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ABSTRACT

In this paper, an integrated process monitoring and diagnostic
system - the process navigator, is developed for automotive body
assembly processes. The objective of the process navigator is to
transform in-process 100% measurement data into meaningful,
easy-to-understand engineering information by fusing advanced
statistical techniques, engineering knowledge, and computer
technology into an integrated system. The process navigator
includes five modules: on-line monitoring and fault classification,
data and alarm bases, variation pattern animation, and knowledge
based diagnosis. Both the methodology and implementation are
presented in the paper.

1. INTRODUCTION

Quality is one of the most important factors in automobile
manufacturing.  One aspect of the vehicle quality is the
dimensional integrity of the body (body-in-white), which has great
effects on the quality and functionality of the vehicle. The current
practice of dimensional control in most assembly plants is to
manually analyze body-in-white (BIW) data, observe the process,
and try to locate the sources of variation. This strategy is
complicated because it requires expertise in data analysis,
knowledge about the body structure and about the assembly
process. It is also a slow and time consuming process when
dealing with the huge amount of multivariate data and the many
characteristics of an assembly process. As a result, advanced
quality control and analysis tools are required for the automobile
body assembly process. This necessity can be further elaborated
from the following aspacts:

(D) In-line Optical Coordinate Measurement Machines (OCMM)
are gradually being ‘adopted in many automotive assembly
plants. An OCMM can provide 100% sample measurement on
as many as 100 process characteristics. Manufacturers are
overwhelmed by the large volume of data.

(2) Traditional sta/lisiical,m\ocess control (SPC) techniques are
useful in detecting certain process changes. However, they are
limited in root causes identification and in handling
multivariate information (Faltin and Tucker, 1991).

(3) The body assemtly is a long and complex process, involving
many subassembly lines and stations. Troubleshooting or
diagnosing such a complex process is a challenging task.

The body assembly process is very complex. On average, 50-80
assembly stations, assemble a typical body made of 150 to 250
sheet metal parts. The body assembly process can be divided into
subassembly processes and body framing process. The major
subassembly processes include underbody assembly and two
aperture assemblies (left and right hand). The large number of
elements in the assembly process cause difficulties in minimizing
the assembly variation, which can be caused by the process major
operations such as: part positioning, fixturing and welding.

In this paper, a Process Navigator (PN) is developed as an
integrated quality control and assurance system to minimize the
dimensional variation. By fusing advanced statistical (echniqﬁes.
engineering knowledge and computer technology into an integrated
system. the PN converts the in-process, 100% measurement data
into meaningful, easy-to-understand computer animated pictures.
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Engineering knowledge is represented based on the hierarchical
group concept proposed for the auto body representation (Ceglarek
et. al., 1994). In this paper, the hierarchical group concept is
extended by defining functional modules, which are implemented
in an expert system shell.

The PN includes the functions of on-line data collection, on-line
monitoring and fault classification, alarm generation and reporting,
variation pattern animation, and knowledge based diagnosis (Fig.
1). In this paper, the theoretical development and implementation
of the PN are presented in the four sections of the paper. After the
introduction, the methodology developed for the on-line
monitoring, variation animation, and knowledge based diagnosis
techniques are presented in Section 2. In this section, the focus is
on the integration of advanced statistics with the engineering
knowledge of the BIW assembly. Sections 3 describes the
implementation of the process navigator. Finally, conclusions and
future work on the subject are surnmarized.

2. DEVELOPMENT OF THE PROCESS NAVIGATOR

In this section, we describe the theoretical developments for the
PN. These include on-line monitoring and fault classification.
computer animation of variation patterns using principal
component analysis (PCA), and knowledge-based diagnosis.

2.1 On-line monitoring and fauit classification

When we are controlling a manufacturing process, it is
important to not only detect process changes, but also identify the
change patterns. According to Guo and Dooley (1992),
"Experience shows that many SPC attempts fail to produce
meaningful results because of the lack of diagnostic support for the
effort”. In an automotive body assembly process, if the change
patterns can be identified, root causes of variation can be
systematically located because certain change patterns correspond
to particular failure modes in the process. Also, by grouping the
points with the same process change based on the product and
process characteristics, the location of the root cause can be
systematically identified. Then corrective action can be made to
minimize the production of defective products.

