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ABSTRACT

This paper presents an on-line statistical te-sting procedure,
based on a g_eneralized likelihood ratio test (GLRT), for detecting
and estimating faults in correlated processes. The process is

assumed to be ARMA, and the faults are assumed to be additive ~

(e.g. a step change in the mean of the process or a spike in the
data). In addition to detecting the fault, the GLRT developed here
estimates the fault magnitude and the time of occurrence of the
fault and classifies the fault according to a prespecified set of fault
types. In this sense the GLRT combines the tasks of fault
detection, estimation, and classification. It is shown that the
estimate of the fault magnitude is both unbiased and efficient.
Simulation results, which demonstrate the effectiveness of the
GLRT in detecting both step mean shifts and spikes, are presented.

1 INTRODUCTION

With increasing automation in manufacturing processes the
case of 100% inspection, Or near 100% inspection, is becoming
more and more common. However, as the process is sampled at
higher rates, the measurement data, to be used for quality control
and/or process control purposes, is more likely to be
autocorrelated. It is well known that the performance of
convgmional quality control techniques, e.g. cusum _tests,
deteriorates when applied to correlated data. More specifically, the
probability of false alarm may be significantly increased.
Consequently, when the data exhibits correlation some alternative
form of statistical testing should be used, or, at the very least, the
control limits of the conventional techniques should be modified.

Previously, a good deal of research has been directed towards
the.modiﬁcation of conventional fault detection tests and the
design of new tests for correlated data. The average run length
(ARL) for cusum tests on correlated data has been investigated
(Johnson and Bagshaw, 1974, and Yashchin, 1993). Vasilopoulos
and Stamboulis (1978) develop modified control limits taking into
account the correlation of the data. Alt et al. (1977) designs a
maximum likelihood estimate of the mean vector for a multivariate
ghr(i)fiess and derives appropriate control limits for detecting a mean

An alternative approach is to whiten the correlated data and use
conventional control charts on the uncorrelated residuals. Most
approaches of this type assume the data can be described by an

invertible ARIMA time series model driven by white Gaussian
noise (see, for example, Box and Jenkins (1976) or Pandit and Wu
(1990)). If this assumption holds then the whitening filter is
simply the inverse time series model, and the residuals are the one-
step-ahead prediction errors of the model. Since the residuals are
approximately uncorrelated if the model is adequate, conventional
control charts can then be applied to the residuals. Under this
approach, the statistical test applied to the residuals generally falls
under one of three types: (1) a cusum test for detecting changes in
the process mean; (2) a chi-squared test for detecting changes in
the variance of the driving noise of the system (assuming it is
white and Gaussian); and (3) a whiteness test for detecting
changes in the process parameters (i.e. natural frequencies and
damping ratios) of the system. in Dooley et al. (1986) the
residuals are tested using both a whiteness test and a cusum test. A
cusum and chi-squared test have been used to detect changes in
principal stress data on a blast furnace shell (Notohardjono and
Ermer, 1986). A methodology incorporating all three above
mentioned tests, in conjunction with rule-based classification, was
developed and applied to force signals in an end milling process in
Dooley and Kapoor (1990). In addition, the effect of the three
types of faults considered (mean shift, parameter shift, and change
in noise variance) on each of the three tests are discussed in
Dooley and Kapoor (1990). Processes that can be approximaled by
EWMA models are considered in Montgomery and Mastrangelo
(1991), where control limits for run charts are developed based on
appropriate choices of the weighting factor, A, in the EWMA
model. It has been suggested (Montgomery and Mastrangelo,
1991) that run charts on the residuals should be accompanied by
run charts on the original correlated data.

