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ABSTRACT

An adaptive cautious predictive (ACP) control algorithm is
presented for a class of nonlinear stochastic systems, which
include linear adaptive control systems. By introducing a new
long-range predictive control loss function, an easily
implemented control law is derived in closed-form. The
resulting control law is not only suitable for real-time
implementation, but it also posesses caution in the sense that
the error covariance matrix of the estimated states are taken
into consideration. Consequently, the ACP controller exhibits
good robustness with respect to system uncertainties.
Simulation results are provided to demonstrate these
properties.

1 INTRODUCTION

In the past decade, predictive control techniques have been
the focus of much research, due to their relative ease in
implentation and their success in many industrial applications
(Richalet et al., 1978), (De Keyser et al., 1988). Although
their foundation lies in the closely related optimal stochastic
control. there are significant differences!. In general, the main
difference between the two techniques is the form of the loss
function that is minimized. In optimal stochastic control the

'The authors of this paper have not encountered any precise,
widely accepted definitions of "optimal control” and
"predictive control” that illustrate their differences. The
distinctions made between the two control approaches in the
introductory paragraph do, however, seem to reflect a
fundamental difference between the various controllers labeled
as either "optimal" or "predictive” in the control literature. In
spite of the obvious abuse of language (predictive controllers
are also optimal in the sense that they, too, minimize a loss
function), we adopt this terminology as a convenient means
of distinguishing between two different control approaches.
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loss function takes the form of the statistical expectation of
some, say positive definite quadratic, function of the future
states and inputs of the system (Aoki, 1967). The expectation
is over the basic underlying random variables of the system and
can be unconditional or conditioned upon the available
measurements at the current time. In contrast, in predictive
control, the loss function is generally of the form of a similar
quadratic function of the predicted value of the future states and
input, based on a suitable model of the system (De Keyser et
al., 1988). Most commonly, the predicted future states are
their conditional means, conditioned upon all available data at
the current time, and the inputs considered deterministic as a
result of the "open-loop feedback" assumption (Aoki, 1967).
(Tse and Athans, 1972), (Bar-Shalom and Tse, 1974). Thus, a
significant difference between optimal stochastic control and
predictive control results from the difference between the
expressions E[XTQX] (optimal stochastic control) and
E[X]TQE[X] (predictive control), where E[-] denotes an
expectation, Q is a weighting matrix, and X is a random vector.
Another significant difference is that optimal stochastic
control uswally incorporates a fixed horizon control index.
while predictive control laws are usually based on a receding
horizon one. However, in this paper we focus more on the
former difference.

Most of the popular predictive control strategies were first
developed for linear systems. Recent surveys/comparative
studies of such methods are provided in Kramer and Unbehauen
(1992), De Keyser et al. (1988), Garcia et al. (1989), and
Scattolini and Bittanti (1990). Among the more widely used
methods are Dynamic Matrix Control (Cutler and Ramaker.
1980), Generalized Predictive Control (Clarke. et. al., 1987).
and Model Algorithmic Control (Rouhani and Mehra, 1982).
The majority of these algorighms were originally derived using
an input/output representation of the system, but, as pointed



out in Li et al. (1989), most have equivalent state-space forms.
The main differences between the various predictive control
algorithms are 1) the type of model used for the i-step ahead
prediction, whether it be a step-response, impulse response, or
transfer function model; 2) whether or not the minimization is
a constrained one, with equality or inequality constraints
placed on the future states and input; and 3) specific
assumptions regarding the control and prediction horizons. It
is interesting to note that, although the loss functions are quite
different, for certain systems where certainty equivalence
applies the receding horizon optimal control law turns out to
be identical to an appropriately defined predictive control law.
Mohtadi and Clarke (1986) have shown that receding horizon
LQ control can be represented as a specific case of Generalized
Predictive Control, and, thus, some of the well-developed
stability results for state-space LQ control can be applied.

