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ABSTRACT

In this paper we examine the properties of QR and
inverse QR factorizations in the general linear least squares
(LS) problem. By exploiting a straightforward geometric
interpretation of the factorization, an efficient algorithm is
derived that provides, order recursively, the LS coefficient
vector, projection error vector, and residual error energy
(i.e. the sum of the squares of the elements of the error
vector) for all of the LS problems as the order varies from
one to n, n being a prespecified maximum order. Using
existing algorithms for time updating the inverse QR
factorization, the method applies to the time recursive

situation also. Given only R'l and the last row of Q in the
inverse QR factorization of the data covariance matrix, all
order updates of the LS coefficient vectors and residual error
energies are carried out. Application to multichannel
adaptive LS filtering is presented.

I. INTRODUCTION

In this paper we consider the general linear LS problem
of projecting an N-length “output” vector onto the span of a
set of N-length “input” vectors. A solution to the LS
problem using a QR factorization of the input data matrix
has been known for decades [1]}-[3] to provide a numerically
stable solution. Moreover, the QR factorization is paraliel
in the sense that it can be implemented on a two-
dimensional systolic array, and easily extends to the time-
recursive case [1], [2]. By time-recursive, it is meant that at
“time” N+1 an additional element is appended to the input
and output vectors, and the resulting QR factorization and LS
solution is updated. A time recursive solution is especially
important in signal processing applications like adaptive
LS filtering and recursive system identification. Also
becoming popular in the time-recursive case is the inverse

QR factorization method, in which R'l, rather than R is
updated, because it avoids the backsubstitution step required
in the QR factorization for calculating the LS coefficient
vector [4]-[6].

Another desirable property of the QR factorization
method is its inherent order recursiveness. To illustrate,
consider the situation in which the input data is a time
series, possibly multichannel. In this case there is a strong
analogy, discussed thoroughly in [7] and [17}, between the
QR LS implementation and the LS lattice filter
implementation. The elements of Q are exactly the
normalized backward prediction errors of the LS lattice
filter, and the reflection coefficients of the lattice filter are
very closely related to the rotation angles in a Givens

rotation based QR implementation. Consequently, the QR
method inherits all the well known order recursive
properties of the LS lattice method. However, in many
situations, for example system identification, it is the

" transversal filter coefficients that are desired, order

recursively if the appropriate filter order is unknown q
priori. Calculating the transversal filter coefficients from
the lattice filter coefficients is straightforward in the singie
channel case, but becomes complicated and inefficient in

more general sitiations. :

By investigating the geometric interpretation of the
QR and inverse QR factorizations in LS and exploiting this
interpretation, a very straightforward and computationally
efficient method of obtaining order recursions is developed
in this paper. The results are derived for the most general
linear LS problem described in the first paragraph. The order
recursiveness is in the sense that the LS coefficient vectors.
the error vectors, and the residual error energies are available
in the full order LS projection, as well as the lower order LS
projections. By “full order” it is meant that the output
vector is projected onto the span of all the input vectors.
whereas in the “lower order” problems the output vector is
projected onto the span of fewer and fewer of the input
vectors. In the specific case that the input data is a time
series, the solution to the full order and lower order LS
problems represent order recursive calculation of the filter
coefficients, prediction errors, and residual error energies for
the transversal filters described in the preceeding paragraph.

Much of the previous work on order recursive
estimation of the transversal filter coefficients has been
developed as batch methods {8] — [10], and is not directly
applicable to the time recursive case. In [11] - [13].
algorithms that are both time and order recursive were
developed. [11] applies to scalar AR filtering, and in [12]
the method was extended to multi-input multi-output FIR
filtering. In both [11] and [12] the time recursiveness is
achieved using either a growing memory rectangular window
or sliding rectangular window. In [13] the concepts in [12]
were applied to scalar FIR filtering and simplified somewhat
by using a pre-windowed data assumption.