Different change patterns in the process correspond to different
root causes. In general, the following three types of process
changes are most frequent in an automotive body assembly
process:

1. Sustained mean shifts: usually due to tooling failure (e.g.,

clamp breakage) or material change (e.g., batch to batch).

2. Irregular, sporadic jumps: usually due to interference among

parts or interference between tooling and parts.

3. Variance changes: usually due to deteriorating tooling

condition (e.g., clamp becoming loose).

A recursive monitoring algorithm is developed to detect and
classify these sudden process changes, and group the measurement
points with sudden process changes within a few BIWs after
changes occur. This algorithm, based on statistical techniques and
the knowledge of body structure and body assembly process, can

1. detect which BIW and which measurement point have sudden

process changes,

2. classify the process changes as mean shift, sporadic jump,

variance change, or any combination of these three, and

3. group the points, classify as having the same process change,
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based on the characteristic location for root cause diagnosis.

This algorithm is designed to monitor the OCMM data of each
measurement point on bodies. It identifies the dimensional fault
using confidence intervals obtained from the sample mean and
sample variance of each measurement point before any process
change occurs. The sample mean and sample variance could be
different from measurement point to measurement point.
Therefore, measurement data from the OCMM for the current BIW
are normalized before they are sent through this algorithm in order
to make this algorithm robust to each measurement point.

The algorithm consists of three parts. The first part uses three
different indices simultanecously to check whether process changes
have occurred. These indices are: data index, sample mean, and
sample variance. These three indices are represented by a vector as
(a, b, ¢). The second part confirms the occurrence of sudden
process changes and classifies them using decision making rules.
The third part groups the measurement points with the same
process change into the direction, opening, and subassembly or
part group for root cause diagnosis.

Now we define the three monitoring indices. Each index is
determined by comparing the sample statistics with the upper and
lower limits of a threshold selected from 100(1 - &)% confidence
interval. The principles for the index setting is determined by:

(1) Oif the data is between the upper and the lower limits,
(2) 1if the data is larger than the upper limit,
(3) -1 if the data is smaller than the lower limit.

The determination of the upper and lower limits for each index
are different and depends on its distribution. Specifically,

a: "data index" is determined from Xypperlimit = tasz,v and

Xlowerlimit = t1-a/2,v Where topy is the critical value of the t

distribution with tailed area 0/2 and degree of freedom v.
b: "sample mean index" is determined from

- S
uupperlimil =X+ tOLIZ.n—llﬁ) »and

- S
28 imit = X — tu/2,n—1(_)v
lower lim it \/H
where X is the mean value using the sample size of n, tg g is
the critical value of the t distribution with tailed area 0/2 and n-
I degrees of freedorn, and s is the sample standard deviation.

c:  "sample variance index" is determined from
~1)<2 _1)2

2 =D o2 _(nDst
upper lim it 2 lower lim it 2 ’
Xi-as2,n-1 Xas2,n-1

where n is the sample size for caiculating the sample
variance, s? is the sample variance, and 2 is the critical value

of the %2 distribution.

To detect any sudden process change quickly, a moving window
is used to calculate the sample mean and sample variance. For
example, the sample mean at car number 20 for a specific
measurement point is the average value of the measurements from
car number 1 to 20, the sample mean of car number 21 is the

average value from car number 2 to 21. etc.
Table 1 summarizes the upper and lower limits for the data

range, mean, and variance. A 95% confidence interval and a
sample size of 20 for calculating the sample mean and variance are
used when a set of normalized data with mean 0 and variance 1 is
considered. The sample size, which is used to calculate the sample
mean and variance, will influence the sensitivity and the detection
speed of this algorithm, which was addressed in {Roan, 1993].

TABLE 1. SUMMARY OF LOWER AND UPPER LIMIT OF
DATA, SAMPLE MEAN, AND SAMPLE VARIANCE WITH A
95% CONFIDENCE INTERVAL AND A SAMPLE SIZE OF 20

FOR THE MOVING WINDOW.