For more general nonlinear stochastic systems, the situation
is much more complicated. The optimal stochastic controller
differs considerably from the predictive controller, with both
control approaches having their respective advantages. In
light of the discussion in the first paragraph, it would seem that
predictive control would result in a much simpler controller
structure. This is, in fact, the case and explains to a large
extent the popularity of predictive control in nonlinear and
adaptive control systems. The optimal stochastic control
problem requires the solution of complicated stochastic
dynamic programming equations (Aoki, 1967) which is, in
general, infeasible and even more so in a real time situation.
On the other hand, stochastic optimal control has a major
advantage over predictive control in that the very definition of
optimality that defines the problem is widely accepted and
results in a controller with a number of desirable properties. If
the exact solution were known, the resulting controller would
be both cautious and dual. Somewhat detailed descriptions of
these properties are given in Wittenmark (1975a), Jacobs and
Patchell (1972), Bar-Shalom (1981), and Astrom and
Wittenmark (1989). Loosely speaking, a controller is dual if it
compromises between a control action and a probing action:
not only does a dual controller attempt to drive the system to
the desired state, but it also determines the control input such
that, in the future, state estimation will be more accurate (and,
thus, future control will be more accurate). A controller is
cautious if the control input is a function of the covariance of
the current state estimation error. In this case the controller is
aware of the errors in the estimates and takes more cautious
action if the uncertainties are large. A mathematically rigorous
definition of caution and dual control is given in Bar-Shalom
and Tse (1974).

However, due to the inherent complexities of the exact
optimal stochastic control solution for nonlinear systems,
there have been a number of suboptimal approximations
proposed which attempt to retain the dual and cautious
properties of the optimal controller. A wide-sense dual
controller is obtained in Tse et al. (1973) by linearizing the
system about a nominal trajectory and using a second order
Taylor expansion of a fixed horizon loss function about the
nominal trajectory. The controller is referred to as wide-sense

because, in order to avoid excessive complexity, the closed-
loop control is restricted to being a function of the estimated
state and error covariariance matrix. This method was further
analyzed in Bar-Shalom (1981), where the loss function is
expanded in terms of its certainty equivalence, cautious, and
probing parts, and in Dersin et al. (1981), where it was
compared to the optimal controller for a simple scalar example.
Although the wide-sense suboptimal controller represents a
tremendous reduction in complexity from the optimal
controller, it is still too complicated to be implemented in real-
time in many dynamic systems. Mookerjee and Bar-Shalom

" (1989) use a similar perturbation model expanded about a
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nominal trajectory to obtain a closed-form adaptive dual
controller for MIMO ARMA systems, but with the restriction
that a 2-step horizon be used in the loss function. Ku and
Athans (1973) develop, for adaptive control of linear systems,
an open loop feedback controller that posesses caution but not
dual control properties. The algorithm is fairly complicated
and not well suited for real-time implementation. Wittenmark
(1975b) and Milito et al. (1980) take a different approach to
dual control by minimizing a 1-step ahead criteria augmented
explicitly by a term which penalizes for poor estimation. The
former has no analytic solution for the optimal control input.
while the latter is relatively simple in form. Although the dual
controllers of Mookerjee and Bar-Shalom (1989) and Milito et
al. (1980) are feasible for real-time implementation, they suffer
from the restriction of a 1-step or 2-step horizon, and, thus,
may not be suitable for controlling non-minimum phase
systems.

The control of nonlinear or linear adaptive control system
has been approached using predictive control concepts also.
As in the optimal control problem, exact solutions are
extremely difficult. A standard approach for nonlinear systems
is to linearize about the current state estimate or some nominal
trajectory, and apply the well known linear predictive control
techniques to resulting perturbation models. Lee and Ricker
(1993) use such a technique with Dynamic Matrix Control.
Predictive control is much more commonly applied to linear,
unknown sytems in a parameter adaptive control framework in
which certainty equivalence is enforced. Kramer and
Unbehauen (1992) and De Keyser et al. (1988) provide
comparative studies of some of the more popular predictive
control methods used for adaptive control. However, with any
of the standard predictive control indices the resulting
controllers are not cautious, and, because of their open-loop
feedback characteristic, are not dual either.

The purpose of this paper is to introduce a new predictive
control loss function for nonlinear and linear adaptive control
systems that combines some of the desirable properties of both
optimal control and predictive control. The resuiting adaptive
cautious predictive (ACP) controller posesses cautious
properties like the optimal stochastic controllers and, at the
same time, has a closed-form solution that is easily
implemented in most real-time dynamic systems. Unlike the
previous cautious dual controllers of Mookerjee and Bar-
Shalom (1989) and Milito et al. (1980) that are suitable for on-
line implementation, the ACP controller developed here has no



restrictions on the length of the predictive control horizon.
The format of the remainder of the paper is as follows. In
section 2 the ACP loss function is introduced and the control
law derived. Section 3 discusses implementation concerns and
provides simulation results.

