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ABSTRACT

We developed procedures of modeling tolerance
stackup for multi-stage machining process. As
demonstrated by a block part machining
process, product tolerance and process
selection are simultaneously determined by a
general two-step optimization procedure.
Further, design improvement is performed by
analyzing the sensitivity of process parameters.

INTRODUCTION

Tolerance synthesis is a challenging issue in
mechanical design. Successful synthesis is
mainly affected by two conflicting goals, that is,
functional requirements of a mechanical
assembly and cost effectiveness of a candidate
manufacturing process to fabricate the product.
To meet the two goals, traditionally two types of
tolerancing activities are conducted sequentially.
First, given specifications of resultant or
assembly dimensions, design tolerances are
allocated to specify the permissible amount of
variation for component dimensions. Second,
manufacturing tolerances are devised for in-
process dimensions in order to select a capable
and economical manufacturing process. A huge
body of literature can be found for design
tolerancing (Taguchi, 1986; Greenwood and
Chase, 1987; Lee and Woo, 1990; among

others). Relatively fewer studies are seen for
manufacturing tolerancing. The major approach
is tolerancing charting (Wade, 1967). A good
review of the two types of research can be found
in (Bjorke, 1989; Chase and Greenwood, 1988;
Voelcker, 1998).

The least studied area is simultaneous
tolerancing for both design and manufacturing.
The problem justification is that early
consideration of manufacturing constraints will
reduce the number of design changes. Bjorke
(1989) used process parameters to describe the
process capabilities and derived manufacturing
tolerances from design tolerances. Zhang et al
(1992) was initiated to select the process among
alternatives. The Worst Case (WC) model was
used to describe the stackup of design
tolerances, while the boundaries of
manufacturing tolerances were associated with
alternative processes. Zhang (1997) modeled
each component tolerance as variation stackup
of a set of machining operations and treated the
assembly tolerance as stackup of component
tolerances. In this line of research, there are
mainly two approaches to obtain tolerance
stackup models. The first approach is to use WC
model, Root Sum Square (RSS) model, or
interpolations of these two models. One
weakness of this approach is that process
variation is oversimplified. Tolerances and
process parameters are linked by means of



certain distributions. Therefore design burden is
eased at the cost of increased difficulties in
selecting an appropriate process. The second
approach is Monte Carlo simulation which needs
to specify component distributions in advance. A
third approach is to model the impact of process
parameters on tolerance stackup based on the
first principle, such as the kinematic analysis of
part imperfection caused by fixture errors (Rong
and Bai, 1996; Cai et al, 1997; Choudhuri and
De Meter, 1999) and modeling of machine tool
errors (Chen et al, 1998). For multi-stage
processes, tolerance or variation stackup
models have also been developed for assembly
processes (Mantripragada. and Whitney, 1999,
Jin and Shi, 1999) and machining processes
(Huang et al 2001; Djurdjanovic and Ni, 2001;
Zhou et al, 2001). However, very limited work
has been done to apply this approach for
simultaneous tolerance synthesis, especially for
a multi-stage machining process. Among them,
Ding et al (2002) used the developed state
space model to concurrently allocate component
tolerances and select fixtures for assembly
processes.

This paper is motivated to extend the third
approach to tolerance synthesis for multistage
machining processes. All the concepts and
procedures are demonstrated through a block
part example, though the methodologies are
general in nature. The tolerance stackup model
is developed in Section 2. In Section 3,
simultaneous tolerance synthesis is formulated
as a Linear Programming (LP) problem. In
Section 4, design improvement is performed by
analyzing the sensitivity of process parameters.
it is further generalized as a general two-step
optimization procedure. The work is summarized
in Section 5.