The second part of the monitoring algorithm is to identify the
types of changes once any part of the 3-digit index is out of the
predetermined range. If the 3-digit index is (0 O 0), which indicates
no change in the process, then the second part of the monitoring
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method will not be triggered. On the other hand, if the 3-digit
index is (1 0 0) for some specific measurement point for the
current assembled car, it means that this raw data is outside the
control limits, but the sample mean and sample variance are still
within range. At this moment, instead of concluding that this
measurement point has a sporadic jump, the second part of the
monitoring will filter ambiguous information from the first part of
monitoring. In fact, if the raw data is identified as out of range by

Data Index Sample Mean | Sample Variange
Lower Limit | -2.09 -0.47 0.58
Upper Limit | 2.09 0.47 2.13

the first part of monitoring (3-digit index), it could be the
beginning of a mean shift, a sporadic jump, a variance change, or
any combination of these. Therefore, the second part of the
monitoring, which uses some decision making rules and more
sample statistics, is necessary to determine what type of
dimensional fault has occurred. Similarly, if the sample mean or
sample variance is out of range, mere statistics need to be checked
before any conclusions can be drawn.

Figure 2 is the flow chart for the first and Second part of the
monitoring, which detects and classifies process changes. Note
that a sample size of 20 is utilized to estimate the sample mean and
variance. For each BIW, the grouping stage (the third part of
monitoring) will not be triggered until all measurement points go
through the first and second parts of monitoring. The procedures
to detect and classify process changes are listed as follows:

1. Calculate the sample mean and sample variance once data are

available for the current BIW using a sample size of 20.

2.Form the 3-digit index by comparing raw data, sample mean, and

sample variance ‘with the upper and lower limits of their

corresponding 95% confidence interval. These upper and lower
limits are determined based on the mean and variance of each
measurement when no process change has occurred.

3.If the 3-digit index is:

a. (00 0), the process is in control.

b. (01 1) or (0 -1 1), then find sample mean and sample
variance for the last 20 data, excluding sporadic jump data.
A mean shift and/or variance change is identified if the
sample mean and/or sample variance are/is outside the limits.

c. (0 0 1), then find sample variance for the last 20 data
excluding sporadic jump data. A variance change is detected
if sample variance is outside the limits.

d. (010)or(0-10), then find sample mean for the last 20 data
excluding sporadic jump data. A mean shift is identified if
the sample mean is outside the limits.

e. (lijyor(-1ij),whereiis-1,0,0r i andjisOorl, then
(1) find sample mean and sample variance for the next 5
measurements. A mean shift and/or variance change are/is
detected if the sample mean and/or sample variance are/is out
of range .

(2) a sporadic jump is detected if the two 3-digit indices
before and after are all (O x y), where x and y are -1, 0, or 1.

The third part of the monitoring algorithm groups the process
faults according to the characteristic locations of the measurement
points if multiple points experience the same process change for
the current BIW. Figure 3 is the flow chart for the grouping stage.
1. After each measurement point is investigated by the first and

second part of monitoring, group the points with process
changes into mean shift, sporadic jump, and variance change
groups.

2. Group the points with the same process change into the
direction, opening, and subassembly or part groups according
to their characteristic locations.

After the points are effectively grouped using the above strategy,

the variation pattern of each group is further analyzed using the

Principle Component Analysis (PCA), and displayed using

computer animation techniques.

2.2 Computer animation of variation patterns .

After grouping the identified measurement points {X}, X, ..., Xp}
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into a variation problem as discussed in the last section, a Principal
Component Analysis (PCA) is conducted by solving:

[Q-AI]X;=0 ey
where Q is the covariance matrix obtained from the variables, I is
an identity matrix, A; and X; are an eigenvalue and its
corresponding eigenvector.