2 THE ADAPTIVE CAUTIOUS PREDICTIVE
CONTROLLER

Consider a discrete-time nonlinear stochastic system, affine
in the input, modeled as

X(k+1) = f(X(k), k) + g(X(k), ku(k) +W(k) )
Y(k+1) = C(X(k+1), k+1) + V(k+1) 2

where X(k)e R", Y(k)eR!, W(k)e R", V(k)eR!, and u(k)e R!
are the state, output, sytem noise, observation noise, and
input, respectively, and k is the time index. X(0) and W(k),
V(k+1) (k=0,1,2...) are assumed to be independent Guassian
random vectors with known mean (W(k) and V(k) are assumed
to be zero mean) and covariance matrices. Furthermore,
f(X(k),k), g(X(k),k), and C(X(k),k) are assumed to be
continuously differentiable in X(-) for all k.

Before we derive the ACP law, let us assume that the present
time is indexed by k, the control sequence Uk“:={u(0), u(l), ...,
u(k-1)} has been applied to the system and the observation
sequence YX:={y(l), ¥(2), ..., y(k)} has been obtained. The
state estimate and its error covariance matrix are assumed
available from the estimates

R(kIK) = E[X(K)IY*, U] and
P(k) := E[[xa)-R (ki) ] [x0)-R ki) ] Tivk uk-1], 3)

where E[-] denotes an expectation. The state estimation can be
obtained by one of the following approximate methods: 1)
extended Kalman filter (Stengel, 1986), 2) adaptive filter with
uning (Jazwinski, 1970), and 3) second-order filter (Athans et
al.. 1968). Depending on the specifics of the problem. one of
these methods may be more appropriate than the others.

By the continuous differentiability assumpution, in a
neighborhood of R(kik), f(X(k).k) and g(X(k),k) can be
expressed as:

. Of(E.k)
f2k) = f(K(kIKk) k) +——2— -R(kik)) + O'¢E k
agT g:ﬁt(klk)(é ))+ &0,
4)

. og(&.k)

212.0=g(R(kIk) K)+—=2 -R(kik)) + 0"(E k
oET g:ﬁz(klk)(é ))+ &b
)]
I0'E, K1 110" (E k)i

where O'(€,k) and O"(E k h that 2
(&) and O"(E.K) are such tha HE-REKIKI 1IE-R(KIK)1

— 0 as llg-ﬁ(klk)ll —> 0. Here, llsll is the standard Euclidean
norm on R". We now assume that the system and state varies
slowly enough (i.e.. is sampled fast enough) so that over the
predictive control time horizon N (defined below in equation

lZ)) the system can be approximated by a linearization about
X(klk) at time index k. Thus. substituting equations (4) and (5)
into equation (1) and ignoring the O'(§.,k) and O"(§ k) terms,
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gives the following approximation of Xk+i) (i=1,2, .., Nk
X(k+i) = AG)Xk+i-1) + {bR)+B)[X(k+i-1)-R(kik)] }

*u(k+i-1) + D(k) + W(k+i-1) 6)
where
of(€,k) ag(&.k)
A k = s =" y
@ T | E=R(kik) T |e=Rkik)

b(k) = g(R(kIk).k), and D(k) = f(X(kIk),k) - AG)R(KIK).

Consider now the predictive control index defined as:

J(u,k)%ﬁ{ } 7

subject to
(8)

N
IR (k+ilk)-X* (k+N3 +ru(k+i- 1)) Yx UK!
Q

i=1

0 (random vibration control)

u(k+i) = {u(k) (trajectory tracking) vi=l2,.0N,

where N is the prediction horizon, X*(k+i) is the desired value
of the state at time k+i, and Q and r are weighting parameters
with Q a positive semi-definite, symmetric matrix and r > 0.
Here IIXllg is defined as (XTQX)'2 for any vector X. ﬁ(k+ilk) is
the i step ahead prediction of the state at time k. The main
difference between the above loss function and standard
predictive control loss functions lies in the definition of
R(k+ilk):

R(k+ilk) = E[X(k+)IYX, UKL, X()]: i=1,2,.,N. (9

where X(k) := X(k) - R(kIk) is the state estimation error at time
k, and X(klk) is as in equation (3). Thus, R(k+ilk) is allowed to
be a function of the unknown random variable X(k), which
accounts for the need for the conditional expectation in
equation (7). Note that no such expectation is needed in
standard predictive control loss functions, where the i-step
ahead prediction of the state is not allowed to depend on any
unknown random variables. The dependence of ﬁ(k+ilk) on
X(k) is essentially what resuits in the cautious property of the
ACP controller, since, after making appropriate substitutions
and taking the expectation in equation (7), P(k) will be present
in the control law.