DEVELOP TOLERANCE STACKUP MODEL
FOR MULTISTAGE MACHINING PROCESSES

Two fundamental issues need to be
addressed in deriving the model: the way of
modeling tolerance and the way of linking
tolerance with process parameters. As to the
former aspect, Vectorial Dimensioning and
Tolerancing (VD&T) scheme is chosen because
it provides a clear distinction among size, form,
and orientation for each part surface
(Martinsen,1993). However, the formulation of
tolerance synthesis is also given for Geometric
Dimensioning and Tolerancing (GD&T), scheme
by considering its wide applications. As to the
linkage, homogenous transformation approach

is extensively applied to model setup and cutting
operations and their influence on part accuracy.

Example Description and Tolerance
Modeling

The chosen block part is composed of five
surfaces: S$;-Ss (Fig. 1a). The given design
specification is Dsx8; for the clearance between
S, and Ss. Under GD&T scheme, the typical
tolerance synthesis problem is to determine the
tolerance 8; and &, for component dimensions
D, and D,. The problem for VD&T is formulated
later in Section 3.

A two-operation process is given to achieve
Ds+5s. The first operation is to use datum
surfaces S, and S, to mill S, where S; and S,
are assumed to be perfect. Along with S3, the in-
process dimension and tolerance D¢x0; Iis
affected by face milling 1 and fixture 1. In
operation 2, S, and S; are chosen as datums to
mill Ss. Meanwhile, the in-process D,+d, and
resultant Ds;+0; are generated. In terms of
dimensional tolerance, the total transmitted
variation to the resultant tolerance d; is the so-
called tolerance stackup. Per the weakness of
current tolerance stackup models for multi-stage
machining processes, a casual model is
developed to describe (1) how face milling 1 and
fixture 1 affect S;, and (2) how face milling 2,
fixture 2, and S5 affect Ss.
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Under VD&T scheme, each part surface S; is
specified by its orientation (ny, ny, nz), location
(Px» Pyi» Pz), and size. (Size component is
ignored for planes.) Then the block part is
denoted as X = (S; S; ...Ss)" with S; = (n, ny,,
Nz, Pxi» Pyi, Pz). FOr instance, S; is represented
as (0,1,0,0,0,0) in the part coordinate system
(PCS: xoy) (Fig. 1a). Tolerances are specified
for surface orientation, location, and size.

Modeling of the First Operation (No Datum
Error)

Next we build up the linkage between the
machined surfaces S; and process parameters.
The starting point is to describe setup and
cutting operation. Figure 1b shows the nominal




setup scheme in operation 1. Since positioning
the raw workpiece X, into fixture 1 can be
viewed as transforming X, from the PCS (xoy) to
the fixture coordinate system (FCS: xogy),
homogenous transformation matrix (HTM) can
be used to model setup. For surface S; in X, the
HTM for nominal setup is expressed as
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with (a,B,y) and (x,y,z) being the amount of
rotation and translation from the PCS to the
FCS. Let Hgy denote HTM for nominal setup 1.

The parameters in Hs, i.e., (a,B,y,x,y,z), are
nominal values determined by process design.
Due to process variation, these values may
deviate from their nominals and the part will be
positioned differently. The setup deviation can
be viewed as an additional transformation after
the nominal setup. HTM can still be applied to
catch the setup deviation. Let Hg denote HTM
induced by deviations of a fixture. He has the
same form as Hs However, under small
deviation assumption, R is often simplified as
L -y -8\

r 1o (3)
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Let (aBry) and (x,v.,29) be the amount of
rotation and translation caused by fixture
deviations. Then Hg is written as
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2a SETUP DEVIATION CAUSED BY FIXTURE 1,
2b (RIGHT) FACE MILLING OF S; IN OPERATION 1.

Suppose pin deviations of fixture 1 are (3L,
dL; dL4) (Fig. 2a), where negative value of 8L,
represents the decrease in pin height.
Deviations lead to the nominal part position
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(dash line) transformed to the final position (solid
line). Hg, is derived as
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» Xfl = pytyl +hyyt +6Plx,
ya = —Pxt Y1 —hay1 +6Ply , 6Plx=6l3 +13y,
and 0Ply = 6L3 — Ly y| (Appendix |).

As a result, surface S; in X, is transformed as
HeHs:[S; 0] after setup 1.