In statistics, it has been shown that the PCA allows to estimate
the patterns of the data and interpret their importance based on the
variance criterion (Jolliffe, 1986). In addition, it has been proven
that the magnitude and direction of eigenvectors can represent the
variation pattern if there is only one single root cause (Ceglarek
and Shi, 1994). In the PN, the eigenvalue-eigenvector pairs ( }‘i -
X, i=1,2, ..n), obtained based on the PCA, are interpreted as the’
variation pattern in the following way (Hu and Wu, 1992):

(1) For each eigenvector, the relative magnitudes and directions of
its elements are equivalent to the body movement represented
by position and directions of the measurement points;

The number of the eigenvalue - eigenvector pairs represents
the number of patterns involved in the variation problem;

The importance of each pattern is defined by the eigenvalues
related to each eigenvector. In most cases, the first and second
eigenvector reprasent more than 90% of the total variation.

In the animation algorithms, the procedures can be summarized
as follows. First, measurement points are grouped according to the
rules presented in last section. Then, the covariance matrix of the
data from the measurement points is calculated. Next, eigenvectors
and eigenvalues are estimated based on the covariance matrix.
Finally, the elements of the eigenvectors corresponding to the
measurement points are displayed graphically on the screen. The
magnitude and direction of eigenvectors represent the variation
pattern, and are simultaneously animated graphically on computer.
Thus, users can see the variation pattern of the analyzed problem.

The variation pattern animation provides a graphical
interpretation of the complex variation problems. More
importantly, there are no requirements for users to master
advanced statistics to understand the analyzed results. The user
may identify the root causes of variation by looking into the
relative magnitude and directions of the animated variation
patterns. An example of the animated variation pattern is given in
section 2.3.4.

@]
3

2.3 Variation root cause diagnosis

The variation animation developed in the last section provides an
intuitive tool for graphical interpretation of the variation problems.
This section develops a systematic knowledge based diagnostic
technique for root cause identification. The presented approach
enables quick localization of the assembly process fault based on

dimensional measurement. It consists of three parts: body
assembly knowledge representation, case identification, and

diagnosis reasoning. S

2.3.1 Body-in-white (BIW) assembly and its knowledge
representation. In the development of the PN, a body structure
is represented by using extended version of hierarchical groups
(Ceglarek et. al., 1994), where each group is defined as a
functional module.

Figure 4 shows a body-in-white assembly process emphasizing
the left hand aperture. The symbols Sy, ..., S5 in the figure
fepresent geometrical assembly stations, where parts are positioned
and welded. Stamped parts, called components, are represented as
Cij. A functional module is defined as MODU = { Cij’ Pij' S,
MLPU-], here C, P, S and MLP represent the components (parts),
principle locating points, geometric assembly station, and
measurement locating points respectively. The subscript "i"
defines the layer number in the representation. and the subscript "j"
represents the number of consecutive components in that layer,
which will be discussed later. Figure 5 shows an example of body
assembly representation using the aforementioned modules for a
side aperture subassembly.
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In general, a module can be understood as a minimal set of
elements necessary to describe an assembly operation. The
number of modules is equal to the number of components (parts or
subassemblies) in the whole assembly process. Compared with the
hierarchical grouping representation technique (Ceglarek, et al.,
1993), the representation approach in this paper presents
knowledge of the body structure, assembly sequence, assembly
tooling and measurement in an "integrated” format. Thus, the
relationships between key features of the assembly process are
represented. Before further analysis, some useful terms are defined
with the help of the graph theory (Bondy and Murty, 1976):
Definition 1: A bipartite graph is an undirected graph G(V,, V,,
E), where V| and V; are sets of vertices and E is a set of edges, in
which no two vertices in the same set are linked by an edge.
Definition 2:  An n-partite graph is an undirected graph G( V|,
Vi, Vi, Ey, Eg,..., Ey.)), where each Vi, 1£i<n,is a set of
vertices, and each Ej, 1<j<(n-1),is a set of edges, in which
the edges in E;j link vertices in V; to those in Vj41, and no two
vertices in the same set are linked by an edge.