The algorithm of this paper possesses many advantages
over the algorithms of [8]-[13]. Firstly,it can be applied to
the most general linear LS problem. The generality of th_e
method and straightforward geometric interpretation allow it
to be easily applied to a wide variety of LS applications. Of
[81-[13], only [10] can be applied order recursively in
situations where the input data is not a time series. If
implemented in a time recursive situation, a sliding
rectangular window, a growing length rectangular window.
or an exponentially decaying window can be used. None of



the algorithms of [8]-[13] can accomodate the use of
exponential windows. Secondly, this algorithm is based on
the QR factorization, which is widely known to possess
cxcellent numerical properties. Thirdly, the algorithm is
parallel in the sense that it can be implemented on a two-
Jimensional systolic array for increased computational
speed. Tt should be noted that the algorithms of [9] and (10]
1iso possess this feature. Fourthly, this algorithm has
considerably better computational efficiency than the
previously developed time and order recursive algorithms. A
comparison of the computational expenses for adaptive
multichannel LS filtering is provided later in [16].

The format of the remainder of the paper is as follows.
(n section II. the QR and inverse QR factorization in the
general linear LS problem is reviewed and the geometric

interpretation of Q and R,'1 investigated. In section III an
officient method for obtaining the desired order recursions is
Jerived, and in section IV application of the results to
multichannel adaptive LS filtering is presented. Throughout
the paper, matrices will be represented in upper case bold
type and vectors in lower case bold.

{I. THE QR AND INVERSE QR FACTORIZATION
IN LEAST SQUARES

Consider the following general linear least squares (LS)
problem. Let {xi(N)}?ﬂy(N) be N-dimensional column

vectors, Xi(N) := [xj(1), xi(2), - - - MOIT, y(N) = [y(),
V2, .- y(N)IT, and let X'(N) =[(x1(N), xa(N), . . ., X{(N))
i=1,2,... n). Here, the superscript T indicates
transpose. Assume X™(N) has rank n. The LS problem is to
find the n-dimensional column vector w that minimizes
ly(N) - XM(N)wilip, 2.1)

where lieli is the standard Fuclidean norm.

For the purpose of minimizing (2.1), consider the QR
factorization of XP(N), i.e.

X(N) = QMN)R(N), (2.2)
where Q(N) is an Nxn orthogonal matrix, and R(N) is an nxn
upper triangular matrix with positive diagonal elements. A
proof that this factorization is unique can be found in {3]. It
can be easily shown [14] that the solution for the w that
mmimizes (2.1) can be obtained by using back substitution
in the triangular system of equations
R(N)W = yg(N), where yq(N) := QT(N)Y(N). (23)

The QR factorization itself can be achieved using
mpdiﬁed Gramm-Schmidt (MGS), Householder transform, or
Givens rotation techniques, providing a numerically robust
solution to the LS problem [3]. The latter two techniques
require minor alterations in (2.2) so that Q(N) is NxN and

R(N) is Nxn with the first n rows an upper triangular matrix
and the remaining N-n rows all zero. In (2.3), then, R(N)
would be replaced by its first n rows, and Q(N) by its first n
columns. Another desirable property of the QR method is
that it can be easlily extended to the time recursive case, if
we interpret N as a time index. That is, given X®(N) =
Q(N)R(N), find the QR factorization of X?(N+1) with
n N AX(N)
XAN+1) o= [x;(N+l), xa(N+1), . . ., xn(N+l)]
= Q(N+1)R(N+1),
yN+1) == [ay T, y(N+1)]T,

and Ae (0,1] a forgetting factor.
v Efficient, numerically stable algorithms for
implementing QR based time-recursive least squares (RLS)
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have been developed in [2] using Givens rotations, and in
[15] using the recursive modified Gramm-Schmidt (RMGS)
technique. Both methods require 0(n2) (computational
expense proportional to n? for large n) operations per time
update and have a structure that allows them to be
implemented on a two dimensional systolic array. In
actuality, it was shown that the two algorithms are
algebraically equivalent, any implementation discrepancies
the result of numerical roundoff errors [7].