Suppose the machine tool coordinate system
(MCS: xoyny) coincides with the FCS. Denote Sy
as S; in the MCS. At face milling 1, Sz is to be
removed and ideally becomes Szy. The nominal
values of Sz, is given by design and Ssom is
computed as [Ssom 0]' = Hsi[Ss 0]" (Fig. 2b).
Note it is not HeHs1[Sa 0]", because the ideal
tool path movement is independent of fixture
errors. The machine tool errors transform Ssgy to
Siiv (Fig. 2b). Similar to fixture error model
(Eq.(4)), the machine tool error is modeled as
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where (0m,Bm,Ym) and (Xm,Ym,:Zm) are the amount
of rotation and translation caused by machine
tool errors. Hy;y, the deviation of face milling 1, is
expressed by Eq.(7)
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because in face millings 1 (and 2), (aq, Bm) @nd
(xm» Zm) do not affect surface orientation and
location.

With Hyi, Saim is derived as [Sam 0]7 =
Hy1Hs1[Sa0 O]T. Transforming Ssiv to the PCS,
the surface Ss is represented as

[S31 0]" = (Hs1) '(He1) 'HuiHs1[S5 0] . (8)
Since  Ss=(Nx3, Ny3, Nz, P Pya
pz3)=(0,1,0,0,D,4,0), S3; is computed as
g +0y3 Y1~ Ny3Ym
Ny3 = 031 + 06 Yt (g)
073
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Pz



Modeling of the Second Operation (with

Datum Error)

Setup 2 is more complicated than setup 1
because of deviation in datum Sj;. Let Hs, be
the HTM representing nominal setup 2. To
mode! the real setup 2, first we assume datum
errors cause a transformation Hp, in addition to
Hs.. Note Hp; is an identity matrix | because of
no datum error in setup 1. Second, the deviation
of fixture 2 generates another transformation
He. Hence § in Xy is transformed as
HeHooHso[S: 0]". Then we need to identify He,
and Hpp.

Hp, transformation caused by datum errors,
takes the same form of Hr and Hy. Let (04,B4,Ya)
and (xq4,Ya,Zq) are the amount of rotation and
translation caused by datum errors. The general
form of Hp is given as
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Figure 3a shows the nominal fixture 2. Due to
deviations in Sj;, there exists an angle vy;
between the x axis and Hso[S3; 0] (in dash line
in Fig.3a). The part should additionally rotate by
y» and translate by (x4, Ya2) SO as to contact with
the three pins. Hp,, which is caused by datum
Ss4, is derived as
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where X =xfl —h1y] —py3v1 +ya vl Dy +hppn +
L3y —py372 +¥Yf1 Y2 +D1 ¥l +Py37Yml

Y2 =-Yfl +Ynl W21 —P3v1 P71 —he 2 —pa 72 +
X172 +hoyml +Px3Yml | and Y2 =Yml —71
(Appendix 11).

For fixture 2 errors (Fig. 3b), He; is derived in
the same way as Hg;. Note that the high order
terms of the errors are ignored.
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3a NOMINAL FIXTURE 2 AND DATUM ERRORS,
3b (RIGHT) FIXTURE 2 ERRORS.

For the face milling of Ss, Hyy is expressed in
the same way as Hyi. Ssqy is computed as [Ssim
0]" = HuoHe2HpHs2[Ss0 0] . Transforming Ssim to
the PCS, Ss; is derived as
[Ss1 O]T =

(Hs)" (Hoz) " (He2) "HueHr2HozHs[Ss0 0] (13)
Since Sse=(Nys, Nys, Nzs, Pxss Pys, P25)=(0,1,0,0,-
D;,0), S5y is solved as
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N5+ 0572 + 06 Y3 ~ s Ynp
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Final Part Variation

The final product X, becomes (S; S, Ss1 S
S.;)". Dimensions D/, D), and D can be
derived from X.. Without measurement errors,
D/, D}, and D; are

