arrow length is six times the
magnitude of the corresponding element of ¢,. To make the
plot less cluttered, an arrow was omitted if the 6-sigma level
was less than .25 mm (deemed insignificant from a practical
viewpoint). Fault 1 appears to affect only fore/aft direction
coordinates, except for a relatively minor effect on point 1Y.
Moreover, it appears to translate all points on the vehicle by
approximately the same amount in the fore/aft direction. Since
the fault does not appear to cause the autobody panels to
vary relative to each other, measurement error was suspected
to be the cause. Investigation revealed that, in the measure-
ment station, the vehicle's position is fixed via a pin/hole/slot
combination in the underbody, as described in Section 1. The
same underbody hole is used to locate the vehicle throughout
the assembly process, prior to measurement. Through repeated
use, the hole in each underbody was significantly enlarged in
the fore/aft direction, allowing the vehicles to translate in the
fore/aft direction when placed into the measurement station
fixture and resulting in the measurement error represented by
fault 1. The problem was solved by changing the design of
the pin/hole. ~

After estimating the first fault, = was deflated and
the procedure was repeated. The clustering procedure
produced as a second subgroup {1X, 2X, 3X, 4X, 5X,
6X, 7X, 8X, 9X]. The eigenvalues of the corresponding
submatrix of the deflated latent covariance matrix were
{.5205, .0018, .0008, 0, 0. 0, 0, 0, 0}, and the corresponding

// T /
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" i 1 —
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Figure 3. Graphical lllustration of ¢, for the Example.
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Figure 4. Graphical lllustration of ¢, for the Example.

correlation matrix mostly contained elements greater than .99
in magnitude. ¢,, estimated via (7), is shown graphically in
Figure 4. It appears that the second fault also affects only
fore/aft direction points. In contrast to fault 1, fault 2 affects
only points on the right bodyside, causing each point to
translate by approximately the same amount. Thus, it appears
that fault 2 results in the right bodyside being incorrectly
positioned with respect to the rest of the vehicle, identical to
the variation pattern described in Section 1. This observation
led to the suspicion that, in the station in which the bodysides
are joined to the roof and underbody, the pin that locates the
right bodyside in the fore/aft direction was loose or worn.
Further investigation revealed that it was loose.

The latent covariance matrix was deflated again. and the
procedure was repeated twice more to estimate the two
remaining fault geometry vectors. Although not shown,
faults 3 and 4 affected the y-direction measurements pre-
dominantly and also had clear interpretations. One of the
faults arose from a misaligned robotic weld gun. Together.
the four fault geometry vectors resulted in a C matrix with
the structure (2).

These results can be compared with standard PCA, in which
the four dominant eigenvectors of %, are directly plotted. Two
of the eigenvectors. , and Z,, are shown in Figures 5 and 6.
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Figure 5. Graphical lllustration of z, in the Example.
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Figure 6. Graphical lllustration of z, in the Example.

Interpretation of Z, could possibly have led to the same con-
clusion as ¢,, although Z, makes it appear that the fault causes
the right bodyside to translate by larger amounts than the rest
of the vehicle. ¢, more clearly represents the actual fault. Z,
would be difficult to interpret, since it appears that the fault
causes the right and left sides of the vehicle to move in oppo-
site directions. _

In this example, C can be written in the form ’Z\f,[Kﬁ —
6°1]'°Q, where Q is a 4 x 4 orthogonal matrix, since the
method of this article provides a C that preserves the latent
covariance structure. Specifically, the way C is formed, CC' is
always equal to X . Thus, the method of this article represents
a form of factor rotation, in which the criterion for “best”
interpretability is that the columns of C are the actual fault
geometry vectors.

As in PCA, a breakdown of the percentage of total sample
variation due to each fault can be easily obtained. The
estimated variation due to the ith fault is cic;. The total
variation is the trace of X, or. equivalently, the sum of its
eigenvalues. For the preceding example, the total variation
is 5.18 mm?. The percentages due to faults 1 through 4 are
15.5%, 10.3%, 10.4%. and 5.6%, respectively. Together, the
four faults account for 4i.8% of the total sample variability.

5. STATISTICAL PROPERTIES

The statistical properties of the estimated fault geometry
vectors are complicated, in general, and depend on a number
of factors that include n, N, p, o, {c,}/_,. The fact that the
estimates depend on which measurements are selected as the
subgroups, which involves user subjectivity, further compli-
cates the analysis. Some results can be obtained. however, in
special situations. It is assumed that the data are normally
distributed.

Of particular interest is the case of only one fault present
and the number of faults correctly estimated. Then i(_ has

unit rank, and ¢, = \/}M — 627,. Although the distribution of
eigenvalues and eigenvectors of a sample covariance matrix
1s, in general, complicated, Anderson (1963) provided some
asymptotic (for large N) results when the data are normally

distributed. Using these results, the following asymptotic
expression for the accuracy of ¢, is derived in Appendix B.