The statistical test for fault detection proposed in this paper is
related to the above approaches in that it analyzes the uncorrelated
residuals of the appropriate whitening filter. However, instead of
using a combination of the three more conventional tests described
in the preceeding paragraph, the new method is based on &
generalized likelihood ratio test (GLRT). The GLRT method is an
inherently attractive approach to fault detection because its
theoretical optimality, albeit in an off-line setting, has been
established in Deshayes and Picard (1986). Furthermore, for
detecting mean shifts in the process, the GLRT has an advantage
over a CUSUM applied to the residuals, since the CUSUM test
ignores the dynamics of the ARMA model and assumes a step-
change in the process results in a step change in the residuals. The
GLRT is described in a very general context in Van Trees (1968).
The concept of using a GLRT to detect system faults gained
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attention in the mid seventies (Willsky and Jones, 1976). For a
comprehensive survey on the early work see Willsky (1976).
Basseville (1988) provides a more recent survey on fault detection
in dynamic systems, in general. Most of the work on fault
detection using GLRTs has been more in the context of system
monitoring than quality control. Hence, the techniques have been
applied to the detection of faults in sensors, actuators, and the
system dynamics. The majority of these approaches use a state-
space representation of the process, as opposed to an ARMA
representation, and a Kalman Filter for generating the residuais.
Tsay (1988) proposed what amounts to a GLRT for detecting mean
shifts, spikes, and variance changes in time series. However, the
algorithm is a batch method designed for the off-line analysis of
data and is not suitable for implementation in an on-line SPC
framework, unlike the method developed in this paper.

The purpose of this paper is to present a sequential GLRT
based SPC method for correlated processes. The method
developed in this paper combines the tasks of fault detection,
classification, and estimation. Here, classification is in regard to
fault type (e.g. a mean shift or spike), and estimation is in regard to
time of occurrance and fault magnitude. Furthermore, the
implementation is straightforward and computationally
inexpensive.

The format of the paper is as follows. Section 2 provides a
description of the assumed process and fault models. In sections
3.1 through 3.3 the GLRT algorithm is developed and analyzed,
and in section 3.4 threshold and window length selection is
discussed. In section 4, implementation issues are discussed, and
simulation results for detecting both a mean shift and a spike are
provided.

2 SYSTEM DESCRIPTION

Consider a process which can be described by the following
linear, time-invariant, discrete-time ARMA(p,q) model:

e 2 q
x() = GB)at) := ©B) at) i= 1461B+6,B2+...4+04B'

@¢(B) 1+1B+;B2+...+¢pBP

where a(t) are identically distributed, zero-mean, white Gaussian
noise with variance 0'::, and B is the backshift operator. In this
paper we assume that the ARMA model, G(B), is known either
through a priori information or using any of a number of parameter
estimation methods performed during a no fault period of the
process. In addition, it is assumed that the ARMA process is both
asymptotically stable and invertible.

In the development of the GLRT it is assumed that the output
of the correlated process to be monitored can be described by the
following model:

y) = x@®+Kfjz(t): j=1,2,...m, @

a(, (1)

where fj ¢(t) is a unit magnitude fault of the jth type, occurring at

time 1, K is the magnitude of the fault, and x(t) is the ARMA
process of equation (1). In the model described by equation (2) let
there be m different fault types hypothesized. As an example,
suppose m = 2, where a step mean shift (j = 1) and a spike (j = 2)
are the hypothesized faults. Then, in this case

0 t<t
f1,7() 1={1. (>t and £2, (1) :={

0: t=1
1:t=1

A final assumption is that no more than one type of fault may
occur at any given time, and that the occurrence of different faults
are spaced far enough apart that their effects do not overlap.
Since the invertibility of G(B) is assumed, we can define the
inverse transfer function, or whitening filter, as
OB
G-1(B) := —(—) 3)
6(B)
With G-1(B) a linear filter, if the process output y(t) is filtered by
G-1(B) and the residuals denoted e(t), the result is, using equations

(1) through (3),
ety = GI(B)y(® = a(®) + KTjdlt) )

where Tj«(t) := G-1(B)fj(t) is the response of a unit magnitude

fault when filtered by G-1(B). Tj(1) will therefore be referred to
as the fault signature of fj(t), an explanation of which will be

given in the following paragraphs. Note that upder no fault (t < 1)
conditions e(t) = a(t) and is the error, or residual, of the linear
minimum mean square error estimator of y(t) given y(t-1), y(t-2),
y(t-3),... ) ) ) )

Equation (4) is conceptually important 1n that it shows e(t) is
the sum of the NID(O, oﬁ) sequence a(t) and the deterministic fault
signature. e(t) is thus an uncorrelated Gaussian sequence with
mean KTj(t) and variance GZ_ = 0'3, where the variance is
independent of the occurrence of a fault.