The bipartite and n-partite graphs are used to define body
assembly representation in the following way:

Definition 3: A body assembly representation, BA, is an / -partite
undirected graph

BA(MOD,,MOD,,...,MOD,,E,,E,,....E, ), @
where MOD;,MOD,,...,MOD, are sets of vertices, and
E|.E;,...,E,_; are sets of edges, with / equals to the number of
assembly layers.
The vertices MOD; is a set of all modules in the i-th layer:

MOD; = U MOD; ;, 3)
j=Lnj

where n; is the number of modules in the i-th layer. The Edge E;is
the set of all links between components in layers: i and (i+1),
shown in Fig. 5:
EfL. @
0(i+1)
where ngﬁ={0,l} represents link between components C;; and
Cix. If components C;; and C;y are linked in the body structure
then Ej'l)( is equal to 1, otherwise Ej',)( is equal to 0.

The body assembly is represented as parent-siblings links which

define the assembly operations conducted in one station. Parent-
siblings link can be described by an input-output relation, with
inputs being components entering station S (siblings) and output
being the component leaving station S; (parent) (Fig. 6). It can be
defined as:
Definition 4: A parent-siblings link (PS) of the component
Gj= Parent; ;, is defined as an undirected bipartite graph
PS(MODi_j,Siblingsivj,ngl)() with one vertex representing
the other ones defined as
Siblings; ; = MODy, ., , such that the edges satisfy M Ef) =1.

component C;;, and

The body assembly representation also enables us to describe
two levels of assembly sequences. The first level shows the
sequence of stations used in the assembly process, i.e., for example
S¢ -> S5 -> 84 (Fig. 5). And the second level shows the sequence
of components entering a single station. These two levels are
represented by vertical and horizontal links among the modules.
The vertical connections among the modules represent the
sequence of stations in the assembly process. The horizontal links
of the sibling-modules, for given parent-module, describe the
sequence of the component entering a single assembly station.

2.3.2 Case identification of sustained dimensional
variation. The procedure of case identification for sustained
dimensional variation selects and classifies the information
pertaining to measurements captured during a given period of time.
If measurement data include variation caused by PLP failure, the
pattern described by the data will follow the pre-determined pattern
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of the faulted PLP (Ceglarek and Shi, 1994). Therefore, based on
the characteristics of body structure and tooling locators, some
points will "move" together during the assembly process. In a
statistical sense, "moving" together can be interpreted by
correlation between the measurement points. These correlated
points can then be grouped into a variation problem, or case study.
The purpose of grouping them into a case, is to localize and isolate
root cause of the problem. This procedure is based on the
assumption that there is a limited number of root causes which
usually occur in one of the geometrical stations. Clustering
methods and correlation analysis (Kaufman and Rousseeuw, 1990)
are used to find variation problems shown by measurement data.

Initially, a case is pre-defined based on two user selected
thresholds: variation (Ty) and correlation (T;). The variation
threshold defines the magnitude of a problem, and the correlation
threshold defines the scope of the problem by showing
measurements with variation caused by one root cause. The
procedure of case identification by clustering sensor information is
summarized as follows (Fig. 7):

(1) Calculate 6-sigma variation Gy p for all MLP points using

a selected sample size:

N
‘/Z<xi -2

Oyp = 5
wer o1 )

where Y is an i-th measurement of MLP, 2 is a mean of
the i-th measurement, and N is the sample size.

(2) Group all MLP points according to their variation levels
and a variation threshold (T,). In general, T, is determined
so that 70% of the inspected points fall below that level.

(3) Calculate correlation for all MLPs in the group obtained in
step (2).

N — —
gl(xi -G -0

Corr, , =

P ®)
206- 02 -D)

where yand 7 are two MLPs.

(4) Decompose the group obtained in step (2) into subgroups
according to their levels of correlation. Highly correlated
measurements will be grouped into one sub-group. Thus, a
correlation threshold (T¢) is proposed for the
decompositicn. The correlation threshold is a second
constraint in grouping measurements according to a single

fault symptorn. which is based on the assumption that the
measurements with large variation are strongly correlated if

and only if their variations are caused by the same root
cause. .