E[ e, —¢ ||:]
fle, 2 . )
(1+7vy) Y-

I 9)
:N{(n—l)y(l—f-y)-k 5 +2(n—1)"

K

where y = o/c|¢; can be viewed as the inverse of a “'signal-
to-noise ratio.” since ¢;¢, is the total variance due to the fault.
For large n. the third term can be neglected. and (9) reduces

t© 1+vy =y
K N {n‘)’-r 5 ]

Clearly. increasing sample size N reduces k and improves
accuracy. It can be verified that the partial derivative of (10)
with respect to y is always positive. Consequently. holding n
and N fixed and increasing the signal-to-noise ratio (decreas-
ing y) always reduces «, which is intuitively obvious. The
effects of n are less obvious. Equation (10) seems to imply that
increasing n increases k and decreases accuracy. y, however,
may also change with n, since ¢, will increase in dimen-
sion and ¢|c, may change. As n increases, if the additional
measurements are not affected by the fault, then y remains
constant, and « does increase. Thus, adding irrelevant mea-
surements will decrease accuracy.

If the additional measurements are affected by the fault, it
is convenient to define ¥ = o*/(n~'¢\¢;) = n7y, which can be
viewed as the average variance due to the noise, divided by
the average variance due to the fault. As n increases, sup-
pose the additional measurements are affected by the fault in
such a way that y remains constant. Substituting y = Yy/n
into (10) reveals that the partial derivative of k with respect
to n (holding ¥ and N fixed) is always negative for n > I.
Consequently, adding measurements that are affected by the
fault (to the point that ¥ does not decrease) will reduce and
improve accuracy.

The general case in which p > 1 is more difficult to analyze.
Suppose that the MDL method, which is known to yield a
consistent estimate of p. is used so that asymptotically

P
3 =Z,[A,-6Z, =3 (A -2k,

P

e

(10)

i=1
For the case that A, > A, > --- > A, the results of Anderson
(1963) apply directly, yielding for i =1,2,...,p,

- ( 2,\2>
A ~N(A, =),
N

and

{A,.2,)7_, and &7 are clearly consistent estimates. Therefore,

EN

so is I,. Since {¢,}/_, are calculated entirely from X, they
also are consistent estimates, providing that the measurement
subgroups have been correctly identified.

For the case in which A, = A, for some 1 <j <p,
Anderson's results do not apply. In fact, z; and z;,, are not

even uniquely defined when their eigenvalue has multiplic-
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ity 2, although the projection operator onto their eigenspace
is. Consider the extreme case in which A, = A, =---= A, =A.
Note that Z,Z’, the projection operator onto the eigenspace
of A, is well defined. Tyler (1981) showed that

WN[ZZ,-1,2)~ —=|zzB1-2,2]

+[i-z,2,]Bz,2,}.

where the convergence is in distribution as N — oc. Here.
B is an n x n multivariate normal matrix with zero mean
and covariance given by cov([B], . [BL. ) =2 ][], +
[2(],‘1;[2(]/‘# Thus, Z,Z, is a consistent estimate of 7,
Since A, and ¢° are consistent estimates of .\, = Al and o

respectively, = is also consistent. Similar arguments can be
applied when some, but not all, of (A}, are equal.

i=1

6. CONCLUSIONS

This article presents a method to facilitate the identification
and elimination of root causes of variability in manufacturing
processes. The method extracts diagnostic information from
typically large quantities of multivariate process measurement
data. As technology for automated in-process measurement
becomes less expensive, more accurate, more reliable. and
more widely used by manufacturing industries, there are many
applications in which the proposed method could be used to
reduce variability. The effectiveness of the method has been
demonstrated with an example from autobody assembly.

The problem formulation and objectives are closely related
to the factor-analysis problem. The variability patterns (the
fault geometry vectors) must be estimated from process data
with no a priori knowledge of the faults, except for an assumed
model structure. In contrast to traditional factor-analysis meth-
ods, much greater emphasis has been placed on the underlying
physical model that describes the effects of the faults on pro-
cess variability. The criterion for “rotating™ the factors is that
the results should correspond closely to the actual faults, as
opposed to artificial criteria that seek to aggregate the maxi-
mum amount of variability into the minimum number of vari-
ables. This allows more physically meaningful interpretations
that better facilitate the overall goal of identifying and elimi-
nating the root causes of variability.

The applicability of the method depends predominantly on
whether the linear (or linearized) Model (1). with the assumed
structure (2) for C. adequately represents the effects of pro-
cess faults. Ultimately. this depends on the underlyving physics
of the process and the faults. although we believe that the
model provides a reasonable representation of many manu-
facturing processes. Additionally. the method requires some
degree of subjective judgment by the user in identifying the
measurement subgroups. The development of more “black-
box" methods that remove the subjectivity and relax the model
assumptions would be a valuable contribution.
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APPENDIX A: INVARIANCE OF
THE ORDER-SELECTION CRITERIA
WITH RESPECT TO THE EIGENVECTORS

This appendix proves that the distributions of A(m),
Apoa(m), AIC(m). and MDL(m) depend only on n, N, and
{A,/¢*}"_, and not on the individual eigenvectors. Assume
that x is Gaussian. Consider the eigenvector decomposition of
3. in (4). Expanding X in terms of its principal components,
it follows that x is distributed as Zu, where u follows a
multivariate normal distribution with covariance matrix A,

and Z=1[Z,,Z,..... Z,]. Then.