The ACP control strategy is a receding horizon predictive
control problem. At time k, one minimizes the criterion J(u, k)
to solve for the control u(k), and applies u(k) to the system.
Then, at time k+1, J(u,k+1) is minimized to solve for u(k+1)
etc... For the sake of simplicity, the remainder of the paper
will focus on the random vibration control problem, for which
the constraint is u(k+i) = 0 (i = 1, 2, ..., N), i.e. that the future
control actions are assumed to be zero within the prediction
horizon while calculating the present control u(k). This
strategy is commonly used in predictive control studies (De
Keyser et. al., 1988). A physical interpretation is that one
assumes u(k), and no other control action, will applied to bring
the system back to the desired value within the prediction
horizon. The following ACP control results can be extended to
the trajectory tracking problem for which the constraint is
u(k+i) = u(k) (i=1, 2, ..., N).

Taking the conditional expectation of equation (6) gives



R(k+ilk)=
{A(k)ﬁ(klk)+A(k))~((k)+[b(k)+B(k)5((k)]u(k)+D(k): i=1 (10)
AGOR (k+i-11k)+D(k): i22

The expression for i = 1 results from the definition of X(k) and
the fact that R(klk) is a function of {Yk, Uk-l}, and thus
E[XK)IYX, Ux!, X(k)] = X(k). Equation (10) can be solved
explicitly to give, fori=1,2, ..., N

RK(k+ilk) = AR (kIK) + AKX (k) +

Al(k) [b(k)+B(k))~((k)]u(k) + zAi'j(k)D(k). (11
1=

Substituting (11) into the predictive control performance
index (7) and defining

Ay = AR (KIK) + FAFRD(K) - X*(k+i),
J:

by = AFl(k)bk), and By = A"1(k)B(K) (12)
we obtain
Juk) = —E[ > A +aigoxm+ [blk+BlkX(k)]u(k)| |2
i=1
ru?(k) | YK, Uk-']. 13)

Since the state estimation is assumed unbiased, setting
9J(u,k)/0u(k)=0 to solve for the optimal input gives

N

u(k) = —{Z(Ilblkllz+E[IlBlkX(k)Il ]+ r}
N
{;(biQAME [X"oB oA ®X(K) | )} (14)

Now introduce the following notatlon Let a(') be the t-th
row, s-th column element in the matrix B, QBlk, bi' be the t-th
row, s-th column element in the matrix BTQA'(k) and p,. be
the t-th row, s-th column element in the matnx E[X®X (k)]
Then, after some algebra, we have

and

E[XT0BIoaiX (0] = 5 3p%p,

t=1s=1

E[1B, X012 ] = 5 5a¥p, -

t=15=1

(15)

Substituting (15) into (14), the adaptive cautious predictive
control law becomes

u(k) =

bTQA+ Y, 3b
iKQ ik*ZZb Pis

t=1s=1

NoT SN0
> bikaik+zza¢sP,s r

t=1s=1

LMz

1=]

(16)
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The ACP control strategy can be summarized as follows. At
each sampling instant, first, the effects of the control variables
on the state are predicted. Then, the control action is
determined by minimizing a receding quadratic loss function of
the predicted trajectory error and the control effort. The
obtained control action is then applied to the system, and, at
the next sample instant, the above steps are repeated.

Based on the developed ACP control algorithm, following
observations are made:

Remark 2.1: Using the ACP control, the adaptive system
takes not only the instantaneous state estimates but also the
associated confidence level into account, i.e

uk) = u(R(kIk), P(k))

Further investigation of (15) and (16) reveals that the term
E[IB,X(K)I2] > 0 is contained in the denominator in the ACP
control law. QThls seems to have the effect of reducing the input
magnitude when P(k) is large. On the other hand, if P(k) is
small, the state estimation error is neglected and the control
law of equation (16) approaches that of certainty equavalence
control (see Remark 2.3). This cautious property, which
automatically adjusts the control action according to the
quality of the state estimation, is a key feature of ACP control.
In adaptive control problems, this cautious property is
especially important during the transient period of state
estimation and/or when the system has large uncertainties.