(5) For each selected sub-group, calculate the correlation
between measurements (MLPs) from that sub-group and
other measurements that were rejected earlier for having
variation below variation threshold Ty but manifesting one
root cause.

The selected MLPs, which are a group of measurement points

with large variation and strong correlation, are called Candidate
MLPs (CMLPs).

2.3.3 Variation root cause diagnosis reasoning. The
root cause diagnosis conducts three tasks (Fig. 8): identification of

the candidate component (fault component), localization of the

candidate station (fault station), and isolation of a root cause.
Determination of the Candidate Component. The Candidate

Component Cj; is a component in the body structure which

manifests the symptom of the variation problem. The Candidate
Component is determined based on the number of MLPs and
CMLPs located on each component. The information about the
number of MLPs in each component is defined in the body
assembly representation (Section 2.3.1). The number of CMLPs is
obtained by the case identification procedure presented in Section
2.3.2. In order to explain the procedure of determining Candidate
Component, the following definitions are presented:

S.M. Wu Symposium

328

Definition 5: An assembly path is an undirected n-partite graph

1 2 .
AP(MOD,{L,MODZJZ,.,.,MOD,VJI,Ezl_’h,E‘Jz‘zi,...,E‘J’H'I_’JI) (7
where the vertices of the graph are the modules
MOD, ; ,MOD,  ,...MOD,  and E"j .E" . E{"" " are the

edges, defined by body assembly representation, such that
W =E® =.=E"" =1. The E{} is defined in Eq. (4).

By Chady Jundi

Figure 6 shows examples of the assembly paths in the body
structure, for instance, path C3s- Cy) - Cs2 - Ce1.
Definition 6: A membership 1;; of the component C; ; in a module
is the ratio of the number of CMLPs nl j for identified case, to the

number of the MLPs n;; in that module:

n. .
Ni,j = ﬁ (8)
The procedures of determining Candidate Component (Fig. 8)
are:
(1) Calculate the membershipn;; (Eq. 8) for each component:
(2) Select the component with maximum membership for each
assembly path AP
VC.={C ::1n ;= max , 9
ap Sl {Cij oMy (k‘”eAP(nk_l)} ()]
(3) Check the membership for each parent-sibling link

n(C)#0)=(Parent, ; =C* & Siblings, ;#C°), (10)

Siblings ;; aQ(feSibungs,_,

~This step allows us to determine the candidate component
in the situation where one sibling from siblings related to
the S;; is selected as a CC in step (2), but all other siblings
from the same parent are also affected by the variation case.
In this situation, the candidate component is not the
siblings, but their parent.

(4) Candidate Components are components selected in steps

(2) and (3).
Localization of Candidate Station. An assembly station where a

/

fault has occurred is called a Candidate Station, denoted by Sic.

The approach to determine a S is based on the information about
the candidate components and the body assembly representation,
which is summarized as:

(1) For one candidate component Cf‘ i the candidate station S¢

is determined as:

S = {S,:S; € MOD, j}, an

(2) For two candidate components C; ; and Cf , , a candidate
station is determined as:
3 3 (C{; € AP;andC{j € AP)) =
AP| APy
5°=(S: 3 MOD,, € (AP and AP;)andS € MOD, . (12)

(3) For more than two candidate components, each pair of the
components is treated separately in the way described in

items (1) or (2).

The candidate station determination procedure described
above selects the assembly station as the nearest station between
candidate component(s) in the body structure (Fig. 5).

Identification of the Root Causes. After successfully determining
the candidate components and stations, the root cause identification
is conducted by focusing on the tooling systems and its fault
symptoms. Principles for the root cause identification can be
summarized as: (1) Root cause is a locating pin problem if all
measurement points on the candidate component are CMLPs; (2)
Root cause is a clamp or welding spot related problem if some
measurement points on the candidate component are CMLPs; (3)
Root cause is an interference problem if CMLPs involve three
axes. A detailed study of root cause identification is presented by

Ceglarek and Shi (1994).

2.3.4 Example of a case study: B-Pillar variation in the
Y direction. The presented case study illustrates the procedures
of determining: CMLPs, Candidate Component, Candidate Station
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and root cause of variation.