S =Y (x-%0(x-%)

= Z[Nl_— g(u, —u)(y —ﬁ)’]Z"

where X and u are the sample averages for x and u, respec-
tively. Since Z is an orthogonal matrix, the eigenvalues of X
are the eigenvalues of the matrix in brackets, the distribution
of which depends only on n, N. and {A,}/_, and not on Z.
Now suppose that y = a'/*x for some positive constant a,
so that the covariance matrix of y is ZaAZ'. The eigenvalues
of 3, are distributed as the eigenvalues of X, multiplied by
the constant a. By inspection of each of the four test statistics.
it is clear that the constant drops out of the distribution. Con-
sequently, if all eigenvalues of X are divided by a constant,
say o, the distribution of each of the test statistics remains
unchanged. Therefore. the distribution of the test statistics
depends only on n. N. and {A,/o}/_,. Noting that A, /o~ = 1,
fori=p+1,p+2..... n, completes the proof.

APPENDIX B: DERIVATION OF
THE ACCURACY MEASURE «

This appendix derives the asymptotic expression for « in (9)

when p = p =1 and the data are Gaussian. Note that ¢, =
xenp=

;\I —g? z,. From Theorem 1 and equation (3.10) of Ander-
son (1963). the following results hold asymptotically:

. 243
A ~N<A,. —N—‘>

s ., 20

g ~N 0".————)
(H—I)N
A A

7, ~N|z. =2 — 77

] (lNé(AA-AI)3AA>
Y O L )

:N(zl. i : ,zkzk>
N i (eep)”

:N<ZI.MZW;.>. (B.1)
N
where N(e, ) denotes the (scalar or multivariate) normal
distribution. It also follows from theorem | of Anderson
(1963) that A,, ¢°. and Z, are asymptotically independent.
Consequently,

5

~ - a2 N
/\]—t‘r~N(c’,c]. |:(c;c,+(f')'+ g D (B.2)
N n—1
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and is independent of Z,. The result A, =cj¢; + ¢~ has been
used to obtain (B.2).

Lemma 1. Let x be a scalar random variable with mean
w, and variance o;. Let y be a random vector. independent
of x. with mean g, and covariance X,. and define z = ty.
Then Efz] = p p,. and cov(z) = E[x*]S, + o p p,. where
cov(z) denotes the covariance matrix of z. The proof is
straightforward.

Lemma 2. Let x be a scalar random variable with mean
w and variance o>, where u # 0 and o is sufficiently small.
Then E[yx] = pu'? —o?/(8u*?) and var[/x] = o/ (4p).
where var{e) denotes the variance of a random variable. The
proof follows by taking a second-order Tavlor expansion of
JX around /it to approximate E[J/x). The expression for
var[/x] follows by noting var[/x] = E[x] - VAN

From (B.2) and Lemma 2.

Ioumm—— }\ oyl
var[\/ A, _&2} >~ V_ar_(A_‘_._Q ~ ¢
4E(A, —0?) 2

|

il [(1+y)3+L].

n—1

(B.3)

z

Applying Lemma 1 to ¢, = V/}‘l —¢%z,. and using (B.1)
through (B.3).

trace(cov(&,)) = E[A, — 67 ]trace(cov(Z,))
+var[\/i, - &3]trace(E[i,]E[i’l])
o Y(l+Eyn-1)
S O AL S—

Icl N
¥
n-—1

'

cie .
+ | (1+7)+

IN

since trace(z,z)) = 1. i=1.2...

_ [“él '_clH:] E[trace{(él —¢))(¢, —c)'}]
k=F S =
e, ?

¢

_ trace(cov(¢,))

N trace{(E[c,} — ¢, )(E[¢,]—¢))'}
cpc

L U4y Y
—N|:(n Dy(1+v)+ 3 +2(n-—l):|

. trace{(E[é,] — ¢, (E[¢,] ~¢,)}
c.c, A

¢ ¢

(B.4)

5

Using Lemmas 1 and 2 and the fact that ¢, = (c’,c,)"'z,,

Efe]—e = E[\,/;\] - &:]E[il] —(cye))' "z,

L var( = G7) AT
= (clc]) - S(C'lcl)\‘ zl_(cl(:\) Zl
[var()«, -6 ]
= —55 |4
8(cie, )"

so that

trace{(E[él]*C,)(E[é,]—c‘)’}2_1_\:1““(/\1-[73)}:
c\c, T e, L 3(ee? |
(B.S)

From (B.2) and (B.3) it tollows that the second term in
(B.4) is inversely proportional to N2, whereas the first term is
inversely proportional to V. Asymptotically. the second term
can be neglected. which gives (9).
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