In order to further investigate the properties of R(N)
and Q(N), we make the following definitions. Let

rjj(N) = [R(N)]j j 1<i<jsn (2.52)

300 = diag (100 ). (2.5b)
EN) :=[e1(N), e2(N), . . ., en(N)]:= QMN)I(N), (2.5¢)

KON) := J ' NR(N), and (2.5d)

W =K ). (2.5¢)
It follows easily that

X(N) = QN)R(N) = EMN)K(N), and (2.6a)

ET(NEN) = J2(N) (2.6b)

K(N) and W(N) are both upper triangular matrices with
ones on the diagonal and the columns of E(N) are
orthogonal by (2.6b). Thus, the E(N)K(N) factorization is
identical to the Q(N)R(N) factorization, except that the
columns of E(N) are scaled so that K(N) has ones on the
diagonal. Writing W(N) as

1 wo(N) w3(N) - wn(N)T

1

W(N):= , 2.7

0

1
L .

where w;j(N) is a column vector of length i-1, we state the

following Lemma.

Lemma 2.1:

wi(N) is the negative of the LS coefficient vector in

projecting x;(N) onto the column space of Xi-I(N), ie.

wi(N) = — argmin Ilx;(N) - X1 (N)wil (2.8)
w

Moreover, ej(N) = xj(N) + Xi-1(Nyw;(N), and is the error

vector associated with the LS projection, and the ith

diagonal element of R(N) is the square root of the residual

error energy, i.e. rj i(N) = e’ir(N)ei(N). The proof of

lemma 2.1 can be found in [16].

Define A(N) := [XN(N), y(N)] and suppose that Q(N)
and R'l(N) (or, equivalently, E(N) and W(N)) from the QR
factorization of A(N) are available. This will be referred to
as the inverse QR factorization. From lemma 2.1 the
normalized error vectors for the various order LS problems
are available in Q(N). Moreover, no back substitution is
necessary to obtain the LS coefficient vector in the
projection of y(N) onto the column space of X (N), since,
according to Lemma 2.1, they are contained in the last
column of W(N). Methods similar to those for time-
recursively updating Q(N) and R(N) have been developed for
time-recursively updating Q(N), R'I(N), and W(N) in [4]-
[6]. [4] assumes either a sliding or growing memory
rectangular on the data, while {5] and [6] assume
exponentially weighted data. All methods are O(n2) and



require roughty the same computational expense as the
methods for updating Q(N) and R(N) in [7] and [2]. In
addition, they involve the same Givens rotation or MGS
concepts and, therefore, enjoy the same numerical stability
as the methods for updating Q(N) and R(N). Finally, all
have parallel capabilities in the sense that they can be
implemented on a two dimensional systolic array
architecture.

III. EFFICIENT ORDER RECURSIONS IN THE
INVERSE QR FACTORIZATION

Consider again the inverse QR factorization of A(N) :=
[X™(N), y(N)]. The notation in this section is the same as
that in section II, except that all quantities are, unless
otherwise noted, with respect to the factorization of A(N)
and not X®(N).

According to Lemma 2.1 and the subsequent discussion,
the order recursiveness is in the sense that the error vector,
LS coefficient vector, and residual error energy in projecting
x;(N) onto the column space of X-I(N) (i=1,2,... n),
and in projecting y(N) onto the column space of XP(N), are
readily available from E(N) and R'I(N). Here, XO(N) will be
defined as the zero vector, so that the error vector in
projecting y(N) onto the span of XO(N) will be y(N) itself.
In many applications, for example system identification and
spectral estimation, this is not the order recursiveness that
is desired. Rather, what are desired are the error vectors, LS
coefficient vectors, and residual error energies in projecting
y(N) onto the column space of X}(N) (i=0,1,... n). In
this section, a computationally efficient, conceptually
straightforward method for accomplishing this is presented.
The method utilizes the inverse QR factorization of A(N)
after its columns have been rearranged in the manner
described in the following paragraphs.