(1) Selection of CMITRAe: variation and correlation
thresholds were set as T,=2.0 mm (6-sigma) and T.=0.7
respectively. The following MLPs were identified as CMLPs {

o1 M 2 M 23}. All CMLPs have measurement axes in Y
direction. Fig. 9 shows all the MLPs and CMLPs on a side
aperture.
(2) Selection of Candidate Component: Fig.10 shows
membership values for all components of the body structure.
Following Eq. (9), the maximum membership for path 1= {Cs -
C41-Gs 5} is equal to M5 ;=1.0, suggesting that C ; is a Candidate
Component. Checking the membership for each parent-siblings
link (Eq. (9)) does not suggest any other Candidate Components.
(3) Location of Candidate Station: Following Eq. (11), the
Candidate Station is defined by module MODs ; describing the
Candidate Componert C5 | (Fig.5). From Fig. 5 and following the
procedures in the last section, the Candidate Station is located as
station Ss.
(4) Root cause identification: From the aforementioned
analysis, it is known that: (1) all selected CMLPs measure
component in the Y axis, (2) C§, is the Candidate Component,
and (3) Ss is the Candidate Station. Therefore, it is suggested that
the fault is caused by tooling in Station Ss controlling component
CS ; in the Y axis.

The variation animation also helps in the root causes

determination. By applying the PCA to the CMLPs M, . M -~
M 23), the first and second eigenvalue - eigenvector pairs are

obtained as shown in Table 2.

TABLE 2. AN EXAMPLE OF THE PCA RESULTS

Eigenvalues Eigenvectors
A=4.20 a,={0.44, 0.53, 0.73]
A,=1.03 a,=[0.62, 0.65, 0.45]

Fig. 11 shows the varjation pattern corresponding to the dominant
eigenvector. The eigenvalues define the importance of the
variation pattern described by the eigenvector. According to the
level of the first e¢igenvalue, the first pattern (dominant
eigenvector) contributes around 76% of the total variation in the
analyzed problem. Therefore, elimination of the variation
described by the dominant eigenvector significantly reduces the
process variation .

Yy,

Detailed investigaticn of the assembly station Ss discovered that—" .

a clamp controlling B-pillar inner was not functioning. Affer the
clamp was repaired, the variation was significantly reduced (see
Table 3).

TABLE 3 CASE EXAMPLE - EVALUATION OF

CORRECTIVE ACTION
BEFORE AFTER
MLPs (6-sigma, Sample of 100) | (6-sigma, Sample of 100)
21(Y) 2.40 1.44
22 (Y) 2.83 1.46
20(Y) 3.85 1.47

3. PROCESS NAVIGATOR - IMPLEMENTATIONS

The PN is implemented in PC based Novell’s local area network
(LAN) linked with measurement station (OCMM). Four major
modules, on-line monitoring and fault classification, data and
alarm bases. variation pattern animation, and knowledge based
diagnosis are implemented. A brief description for each module is
summarized as follows: N

(1) On-line monitoring and fault classification: An interface
between the OCMM and the PN has been developed using C++
language. By using the interface, the dimensional measurement
data can be automatically transferred from the OCMM to the PN
data base in real time. The on-line monitoring and fault
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, necessary description presented as slots (C;, P

classification algorithm has been programmed and linked with the
data collection software. Therefore, alarms about the occurrence
of sporadic jumps, mean shifts, or variation changes, will be
detected and classified in real time. A CUBIX board, which is
installed in the file server, is used to run the module to acquire and
monitor the in-line OCMM data. Each CUBIX board can collect
the data from two OCMM stations. Serial ports are used for
communication between the OCMM and the CUBIX board.