D{=Dj+ym +h —(1+575L3+ﬂ6u
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The process parameters in the example are
denoted as ©® = (AL, Als;, AL, ALL;, AlLg,
ALLs, Ym1s Ymis Ym2s Ym2) T Not losing generality,
those ten parameters in © are assumed to be
independent random variables and their
standard deviations are denoted as 0o = (O3,
O3, OL4, Oym1, Oymi, OLL1, Ows, OLid, Oymz, Oymz2) T
O represents process variability and determines
variations of S3; and Ss;. Under above settings,
the covariance matrices of S3; and Ss4, denoted
as Kss and Kgs, can be calculated. Their
diagonal terms diag(Kss) and diag(Kss) are
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Similarly, variances of D], D, and D can be
calculated as
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Since dlag(Ksa) and diag(Kss), together with
Op1, Opz, and Ops, can be directly related with
tolerance (e.g., s = 60ps), the process modeling
in this paper presents a tolerance stackup model
which can describe how the process parameters
affect part accuracy and tolerance stackup. The
physics of tolerance stackup can thus be
explained. Although the model is based on the
block part example, the approach is generally
applicable to general multistage manufacturing
processes (Huang et al, 2001).

SIMULTANEOUS TOLERANCE SYNTHESIS

The simultaneous tolerance synthesis
problems are formulated in Table 1. The optimal
process is defined as a process satisfying the
design specification at minimum tooling cost.
Usually larger 0 is desirable, because tooling
cost, i.e., fixture and machine tool cost, will be
less expensive. The objective function is either
to minimize total tooling cost or maximize og.
Maximizing o is preferred in this paper based
on the following considerations: (1) At design
stage, tooling cost is hard to be precisely
estimated. On the other hand, maximizing oq
usually means minimizing tooling cost; (2) More
important, it is clear to reflect the sensitivity
issues of 6. This point will be elaborated in next
section.

Table 1 Problem Formulation

Under VD&T scheme Under GD&T scheme

Given: Given:

 Nominal final part geometry | « Nominal final part geometry
{i.e., X2 ) and dimensions {i.e., Xz ) and dimensions
(D1, Dz, D5} (Ds, Dz, D)

« Nominal setup geometry {L., | » Nominal setup geometry (L,
Lo, Ls, L4, hq, hg, LLy, LLo, LLs, L, La, La, by, hy, LLy, LLo, LLg,
LLa, hiz, has) LLy, hiz, h22)

e Process sequence and | e Process sequence  and
operations operations

= Specifications for orientation | ¢ Resultant tolerance &5
and location
components(Uma, Upa, Uns,
Upys)

Find: Find:

» The optimal process 0o to | e The optimal process ge
fabricate the part. « Component tolerance 8, and

[

To find an explicit objective function, one
option is to maximize a variation component of
surfaces or dimensions with the maximum
number of 0g, €.9. Oys or Ops. However, the
problem with this choice is that some of the
process variables in 6o might not be close to
their optima. Fortunately this drawback can be
compensated by design improvement. A two-
step optimization procedure will be presented
later in Section 4.

For the block part, the optimization model
under VD&T scheme is to maximize
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Uns and Upgs need not to be considered,
because the location component of a plane is
free in x direction. Under GD&T scheme, the

optimization model is to maximize &2, subject to
2
2 2 2 2 Ly 5
‘T% =OTyml t*Tym2 + h% TYmi1 * h220%m2 +(l +? ‘ o3+
2)
L2, LL (LLy
—’ o4+ 1+-—| ‘TLL3+ 7| (TLL4<(52/()
LLy LL;

Lz )
0'@ >0 (19)
Both of the models are in LP form, because
their constraints and objective functions are

linear in variance o;’s. Additional constraints
might be considered from subject matter



expertise. For example, process variation g is
often bounded with g < ug. Or equal precision
is assumed for three pins in a fixture, i.e., o1 =
Ows = 0w and O 3= OLa= Oy