Note that if a step mean shift occurs in the process, the
resulting mean shift in the residuals will not be a step function. It
will be a filtered step response with dynamics dependent on G(B).
If a conventional cusum test were used on the residuals, the
information contained in the fault signature dynamics would be
ignored. It is reasonable to assume that by making use of the fault
signature dynamics, a better fault testing procedure can be
designed. As will be shown in subsequent sections, the GLRT
takes into consideration these dynamics and, as a resuit, is capable
of improved detection performance.

3 THE GLRT ALGORITHM

P . n

In this section a likelihood ratio test (LRT), for which it is
assumed K of equation (2) is known, is developed. In the
subsequent sections the LRT will be extended to 2 GLRT, which

applies to the more general situation where K must be estimated.
We first formalize the problem by defining the set of statistical
hypotheses to be tested. For implementation purposes, instead of
testing for the occurrance of faults at all previous times, only fauits
occurring in the interval {t-N, t-N+1, .. ., t} will be tested for,
where t is the current time and N+1 is the window length. In
general, when selecting N there is a tradeoff between
computational complexity and probability of detection. Guidelines
for selecting N will be discussed in section 3.4.

The convention behind the hypotheses definitions is as follows.
Suppose that m types of faults are hypothesized, that the window
length is set at N+1, and let M := m(N+1). Then, at each time t,
the following hypotheses would be tested:

the null hypothesis
Ho(t): no fault has occurred,
and the alternative hypotheses

H(t): a type 1 fault occurred at time t

N+1 hypotheses H.z(t): a type 1 fault occurred at time t-1

associated with
fault type 1

Hn+1(t): a type 1 fault occurred at time t-N

Hna2(t): a type 2 fault occurred at time t

N+1 hypotheses H.N+3(t): a type 2 fault occurred at time t-1

associated with
fault type 2

Ham+1)(t): a type 2 fault occurred at time t-N
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Huma+1)-N(t): a type m fault occurred at time t
Hm(N+1)-N+1(t): atype m fault occurred at time
N+1 hypotheses t-1
associated with .
fault type m .

Hm@+1)(1): a type m fault occurred at time t-N

The fault detection and estimation task then becomes determining
which of the above M+1 hypotheses is most likely. To simplify
the analysis, we now introduce the following notation.

Definition: &)
At a given time t define the fault function fi'(-) as that occurring
under Hj(t) in the above hypotheses definitions and 'f'i(-) as its
corresponding fault signature (see equation (4)) when filtered
by G-1(B). Also define K; as the magnitude of the fault
occurring under Hj(t).

As mentioned earlier in this section, we are looking only for
faults occurring in the interval {t-N, t-N+1,. ., t}. Since, if T is
the time of occurrence of the fault, e(t) (t < 1) are distrubuted
independently of which hypothesis is true, for the detection

problem we need only consider the N+1 length residual vector
defined as

() == [e(t-N) e(t-N+1) . . . e(0)]T (6)

Determining which of the M+1 hypotheses is most likely is a
multiple hypotheses testing problem. If the fault magnitudes are
known @ priori then an LRT testing procedure, which is known to
be optimal in the Neyman-Pearson sense (Van Trees, 1968), could
be used. Assuming for the remainder of this section that the fault
magnitudes are known, the LRT is developed as follows. At each
time t, and fori= 1, 2, .. ., M, the likelihood ratios

. PenfelHy
i = e, (eiHo) )

are calculated. In equation (7) the numerator and denominator are -

the conditional probability densities of the given residual vector
under H; and Hy, respectively. The argument t in &(t) and Hj(t) has
been dropped for convenience. The fault detection problem
reduces to finding the value of i that maximizes equation (7).