(2) Data base and alarm base module: Both the data base and
alarm base were developed using Novell Betrieve Software. (a)
The design of the data base can store 150,000 data records, which
is estimated to save six months of production data with a
production rate of 1000 units per day. A management menu
system for the data base has been implemented. The management
of the data base includes search files, list files, show raw data files,
and delete files (with passwords). (b) The alarm base is designed
to manage the alarm messages generated by the on-line monitoring
program. The alarm message includes the type of an alarm (81,
MS, VC), magnitude of the alarm, alarm occurred Job Sequence
Number (JSN), date, time, and MLPs. Alarm reports have been
developed to help the user utilize the alarm message efficiently.
The alarm reports includes summary reports, detail reports and
alarm frequency reports (Fig. 12). Other features, such as alarm
search by JSN, date and time, recent samples, and report
generation based on the combination of different types of alarms,
are also included in the software.

(3) Variation pattern animation module: Variation pattern
animation reports have been developed to show the variation
pattern for a given body opening or a given panel. The animation
of variation patterns was realized by using the principle component
analysis and prepared computer graphic packages written in C++.
By using the animation, the variation pattern can be visually
inspected and analyzed. Currently, the animation is developed for
each body opening (doors, hood, deck lid, etc.). An example of the
animation results using production data is shown in Fig. 13.

(4) Knowledge-based diagnosis module: An expert system
development shell, Nexpert Object™ produced by Neuron Data
Inc, was used for implementation. The diagnosis approach,
presented in section 2.3, was realized using hybrid knowledge
representation: production system (rules) and frames (classes-
objects-slots). The frames are used to represent the body structure
in the form of classes and objects (functional modules) with

ij» Pij» Si» MLPij). The
Nexpert Object™ describes the static relation between failure and
body structure as a set of IF - THEN - ELSE rules. The dynamic
relations are described as reasoning, and stored in the Nexpert as
agenda and inheritance. The reasoning part of the shell uses
forward and backward propagation to identify candidate
component and candidate station. The rules, describing procedure
of candidate component and candidate station determination, are
linked in the Nexpert through context link option. The outline of
the implementation is shown in Fig. 14. A brief summary of the
implementation is shown in Table 4.

TABLE 4 THE SUMMARY OF THE IMPLEMENTED
KNOWLEDGE-BASED DIAGNOSIS

Name Rules Objects | Classes | Properties| Slots

Number | 102 73 10 79 [113

e developed diagnosis approach has been evaluated using case
studies solved in a domestic automobile assembly plant. The
conducted evaluation indicates that implemented diagnostic
approach can solve 83.3% of cases.

4. CONCLUSIONS

This paper develops a process navigator (PN), a dimensional
quality conmtrol and assurance system for automobile body
assembly. The proposed system includes real-time dimensional
data collection, on-line monitoring and fault classification,
dimensional data base, alarm message base with reports, variation
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pattern animation, and knowledge-based diagnosis.

The major contribution of the developed PN is integration of
advanced statistics with knowledge about the body assembly
during process monitoring and problem solving, and presentation
of results as a pictorial, user-friendly computer reports. The
integration of statistics with body assembly knowledge required
developing and implementing the following issues:

(1) On-line monitoring and fault classification algorithm. Three-
digit index is applied to monitor and classify in real time the three
most common variation patterns caused by tooling faults in the
assembly process.

(2) Variation pattern animation: The PCA is integrated with body
structure and knowledge about assembly process. The eigenvalue-
eigenvector pairs are used to interpret variation problems in the
following way: the magnitude and direction of the eigenvector
represents relative movement between the measurement points,
and the eigenvalue represents the importance of the variation
pattern corresponding to the eigenvector.

(3) Variation root cause diagnosis: Knowledge about the body
assembly is described by developed functional modules, which
integrates knowledge about the assembly process and body
structure in the knowledge-based computer shell. A step-by-step
diagnostic reasoning strategy is developed based on the proposed
knowledge representation, which determines the root cause of
variation. The presented diagnosis identifies correctly 83.3% of
the tested cases.

4) Process navigator implementation: The implementation of the
aforementioned technologies and algorithms allows development
of integrated quality control and assurance systems for the auto
body assembly manufacturing. In addition to the development and
implementation of the proposed methodology, great efforts were
undertaken to design pictorial user friendly reporting system.
Therefore, the PN provides an effective tool allowing the plant
staff benefit from the results of advanced statistics without
requiring expertise in advanced statistics.
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