Define, for 1<i<n, Ai(N) := Al+1(N)Pi*+] with

APHI(N) = ANy = [XO(N), y(N)), (3.1)
where Pi+1 s the permutation matrix exchanging the ith
and (1+1)St columns of the matrix it operates on, i.e.

L 0
pi+l — 01
10
0 In-i
Ij denotes the identity matrix of dimension j. Then,
Al = [N, 309, xi(N), x4 1N, - « .. xn(N)].

Let the following variables be defined as in section II,
except that the superscript i indicates it is with respect to
the (inverse) QR factorization of AY(N) (1<i<n+1).

3.2

Al(N) = QI(N)RI(N). (3.3)

rﬁ jN =R,
I D= [(R‘(N)) 1]k ., 1<ksj<n+l (3.42)
Ji) := diag(((r] (N)}"+1 (3.4b)
EiN)=[e]N), eJN), . . ., e,f, 100 ]= Qicvaiov,
(3.4¢0)
Ki(N) := (JiN)) ' Ri(N), and (3.4d)

'n+l(N)é

Fwh(N) wh(N) - w ! I 1
1 =(KIN)) ™, (3.de

WI(N):

1

where w'-(N) is a column vector of length j-1. Then, it
follows that

Al(N) = QI(N)RI(N) = Ei(N)Ki(N), and (3.5)
(Eion) BN = (5iny)2. (3.6)

Clearly, by Lemma 2.1, the desired order recursions can be

obtained from the inverse QR factorization of Ai(N)
(1sisn+1). Specifically, the error vector, LS coefficient
vector, and residual error energy in the projection of y(N)

onto the column space of Xi'I(N) are el-(N), —w.l(N). and
p i i

1
W respectively, in the sense that

wiN) = - argmin lly(N) - Xi*L(Nywily, (3.7)
w .
e;(N) = y(N) + X-L(Nyw(N), and (3.8)
i N\T i !
(e.(N) Ny =———. (3.9)
")’ (™)

The following proposition provides an efficient
method for determining QI(N) and (Ri(N))™!, given Qi*+1(N)
and (RI+1(N)) 1.

Proposition 3.1: Qi(N) = Qi+!(N)QI(N) and
(RigN) ! = Pi+1(RI+I(N)) 1 Qi(N), where (3.10)

Ii'l 0
QiN) = ci s ENCREY
si i
0 L.
. o
Sl= N and
+1 2 i+l 2
V@ i™)” + (55109)
- L, i+1(N)

.\/( |+1(N))2 ( 111++11(N))2

The proof follows by direct substitution and the
uniqueness properties of the QR factorization. The full
proof is provided in [16].

Based on the preceding paragraphs, the following is an
outline of the procedure for obtaining the order recursions
for the error vectors, LS coefficient vectors, and residual
error energies in projecting y(N) onto the column space of

XiN) (0<i<n). Assume we start with Q(N) and R'I(N) in the
inverse QR factorization of A(N). The LS coefficient vector
in projecting y(N) onto the column space of X"(N) is

available immediately from the (n+1)5t column of R™!(N) as
T

l 1 1 n]
R ey B SN

n+l,n+1

and the associated error vector is the (n+1)St column of Q(N)

divided by [?1:11 n+{N)- The residual error energy, i.e. the

sum of the squares of the elements of the error vector, is also
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available as[ ol (N):l . To obtain the order updates

n+1,n+1
for all the lower order problems of projecting y(N) onto the
column space of XI"}(N) (i = 1, 2, . . ., n), iteratively update
Q'(N) and (Ri(N))'1 using (3.10). Then, at each stage, the
LS coefficient vector is

3 -1 . . .
-wi(N) = e [ 0, 1 N [il-l,i(N)]T.
,1

the associated error vector is the ith column of Qi(N) divided

i 1
by Lll i(N), and the residual error energy is77 o
(Ii i )

_ To save computational expense, the order updating of
Q!(N) can be omitted, or, as would be likely in a time
recursive situation, one can order update only the last row of
Q!(N), which represents the normalized backward prediction
errors. The time recursive algorithms of [5] and [6] can be
easily modified so that the Nth row of Q(N) is calculated in
addition to R™!(N).