For illustration, assign L;=100mm, L,=300mm,
Ls= 4=200mm, hy=h,=10mm, LL;=100mm, LL,=
300mm, LL3=LL4= 200mm, h12=h22=10mm, D1=
295mm, D,=300mm, Ds=5mm, Upxa=
0.0001radiant, up,s=0.02mm, uns=0.0003radiant,
Upys= 0.06mm, and §;=0.36mm. To compare the
two operations, the geometrical information of
two fixtures is purposely chosen to be the same.
O; is selected as 6ugs so as to compare the
results under two schemes. Additional constraint
iS Ug= (0.5mm, 0.5mm, 0.5mm, 0.5mm, 0.5mm,
0.5mm, 0.01radiant, 0.01radiant)".

Table 2 Optimal Process o

Fixture #1 Machine #1
QOym1 Sym1

69

(o8] O3 OLa
VD&T 0.006 0.006 0.005 0.00003 0.012
GD&T 0.102 0.013 0.102 0.00154 0.009

o Fixture #2 Machine #2
° [~ [ i =0T Tiis
VD&T 0.077 0.004 0.077 0.004 0.077
GD&T 0.102 0.013 0.102 0.013 0.102

The optimal solution ¢, is given in Table 2.

Tooling tolerance can be obtained as 6 6 . Since

ou1 and o1 do not appear in objective functions
and constraints, there are no solutions for these
two process variables. Although insensitive to
tolerance stackup, they are chosen as
oui=Max(o.5,004) and o 1=Max(oLs,0us) to
avoid violating the small deviation assumption.
Component tolerance ; and &, are solved from
Eq.(17) as 0:=60p:1=0.25mm and 0,= 60p.=
0.25mm, i.e., the resultant tolerance is equally
distributed to component dimensions. Difference
is expected if extra tolerances are considered,
e.g., the parallelism between S3 and S:.

SENSITIVITY ANALYSIS AND DESIGN
IMPROVEMENT

Sensitivity analysis is to study how the
tolerance stackup reacts differently to the
changes of n process variables ©. A variable
with high sensitivity has big impact on tolerance
stackup. Design improvement is to study how
the process design can be optimized in terms of
minimizing tolerance stackup. These two topics
are closely related.

The changes of process variables are
described by og or ¢, and the tolerance
stackup is modeled by diag(Ks) in Section 2.
Suppose that tolerances are specified for m
elements, e.g., Ny, Ny, Pya, Pys, D1, D2, and Ds.

The variation of element i (i < m) has been
modeled as a linear function of o, i.e., a’ o,
where the jth entry of a, denoted as a;,
represents the sensitivity of the jth process
variable in ¢ (j < n). Generally speaking, the
larger the coefficient a;, the bigger the impact
has the jth process variable on element i. The
sensitivity matrix A is defined as A=[a; a; ... @]
and an example of A is shown in Table 3.

Table 3 Sensitivity Matrix for Block Part

lement Operation 1 Operation 2
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Process variables which have variable
coefficients are related to setup geometry
information, e.g., L; Ly, and h,. Their sensitivities
vary with setup geometry. For instance, small
L/L, ratio will reduce the transmission of fixture

variaton o;, and o;, to o, . However, a
»

process variable with relatively smaller
sensitivity coefficient does not necessary take
larger tolerance in a specific tolerance synthesis
problem. The reason is that a set of constraints
need to be satisfied in the optimization. The
example in Section 3 is reused to illustrate this
point. Suppose L= LL; and only these two
dimensions are varied. o, is obtained by solving
Eq.(18) under different L,/L, ratios. As shown in
Fig. 4, though the sensitivity of o}, to o, is not

less than that of o,, o], could have relatively

larger values when L;/L,<0.25. (STD in Figs. 4
and 5 denotes standard deviation.) Under the
problem setting, Fig. 4 also indicates that the
precision of machine tool 2 can always be lower
than that of machine tool 1. Compared with
fixture 1, precision requirement for fixture 2 is
generally lower. Besides, another interesting
finding is that cjm is very robust to the changes

of Ly/L; ratio. These properties are determined
by the design specifications or the constraints in



the optimization model.
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4. 6, UNDER DIFFERENT L4/L> RATIO.
Existence of variable coefficients suggests
possible opportunities to change the sensitivities
and to reduce tolerance stackup by adjusting
setup geometry. In another sense, process
design could be improved. This spurs the idea of
two-step optimization procedure to maximize oe.
(i) Given certain setup geometry, let a, be the
a; with maximum dimension in sensitivity
matrix A, i.e., am = Max[Dim(a;)] for i=1,...,m.
Solve o, under the LP formulation