To calculate A; the conditional probability densities of e under
each hypothesis must be found. Since ¢ is a jointly Gaussian
random vector, it is sufficient to find its mean and covariance
matrix, which, from equation (4), are given by

mi =EfeH] = KiI; and R; = Ellem)(e-m)TH]=cl. @)

Here, T; := [F}(t-N) Ti(t-N+1) .. Ti(O1T, the Fi(-) are as in definition
(5), and I is the identity> matrix of dimension N+1. Thus, m; is
dependent on H;j, but R; is not. Using equation (8) in the
multivariate Gaussian probabality density and substituting into
equation (7) gives

1 T T
A; = expl—5 12¢ -mimi]l.
i P{ZG?‘[ m; _1_1]} [€))
The LRT can be further simplified by noting that, since In(x) is
monitonically increasing in x, maximizing Aj is equivalent to

maximizing In(A;). Taking the log of equation (9) and defining the
Statistic

T 2..T.
Si = 2¢"mi-mimi = 2¢"KTi- KiTi Ti. (10)
the LRT becomes:
* choose H; such that S; is maximized
* choose Hpif S; <0 Vie {1,2,...,M} (11)

i

The implementation of the LRT described in equations (10)
and (11) would require knowing K;. Since, in practice, such a
priori knowledge is an unrealistic requirement, the LRT must be
modified. A common technique to circumvent this problem is to
find the maximum likelihood estimate (MLE) of K; under H;,
substitute that estimate into equation (10) for K, and then use the
test given in equation (11). The resulting test is then referred to as
a generalized likelihood ratio test (GLRT). LRTs and GLRTs are
explained in a general context in Van Trees (1968).

From equation (8) and the definition of the multivatiate
Gaussian probability density function, the conditional probability
density of ¢, given Hj and Kj, is

K = 1 - e Kif) TeKiT)
peH,(eHiK)) = (21:02)(” 2 CXP{ ) 028 . (12)

The MLE of K; under Hj is then

» 'ty
Ri = argmax {pom(@HiKD} = r (13)
i Ii L
which is obtained by setting the partial derivative with respect to
K; equal to zero and solving for K;. . .
As will be shown in the following paragraphs, K; has the
desirable properties of being both an unbiased and efficient

estimate of K;. That K; is unbiased is easily proven in the
following claim.

Claim (1): Under H;, f(; is an unbiased estimate of K.
proof: Under H; the expected value of ki is, from equation (13),

T
ER; 1H;, Ki] = {%—H H;, Ki]= —lKigi L . g,
Ii L Ii L

where the second equality follows from equation (8). .

The variance of any unbiased estimate of a nonrandom
parameter is always bounded below by what is commonly referred
to as the Cramer-Rao bound. If the parameter to be estimated is
denoted a, the data frox}\l which a is estimated denoted R, and the
estimate itself denoted a(R), then the Cramer-Rao inequality is of
the form (Van Trees, 1968)

vaag) 2| f 20 ERe B (14)

and the quantity to the right of the inequality is referred to as the
Cramer-Rao bound. Any estimate which satisfies equation (14)
with an equality is called efficient. It is a well known fact (Van
Trees, 1968) that an efficient estimate exists if

and only if Jin pRu(Rla) can be written in the form
Iin pRu(Rla) _ [2(8) - a]Wa), where W(a) is any arbitrary

function of a, but not a function of the data, R. Furthermore, if an
efficient estimate exists, it must be the maximum likelihood
estimate (Van Trees, 1968). We now make use of these facts to

prove that f(', is effecient.

Claim (2): Under H;, ki is an efficient estimate of Kj.
proof: Differentiating the logarithm of equation (12) with respect
to K gives

A k.(eH;,Kj 2
nPng,.K,(iQ i.Ki) - [k‘ R Ki] ILin (15)

after substituting the expression for ki from equation (13).
Since this satisfies the condition given in the preceeding
paragraph, an efficient estimate of K; exists, and, therefore, the
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maximum likelihood estimate, ki, must be efficient. .