Remark 2.2: It should be noted that in considering the state
estimation quality in ACP control, the computational expense
is not significantly increased. This is one of the major
advantages of ACP control over the other multi-step horizon
cautious controllers outlined in the introduction. The arbitrary
time horizon N in the cost function of equation (7) allows
greater flexibility in controller design than in cautious control
approaches where the prediction horizon is restricted to only
one or two steps (Jacobs, 1981), (Mookerjee and Bar-Shalom,
1989), (Wittenmark, 1975b), and (Milito et al., 1980).

Remark 2.3: If certainty equivalence (CE) (Stengel, 1986) is
enforced, the corresponding CE predictive control law can be
obtained by simply ignoring the state estimation error in the
state prediction equation (10). Setting X(k) := 0 in equation
(10), the CE control law would be:

u(k) = - {g(bi{Qbik)ﬁ}l{i(bi{QAik)}-

3 IMPLEMENTATION CONCERNS AND
SIMULATION RESULTS

Before we begin the simulation studies, we first mention an
important implementation concern. The ACP algorithm
requires the state estimate R(klk) at each time k. If, for
example, an extended Kalman filter (EKF) is used for state
estimation, one of the implementation requirements is that the
initial covariance matrix P(0) (see equation (3)) is known. For
most practical applications, this is an unrealistic requirement.
As a result, to aviod instability and to allow fast convergence
of the state estimation, it is common practice to overestimate

amn



P(0) for use in the state estimation. While this, in general, has
beneficial effects on the state estimation, in the ACP control
algorithm it has the effect of causing the controller to be
“overly cautious" during the initial timesteps. In other words,
the magnitude of the control input during the initial stages will
be lower than what the optimal input, in terms of minimizing
equation (8), would be if the true P(0) were used. To aviod this
situation, it is recommended that two initial covariance
matrices be used: 1) P(0), chosen to fine-tune the EKF, to be
used in the state estimation algorithm; and 2) P'(0), chosen to
more accurately reflect the initial state estimation error
covariance matrix, to be used in the ACP algorithm. During the
course of the experiment both P(k) and P'(k), to be used in the
EKF and ACP control algorithms, respectively, should be
updated by the EKF. If the state estimation is stable this should
only effect the input selection during the transient period of the
experiment, with P(k) and P'(k) both converging to the same
steady state value.

The objectives of the following simulation studies are 1) to
illustrate the cautious property of ACP control; 2) to compare
ACP control with a widely used certainty-equivalence control;
and 3) to demonstrate the ACP controller's robustness towards
high system noise levels and uncertainties in the state
estimate.

We shall consider specifically the second order linear
mass/spring/damper system illustrated in Fig. 1, where the
parameters M (mass), K (spring constant), and C (damping
constant) are unknown. Here, y(t) and u(t) are the displacement
and force, respectively, at time t.

In state-space form, the system is modeled as

. 0 1 0
Xo={ K _C [x®+| L |uw
M ™ M

yo=[10]xe
Assigning the numerical values M=5kg, K=5000kg/s2, and
C=32kg/s and sampling the system with sampling interval
t=.02sec, the discrete time system equations become

X(k+1) = [Z‘ %2 :IX(k) + [25:,u(k) + W(K)
6,

[0.8145 0.3509
-0.8773 0.7022

v =[1 0 ]X@m + VK.

Here. the scaling is such that y(k) is measured in units of 1/20
m. and u(k) in units of 1/100 N. Also, system noise, W(k), and
observation noise, V(k), have been added to the discrete time
system equations. The assumptions on the noise are as in
equations (1) and (2) with Ky and Ky used to denote the
covariance matrices of W(k) and V(k), respectively.

Although system (18) is a linear system, if the state is
augmented by the unknown parameters as Z(k) = [XT(k) 0; 6,
838465 0]" in an EKF (Stengel, 1986) formulation, then the
simuitaneous state and parameter estimation problem becomes

18
5 64 (18)

0.0742
X(k) + [003509]u(k) + W)
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u(t)
!

M ‘y(t)

Ki !.I.! c

FIGURE 1: MASS/SPRING/DAMPER SYSTEM
CONSIDERED IN THE SIMULATION

a nonlinear one that can be modeled by the system of equations
(1) and (2).