T
(m)

2
Acg <b (20)
0 <09 < Up.
where b is a constraint vector.

(i) Change process design or setup geometry
within permissible ranges and repeat step 1.

Among a set of {6, }, choose the one meeting
other practical considerations, such as cost.

Max a_, 6., s.t.

L, = 250mm x10° L, = 250mm

ﬂ!
| WJ

e
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L, Rallo
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1

08
L, Ratio

5 ¢, UNDER L,=250MM AND 350MM.

Due to practical constraints, the number of
iterations in step 2 will not be large. For
instance, L, will be limited by the length of
workpiece. Further, setup geometry, e.g. Ly, can
be divided into several levels to reduce the

number of iterations and the complicatedness of
comparing 6,’s.

For the example, besides varying L;(=LL,), we
choose three levels for Ly(=LL,), i.e., L.=
250mm, 300mm, and 350mm. Figures 4 and 5
show the computation results. Suppose the
practical consideration is to lower the precision
of machine tool 1 so as to reduce tooling cost.

As o is very robust to the changes of L./Ls

ratio, the magnitude of o, determines the

selection. The maximum oy,m is achieved at
level L,= 250mm with o,m= 0.0184mm and
L/L,=0.672. Both tolerance synthesis problem
and design improvement are achieved.

CONCLUSION

This paper developed the procedures of
modeling tolerance stackup for multistage
machining processes. A two-step optimize
procedure is proposed to simultaneously
determine component tolerances and process
selection. Further, design improvement is
performed by analyzing the sensitivity of process
parameters.

APPENDIX |

In the FCS (xory) of Fig. 2a, vy, is the angle
that the part in dash line rotates around z axis
(pointing out of the paper) to have the same
orientation as the part in solid line. By fixture 1

8L, — L,
layout, y; is approximated as V1 = —’4{2_

Denote the low left corner of the part as P1
and (5P1,, 6P1,) as P1’s displacement caused
by fixture error (8L; 8L; OL;). By geometric
relationship, dP1, and 6P1, are expressed as
OPlx= 6Ly + L3y ’ and 6Ply=6L3~Liyr

in the PCS (xoy), let S¢ = (N, Ny1, Nz1, Px1, Py1s
pz1) with location (p,, py1, Pz1) representing the
coordinates of P1. Hg[S; 0] is the ideal position
of S; in fixture 1 and HgHg (S 0]T is the real
position due to fixture errors. Their difference in
location equals to (dP1,, dP1,, 0). By solving the
equalities, we can solve the amount of
translation (xs,ys1) in Hey.

APPENDIX If

Since 83, tilts by an angle of (ymi-y1), the
angle between the x axis and Hg,[Ss; 0]" equals
to |Ymi-Y1ls i-€., Y2 = Ymi-Y1 (Fig. 3a). Denote the
low left corner of the part as P2. Ideally, P2’s
coordinate is (hsp, hys) in the FCS. With deviation
in 834, P2’s coordinate is changed to (hop+YoLLs,



h:2). The coordinate in y direction remains same
because fixture 2 is assumed to be perfect in
this step. In the PCS, S3, is given by Eq.(9) with
location (pxs, Pys, Pzs) representing the ideal
coordinate of P2. The location component of
HpzHso[S3: 0]" should be equal to (hap+yalLs,
hys, 0). By solving the equalities, we can solve
the amount of translation (Xg»,Yg2) in Hpo.
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