Since ki is efficient, its variance must equal the Cramer-Rao
bound of equation (14). Differentiating equation (15) a ‘second
time and substituting into equation (14) (with an equality) gives

52
Var(Ri 1y, Kil = <. (16)

i Li

Having derived the maximum likelihood estimate of K, the

LRT can now be extended to the GLRT. Substituting ﬁi of
equation (13) for Kj in equation (10) gives

Te A2
s = 22" Li-RETT = ———(;-II') . (1”n

From equation (17) it is apparent that ;20 Vie {1,2,...,
M}, which is a result of the maximization involved in the
maximum likelihood estimation of K;. Consequently, if the test of
equation (11) were used for the GLRT, Hy would never be chosen.
Because of this, one additional modification of the test must be

made. A threshold y must be prescribed so that the test becomes:

2
Tz,
« choose H; such that §; = —(Q—TLL is maximized
i Li
« choose Hpif Sj<y Vie {1,2,...,M}. (18)
The threshold should be chosen to balance the probability of faise
alarm and the probability of detection, for which guidelines will be

discussed in section 3.4.
The test of equation (18) has a physical interpretation as a

correlation receiver. The inner product in the numerator, gTIi,
represents the "correlation” between the residual vector and the
hypothesized fault signatuce. After scaling that quantity by the

"power" of the fault signature, 'f-;rfi, the hypothesis whose
corresponding fault signature is best correlated with the residual
vector is selected. It is in this sense, by correlating the residual
vector with the fault signatures, that the dynamics of the fault
signature are taken into account and the GLRT achieves improved
detection performance.

3.4 Threshold and Window Length Selection
3.2.1 Threshold Selection. As mentioned in the previous

section, the threshold ¥ should be chosen to achieve a suitable
balance between the probability of false alarm, denoted a, and the

probability of detection, denoted 1-B. To relate y to a, the
dism'pution of S; under Hp must be determined.
Since Kg = 0 under Hg, from equation (8) it is apparent that

e~ NID(Q,oiI) under Hg, where 0 is a vector of zeros and I is the
identity matrix of appropriate dimension. From equation (17),

1)’ (€5 (D) T[I' I-'}
Si = = =g |2t e 19
I I T AN @

Since th; matrix in brackets in equation (19) is idempotent,
symmetric, and rank one, from the Fisher-Cochran Theorem (Rao,
1973) it follows that under Ho

Si ~ o4ai, (20)

where )(21 is a chi-squared random variable with one degree-of-

freedom. Equation (110) reveals that under Hg the distribution of
the §; are identical, independent of i. In other words, given that Hg
is true, each of the alternative hypotheses are equally likely (or

unlikely) to be chosen.
From equation (20), at a particular time t and given a particular

i and v, the probability that S; 2 7, given that Hg is true, can be
found. If this probability is denoted @', then, by definition

i}

o = P[S; 2yl Hptrue] = P[Sy2y|Hptrue] =
P{Sm 2 | Ho true). @n

Since a false alarm occurs if any S; 2 v, the true probability of false

alarm a is greater than or equal to &’ Because {(Sppi=12,..,
M} are not independent of each other, o is very difficult to

calculate analytically. o will, in general, depend on the degree of
interdependence of the Sj's, which depends on G-1(B). o may,

especially for large M, be significantly greater than . In spite of

this, the following may serve as a guideline for selecting v if o' is
chosen to be conservatively small. From equations (20) and (21),

-select y such that
Y= 2yi-), 2)

where x“;(b) is the bth quantile for a chi-squared random variable
with one degree-of-freedom.

This procedure is only a rough guideline for selecting ¥ based
on the probability of false alarm. More work concerning this facet
of the test certainly needs to be conducted. The probability of
detection depends on the fault signature and fault magnitude also,
and is thus even more complicated to determine than the
probability of false alarm. Since exact analytical relationships

between o, B, and y are extremely complicated, Monte Carlo
techiques may be of some value here.

3.2,2 Window Length Selection. In order to implement the
GLRT, the window length N, as well as v, must be selected. As

with y, an exact analytical relationship between N and the test
performance is difficult to evaluate. In selecting N, the tradeoff is
between fault detectability and computational expense. The
advantage of a large N is that there is a better chance of detecting
small magnitude faults, although increasing N will not increase
detection speed. The main disadvantage is in the increased
computational expense, evident from equation (18).