The problem at hand is to find the control law for random
vibration surpression (see equation (8)) with, possibly, an
initial disturbance. The predictive control index used in all
simulations in this section is

N
J(u,k) =% z (uﬁ(mnk)ué) - mz(k)IYk,Uk'I:l, (19)
i=1

where Q=diag({5, 0.5, 0, 0, 0, 0, 0, 0}), r=0.1, and N=5.

In the following simulations, the ACP control developed in
this paper is compared to both certainty equivalence control
and no control. Various parameters in the simulations (e.g.
Kw, X(0) and the initial guess for 8¢) are varied to represent
different conditions, with the controller performances being
compared under each set of conditions. The criteria used for
controller performance evaluation is

100 300

IMe = g,?’z(k). and Iy o= élyz(k),

where Me {ACP, CE, 0}. The subscripts ACP, CE, and 0
indicate that the type of control used is ACP, CE, and no
control, respectively. The subscript "tr" indicates the
controller performance during the transient period, i.e. the first
100 timesteps, and the subscript "tot" indicates the controller
performance over the whole 300 timestep simulation.

Table 1 presents a summary of the simulation results. In it,
the performance indices of equation (20) have been averaged
over 20 trials for each set of conditions. G2 denotes the
variance of the system noise, i.e. E[W(K)W(k)T] = 621, where I
is the 2x2 identity matrix. 84(0) is the initial guess for the
input parameter 8¢ of equation (18). X(0) is the initial state, so
that a "1.5,1.5" in that row indicates that the initial state was
(1.5 1.5]T. A simulation for which a larger initial state was
used represents the random vibration control problem with an
initial disturbance. For all simulations, the observation noise
variance was Ky = 0.01.

As an example, Figs. 2 and 3 show typical simulation results
using the conditions of system 2 in Table 1: ¢ = 0.1, 66(0) =
0.1, and X(0) =[5 5]T. The controled output response using
ACP control is compared with that using no control and CE
control in Fig. 2(a) and 2(b), respectively, and Fig. 3 shows
the calculated input command for both CE control and ACP
control during the first 50 timesteps of the simulation. Based

(20)



system: 1 2 3 4 5 6
-2 .1 5T 0.1 0.1 0.3 0.3
W
5.(0) 0.1 DN | 03 0.3 0.1 0T
6
X0) [513] 53 [ 3355 (15135753
Tacea | 188 T03 151 733 I
Tz m't TI7 T T27 TTE 307 330
To "ot ToT T30 ToT 173 533 377
JAémr T3 T30 y.v: T 77 73T
Tex ;r 33 =7 13 T3 213 T7%%
JO-;r T3 173 i T8 yxp) 507
TABLE 1: SUMMARY OF SIMULATION RESULTS UNDER
VARIOUS CONDITIONS
6
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' yo(k) - -
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timestep
(a)
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i
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2\} | |
2 o\ a2 s &4 (A g2 {\ Lo ne A AR
= 0 ‘\{\J M'Wd\\ﬁ‘ V\Yq‘!l\]ﬁb " "\":j\\/ oy -\;"N i A
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6h N 4
|
gl . . . , .
0 50 100 150 200 250 300
timestep

(b)

FIGURE 2: SIMULATION RESULTS COMPARING THE

CONTROLLED QUTPUT USING: (a) ACP VS. NO

CONTROL, AND (b) ACP VS. CE CONTROL. y,(k) IS THE

QUTPUT USING NO CONTROL.

on the results in Table | and Figs. 2 and 3, the following
observations are made:

1)

In general, the ACP control was much more effective than
CE control during the transient period of the simulations.
This was expected, considering the cautious nature of the
ACP controller: Initially, when there is much uncertainty
in the parameter estimates, the control input is
automatically chosen more conservatively, with, in
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2)

4)

5)

30
timestep

FIGURE 3: SIMULATION RESULTS COMPARING THE
CONTROL INPUT USING ACP AND CE CONTROL

20 40 S0

general, a much smaller magnitude (see Fig. 3). As seen in
Table 1, using CE control during the transient period is
risky, with, in some cases, its performance actually worse
than using no control at all. Note, however, that the
performance of CE control in the steady state (which can
be found by simply subtracting Jcg from Jcg o) is still
much better than no control.