It should also be noted that the entire matrix operation
of (3.12) need not be performed. In the order recursions,
only the ith column of (Ri(N))-1 needs to be calculated,
since the first i-1 columns remain unchanged from
(RIH(N))'I, and the last n-i columns are not needed in the
subsequent lower order recursions. This significantly
reduces the computational expense involved in the order
updates. The complete order updating algorithm for
calculating the LS coefficient vectors, the residual errors at
time N, and the residual error energy for all the lower order

problems of projecting y(N) onto the column space of X!~
1(N) (1<i<n) is glven in Table I Here, the Nt row of Q‘(N)

is denoted [ql, q2’ R qn + 1] Thus, the normalized

residual error at the Nth timestep in projecting y(N) onto the
column space of Xi'l(N) is q'i. In Table I, the time index N
has been dropped for convenience.

TABLE I: The Order Updating Algorithm

Initialization
n+1 -1
Ik, = [R ]k I’

qn1+1, &)2‘”' ce qnn:} = last row of Q
Forj=1tondo

wh*l _n+l n+l

Win+l “Ln+1’In+l,n+l
end j loop

Fori=ndownto 1 do

a=\ (@5 24502

s= £
i+1
c"'r-l n+1/d
l
L, SI11+l L+l |
n+ i+
ql—cql +50i,
Forj=1toi~1 do
i n+l i+ 1
Li=Chi *5041
l . 1 /l
=L,
end j loop
4
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The algorithm in Table I requires that R'I(N) and the
last row of Q(N) are available. This can be accomplished
using any of the previously mcnuoned batch or time-

recursive algorithms. Given R’ (N) and the last row of
Q(N), the computational expense of the algorithm is
1.5n246.5n MADs plus n square roots. If implemented in a
time recursive framework, then the total computalional

expense involved at each timestep for time updating R (N)
and the last row of Q(N) and order updating the LS
coefficient vectors, the residual error at time N, and the
residual error energy for all order recursions depends on the

particular algorithm used to time update R (N) The

algorithm of [6] time updates W(N), not R I(N), assuming
an exponentially weighted window on the data After slight
modifications, it can be used to update R’ (N) and the last
row of Q(N) with a computational expense of 2n2+9n+2
MADs per timestep. Thus, the total computational expense

for the time and order updates is 3.5n2+15.5n+2 MADs plus
n square roots.

IV. APPLICATIONS TO ADAPTIVE LEAST
SQUARES FILTERING

In this section, we discuss how to apply the results of
sections I and IIl to a multichannel adaptive LS filtering.

Suppose we have a scalar desired output sequence d(j)
and an m-channel vector input sequence u(j) = [u1() u20) . .
. um(§)] with samples available for 0<j<t. With minor
modifications the results of this section can be extended to
the multichannel output situation, but for the sake of
notational simplicity we consider here only the single
channel output case. Define fori=1,2,...,p; j=p-1.p..
ot w'(G) = [ug), ug-1), . . . ug-i+DI, (4.1)
where p is some pre-specified maximum filter order.