There are a number of factors to consider when selecting N.
Suppose some other statistical test for fault detection, with an out
of control ARL of N, is used in conjunction with the GLRT. If the
purpose of the GLRT is fast detection of the faults and the other
test can consistently detect faults within, say, N’ samples, there
may be no need to select N larger than N

'Another factor to consider when selecting N is the dynamics of
the fault signature. For the fault detection problem of this paper, a
measure of the detectability of a fault occurring at time t-N is

K2 IT T
2i2i 4i (van Trees, 1968). Here, the index i is such that T;is the

a
N+1 length fault signature vector for the unit magnitude fault of
interest occurring at time t-N. This detectability measure has a
physical interpretation as the square of the Euclidean distance
between the mean- vector of the residuals under fault and no fault
conditions, divided by the variance of the residuals. If, for a

particular value of N, T; is such that good detectability is ensured,
there is no need to-ehoose N any larger. In addition, if the system
is such that, after a certain point, increasing N does not make the
detectability measure any larger, then increasing N further does not
provide better detectability. In the simulations of the subsequent
sections, the above factors were considered when selecting N, and
N = 20 was chosen for both examples. :
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4 IMPLEMENTATION AND SIMULATION RESULTS -

Although in more general settings GLRTs may be complicated
to implement, for the process and fault models considered in this
paper the implementation is relatively simple. Given that G(B) and

oﬁ are known, for the hypothesized types and occurrence times of

the faults, the various T;j can be calculated off-line. After selection
of the threshold, the GLRT requires a bank of M correlation
receivers, desribed by equation (18), to be implemented on-line.
At each time the residual e(t) is calculated, g(t) is updated, and S; is

calculated fori=1, 2, ..., M. In addition, ﬁi can be calculated

using equation (13). The S; are then compared to ¥ and to each
other, and the appropriate hypothesis is chosen according to (18).

To illustrate the GLRT method, simulation results are
presented in this section. In the simulation a step mean shift and a
spike are added (at different times) to a simulated ARMA(2,1)
process, and the GLRT method is used to detect both faults. These
two types of faults are considered both because they accurately
represent many processes and for the sake of simplicity. Given the
time of occurrence, both faults are completely described by one
parameter, the fault magnitude. The method can be generalized
and applied to more complicated faults, such as piecewise step
functions or ramps, by using two or more parameters to describe
the fault.

lation
In this example the output data was generated according to
equations (1) and (2) using an ARMA(2,1) model with OB)=1-

0.5B, ®(z) = 1-1.8B+0.9B2, and o‘i = 1. Using these values, it can -

be easily shown that o, = 5.83. Furthermore, the following two
process faults were added to the process: 1) a mean shift of
magnigude K = o, = 5.83 from timesteps 100 to 130, and 2) a

spike of magnitude K = 20, = 11.67 at timestep 200. A window

length of N = 20 and a threshold y = 12 were used. The original
output data, y(t), is shown in Figure 1(a). Due to the high
autocorrelation of the process, the faults would be difficult to
detect using conventional techniques, and they are hardly
discernable from Figure 1(a). The whitened residuals e(t) obtained
by passing y(t) through G-!(B) are shown in Figures 1(b) and 1(c).
The faults, especially the spike at time 200, is much more apparent
in e(t) than in y(t). Figure 1(b) shows the entire sequence of
residuals, while Figure I(c) shows only the residuals during the
initial stages of the faults. In Figure 1(c) the solid line represents
the fault signature of the true faults, and the dotted line the actual
tesiduals, which follow the fault signature quite closely. Figure 2
shows the results of the fault detection throughout the course of the
simulation. Table 1 summarizes the simulation results during the
periods in which the faults occurred. At approximately timestep
140 the algorithm incorrectly decided a spike had occurred. The
cause of this is that the algorithm tests for step change in the mean
from O to some nonzero value, and not vice-versa. Consequently,
the change in the mean from 5.83 back to 0, not being one of the
fault types tested for, was interpreted as a negative spike in the data
at timestep 131. This error is not of major concern, however,
because the mean shift at timestep 100 had already been detected.
After detecting the mean shift, if the new estimate of the mean had
been subtracted out of the data, the shift back to 0 in the mean
could have been detected just as the original shift was. Barring this
period of the simulation, no false alarms occurred. In addition,
both faults were detected immediately with no delay. Table 1
shows that the correct fault times were estimated for both the step
and spike faults and that the estimated fault magnitudes were close
to the true values.
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Figure 1 Simulation data: (a) process output with mean shift and
spike; (b) whitened residuals; (c) whitened residuals at the
onset of the faults and the corresponding fault signatures.
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Figure 2 Simulation results for fault detection: O - no fault; 1-
step mean shift; 2 - spike.