The more uncertain the state and parameter estimates (i.e.
the higher o), the better the relative performance of ACP
control over CE control. This, again, is a consequence of
the cautious nature of the ACP controller.

3) With larger initial disturbances, good control is more
crucial during the transient period in order to reduce the
effects of the disturbances. In these situations (systems 2.
4, and 6) ACP control is much more effective than CE
control. Fig. 2 illustrates this situation well. Both the
settling time and the magnitude of the steady state
vibration is significantly reduced using ACP control.
whereas with CE control, although the steady state
performance is roughly equivalent to that of ACP control.
its transient performance is much worse than using no
control.

While changin 66(0) seems to have little effect on ACP
control, when 86(0) is smaller than the true value (84 =
0.3509) the performance of CE control is worse. This can
be explained as follows: With the input parameter 8¢
overestimated, this, in general, reduces the magnitude of
the control input. Thus, choosing 66(0) large provides. in
a sense, a type of caution for CE control. Note, however,
that even with the overestimated 96(0) the ACP controller
performs much better than the CE controller.

ACP control achieves much better transient performance
largely by reducing the magnitude of the control input
during this period of system uncertainty. This, in itself, is
a desirable side effect. As illustrated in Fig. 3, which
shows the control input for both ACP and CE control
during the first 50 timesteps of the simulation, the peak
magnitude of the input is more than ten times smaller
using the ACP control law. This characteristic of ACP



control greatly reduces the possibility of saturating the

actuators during actual implementation.

Although, as the simulations have demonstrated, ACP

control is much more effective in the transient period, for

the particular system used in these simulations its
performance is roughly equivalent to that of CE control in
the steady - state, after the parameter estimates have
converged and the state estimation error covariance matrix
approaches its steady state value. A detailed inspection of
equations (12) and (16) for the system used here would
reveal that the only elements of P(k) that are a factor in the
control law of equation (16) are those in the seventh and
eighth rows. Here, P(k) is that of the extended state in the

EKF formulation. as defined in the paragraphs following

equation (18). In the simulations conducted, even for the

cases when o& = 0.5, the elements of the seventh and
eighth rows of P(k) become very small in the steady state

with, for example, magnitudes smaller that roughly 0.05

(in most cases much smaller than that even). Thus, in the

steady state, the ACP control law for the system used in

these simulations is nearly identical to the CE control law

of equation (17).

As a final note, the following remarks concerning
implementation of the ACP controller are made.

Remark 3.1: For the EKF formulation of the joint
state/parameter estimation problem used in these simulations,
use of two different initial covariance matrices, P(0) and P'(0),
as outlined in the first paragraph of this section, is especially
crucial. The reason for this is that if the over-estimated P(0) is
used in both the EKF and the ACP control algorithms, the
controller will be overly cautious during the initial stages,
resulting in very little input excitation to the system. This
could very likely cause poor estimation results for the
parameters 05 and 8¢, which would result in poor controller
performance. This phenomena is known as controller "turn-
off” and is discussed in. for example, Astrom and Wittenmark
(1989).

Remark 3.2: As in most adaptive control schemes, ACP
control requires tuning for optimal performance (e.g. selection
of P(0). P'(0), Q, r. and N). Thus, if no a priori knowledge is
available for selection of the controller parameters, it is
advisable to use ACP control in a supervisory environment
with backup controllers to avoid instability. The authors are
currently working on implementing ACP control in such a
supervisory environment.

6)

4 CONCLUSIONS

In this paper, an adaptive cautious predictive (ACP) control
algorithm has been developed for a class of nonlinear
stochastic systems. However, it is also applicable to the joint
parameter estimation and adaptive control problem for linear
svstems, which becomes nonlinear in an extended Kalman
filter formulation. Through the introduction of a new long
range predictive control loss function, the ACP control
algorithm posesses caution (the state estimation error
covariance matrix is considered in the control law) and, as a
result. achieves better robustness towards state and parameter
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estimation errors. Simulation results have demonstrated that it
can significantly improve adaptive control performance,
especially in the transient period. Not only does ACP control
posess caution, like more complicated optimal and suboptimal
stochastic controllers, but it also posesses the desirable
properties of long range predictive controllers. The predictive
control horizon is arbitrary, and, most importantly, the
control law is in closed-form and requires only slightly more
computational expense than the analogous enforced certainty
equivalence controller. As a result, implementation of ACP
control in real-time dynamic systems is highly feasible.
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