The goal is to time recursively find the ith order FIR
linear filters (h;j, 1<i<p) that best match the desired output

sequence d(j) with the filter output sequences

yiG.bi) = u'Ghi, 4.2)
where hj is the m*i length column vector of filter
coefficients. Suppose we want to select the filter
coefficients so that they are optimal in the LS sense. That

is, at time t, we want to select the optimal ith order filter,
denoted h;(t), so as to minimize the loss functions

t-p+1
Z A.ZJC (t'_] hl)

=0
for filters of order 1<i<p. Here, ¢;(j,h;) is the output error at

(4.3)

time j of the ith order filter hj:

e(i.hi) = dG) - yiGi.hy) = () - u'(dhy, (4.4)
and A€ (0,1] is a forgetting factor. We can use the results of
the previous sections to soive the problem by setting n =
mp and defining

X0 = [x7(0), x2(0), . . .. (4.52)

xp(D)] = T
l:lbp“[ up(p-l)]T, lx.p[ up(p)]T,.. " X[ up(“'):IT’ [ o) ]T]

= t-p+1 t-
and y(©) := [x P (-1, A 4(p)y s Ad(E-D), (D :l ’

and A(t) = [X"(®), y(»)). (4.5b)



Note that it is not assumed here that the data is pre-
windowed. Also note that if we project y(t) onto the span of

the first m*i columns of X"(t), the LS coefficient vector is
exactly hj(t),the ith order filter that minimizes (4.3).
Furthermore, the jth component of the associated error

vector in the projection is lt'p+2'1ei(p-2+j,hi(t)).
Consequently, the results of sections II and III can be used to
find the optimal filter coefficients, output errors, and
minimized loss functions for all order filters i=1, 2, ...,
p). Specifically, suppose we are using the algorithm of [6]

to time update R'l(t) and the last row of Q(t) in the inverse
QR factorization of A(t). Then, using the notation of
section III, the optimal filter coefficients hj(t) and
corresponding loss function of (4.3) are available from the

(mi+l)St column of (R“?i+1(t))'l. Also, the output error at
time t of the optimal ith order filter, ej(t,hj(t)), is available

from the last row of QMi*1(t). The exact relationships are
given in the discussion following Proposition 3.1.

In addition to the computational advantages[16], the
method of this paper is not restricted to the case that the
input data is a time series. The results here apply to general
LS problems, where, of course, the transversal filter
coefficients would be replaced by the coefficient vector in
the LS projection. Since situations where the input data is
not a time series are just special cases of multi-channel
filtering with p=1, the algorithms of [9], [10], and [12)] still
apply, whereas the algorithms of the remainder of [8] - {13]
do not. However, since [9] and [12] were designed to order
update all filters simultaneously, they cannot be applied
order recursively to situations where the input data is not a
time series. There are no such restrictions on the algorithm
of this paper.

The generality of the method also allows considerable
freedom in channel length and the sequence in which the
filter orders are updated ("downdated” would actually be a
more appropriate term). It is not necessary that the filter
orders for the various input channels be equal. In the case of

unequal channel lengths, the number of columns of Xn(t) is
< . th

n= Y pj, where pj is the order of the i~ channel. In
i=1

addition, the filters can be order updated in any manner

desired by simply defining Xn(t) so that its columns are
arranged appropriately. Of the order recursive transversal
filter methods [8] — [13], only [10] possesses these features.

V. CONCLUSIONS

A geometric interpretation of the QR factorization in
the general linear LS problem has been investigated,
resulting in a highly efficient algorithm for achieving order
recursions in the LS coefficient vectors, error vectors, and
error energies.

The generality of the derivation and clear geometric
interpretation allow easy application of the results to a wide
variety of LS problems, either off-line, or time recursively
with exponential weighting, a sliding rectangular window,
or a growing length rectangular window. A multichannel
adaptive LS filtering example is presented. The results of
this paper were used to derive a method for time and order
recursively identifying the transversal filter coefficients,
residual errors, and residual error energies. The residual error
energies can then be used to select the most appropriate
filter/model order. In addition to being more versatile, the
method presented here is more computationally efficient

than the previous methods (namely. those ot {9] and {12}
applied to time and order recursive situations.
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