3 3 T 3 .
fault type | fault time magnitude
none - -
none - -
step 100 5.10
101 step 100 5.01
I step 100 5.01
siep 100 3388
104 siep 100 300
105 siep 100 736
step 100 4.34
1 siep 100 4.65
step 100 5.01
siep 100 5.00
110 step 100 5.15
19! none - -
] none - -
spike 200 11.47
1 spike 200 11.61
02 Spike 200 1149
203 spike 200 T1.48
04 spike 200 11.44
5 spike 200 1143
. 206 spike 200 11.44
207 Sp! 200 11.44
08 Spul 200 11.43
spike 200 11.43
10 spike 200 11.43

Table 1 Simulation results during the initial stages of the faults.
True fault magnitudes were 5.83 (mean shift) and 11.67 (spike).

As previously mentioned, the o and P errors are difficult to
evaluate analytically. However, the in control and out of control
ARLSs for detecting the mean shifts for the above example were
investigated using Monte Carlo techniques. For two values of the

threshold (y = 12 and ¥ = 15) and a window length of N = 20, the
ARL under no fault conditions and under mean shifts of various
magnitudes were estimated using 50 simulations. The results are
summarized in Table 2, where K represents the magnitude of the
mean shift. In addition to the in control, or no fault, condition (K =

0), three different mean shift magnitudes were considered: K = Gy
K = 0.756,, and K = 0.50, ( where 6, = 5.83). For both y= 12

and y= 15 the mean shift of magnitude ¢, was detected on the first
timestep during all 50 simulations. With no fault present the ARL

was 465 for y= 12 and 1335 for y = 15.

5 SUMMARY AND CONCLUSIONS

For the past two decades GLRTs have been widely used for
fault detection in the context of automatic control and monitoring
of dynamic systems. This paper suggests that the GLRT has
considerable potential for being a valuable tool in quality control
also, integrating fault detection with fault estimation and
classification.

In this paper 2 GLRT has been developed to detect faults in
processes that are autocorrelated, assuming the process to be of
ARMA type driven by white Gaussian noise. The GLRT not only
detects the faults, but also classifies the faults according to a pre-
specified set of fault types, estimates the time of fault occurrence,
and estimates the magnitude of the fault. Furthermore, it has been
shown that the estimate of the fault magnitude is both unbiased and
efficient, and its variance was derived. The GLRT takes the form
of a correlation receiver, correlating the actual residuals with the
hypothesized fault signature, where the fault signature is the
pattern of the process fault as it appears in the residuals. This has
the desirable characteristic of being easy to implement and
computationally inexpensive. A complete procedure for
implementing the GLRT was developed, including guidelines for
selecting the threshold and window length.

Two types of faults were considered in the simulation of this
paper: 1) a step change in the process mean, and 2) a spike. The
simulation demonstrates the effectiveness of the GLRT method,
and a Monte Carlo simulation is included in an analysis of the

ARI Tor various mean shift magnitudes

threshold 7] K = o, | K = 0.750, | K = 050, | X = 0
y=12 0 092 547 | 465
y=15 0 58 734 [ 1335

Table 2 Monte Carlo results for calculating the ARL for various
mean shift magnitudes.

ARL properties for the case of a mean shift. The GLRT's
effectiveness results from the fact that it takes into account the
dynamics of the fault signature, improving detection performance
considerably. Work is now being conducted for extending the
GLRT to more complicated types of faults, such as exponentially
drifting means and linearly drifting means, for which the
complexity of the test should increase only moderately.
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