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In a Multi-operational Machining Process (MMP), final product variation is an accumulation, or stack-up of variations generated
at all the manufacturing operations. In this paper, variation transmission in the MMP is analyzed by relating part variations to
operational errors from machine tools, fixtures and datums. At each operation, total part variation is separated into several components
corresponding to different variation sources. The result can be applied in both process design and diagnosis. A methodology is
developed to identify faulty operations. Process diagnosability is also discussed. A case study is provided to illustrate the developed
diagnostic methodology.

Nomenclature

ef
k, ed

k, em
k = fixture errors, datum errors, and ma-

chine tool errors at operation k;
w(k), v(k) = noise terms at operation k;
X(k) = a vector to describe part surfaces af-

ter operation k, represented in the Part
Coordinate System (PCS);

Y(k) = quality characteristics generated after
operation k;

x(k) = deviation of X(k), represented in the
PCS;

y(k) = deviation of Y(k), represented in the
PCS;

B(k) = indicator matrix which labels all sur-
faces that are machined at operation
k;

A(k) = defined as A(k) = I − B(k), indicating
surfaces not machined at operation k;

C(k) = sensitivity matrix mapping x(k) to
y(k);

B(k)xu(k) = newly machined surfaces after opera-
tion k, represented in the PCS;

B(k)xu
M(k) = newly machined surfaces after opera-

tion k, represented in the Machine tool
Coordinate System (MCS);

iRj(k) = rotation transformation from j to i
at operation k, where i, j represent
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the PCS, Fixture Coordinate System
(FCS), or MCS;

iTj(k) = translation transformation from j to i
at operation k where i, j represent the
PCS, FCS, or MCS;

Zo = nominal value of any variable Z, e.g.,
PRo

F(k) denotes the nominal rotation
transformation from the FCS to PCS;

�Z = deviation of variable Z from its
nominal value, e.g., �FRM(k) and
�MTF(k);

xM, xF = deviation of X, represented in the MCS
or FCS;

µZ, KZ = mean and covariance of variable Z,
e.g., µxu(k) and Kxu(k);

Kk = overall part variation after operation
k;

B(k)Kxu(k)BT (k) = variation in newly machined surface
after operation k;

Πm
k ,Πf

k,Π
d
k = components of variation B(k)Kxu(k)

BT (k) caused by em
k , ef

k, and ed
k respec-

tively;
Kw(k) = natural process variation at operation

k;
Ky(k) = variation in quality characteristics af-

ter operation k;
D(k) = datum selection matrix for choosing

the datum for operation k;
x′(k), y′(k) = deviation of part and quality charac-

teristics after virtual operation k.
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1. Introduction

Variation transmission is a very complicated issue in a
Multi-operational Machining Process (MMP). The com-
plexity is primarily due to two reasons: (i) each operation
has three major variation sources, i.e., machine tools, fix-
tures and workpiece, which affect part quality through dif-
ferent ways; and (ii) the operation sequence can make a
significant difference in final product variations. This sec-
ond fact can be explained by the datum effect, i.e., if pre-
vious machined features are used as data in the current
operation, data imperfection often affects the accuracy of
the currently machined features. Consequently, the issue of
variation transmission in a MMP needs to be addressed at
both the operation level and the process level.

Statistical Process Control (SPC) is a systematic tool to
reduce process variations. However, for multistage man-
ufacturing processes, such as MMPs, control charts need
to be developed for every single stage so as to determine
faulty stage(s). Furthermore, SPC does not focus on varia-
tion transmission analysis and root-cause diagnosis. Zhang
(1984) proposed cause-selecting control charts to identify
out-of-control stages (refer to the review and analysis of
Wade and Woodall (1993)). The first step in constructing
the chart is to establish the relationship between the incom-
ing workpiece and the outgoing quality characteristics. The
proposed chart is then constructed based on the values of
the outgoing quality characteristics that have been adjusted
for the values of the incoming workpiece. Agrawal et al.
(1999) and Lawless et al. (1999) used an AR(1) model to
analyze the variation transmission in multistage manufac-
turing processes. Cause-selecting control charts and AR(1)
modeling are primarily data-driven approaches, that de-
pend on the available historical data.

An understanding of the physics of variation transmis-
sion has motivated research on establishing engineering
models for MMPs. Most of the related studies have focused
on modeling and reducing errors at the operation level. In
the field of machine tool error compensation, kinematic
modeling of geometric machine tool errors was provided
by Anjanappa et al. (1988). Chen et al. (1993) presented a
more complicated time-variant volumetric model. As to the
fixture variation analysis, Weil et al. (1991) analyzed datum
positional errors. Rong and Bai (1996) verified fixture locat-
ing schemes by considering machining accuracy. Cai et al.
(1997) developed a variational method to conduct robust
fixture design to minimize the workpiece positional errors.
Choudhuri and De Meter (1999) considered the contact ge-
ometry between the locators and workpiece to investigate
the impact of fixture tolerance schemes on datum establish-
ment errors.

Variation analysis at the process level is commonly seen
in tolerance design. A variety of tolerance stack-up models
have been studied (Chase and Greenwood, 1988). However,
assumptions are usually made on the distributions of com-
ponent dimensions without thorough variation analysis at

the operation level. Shi and Jin (1997) and Jin and Shi (1999)
developed state-space models to depict variation propaga-
tion in assembly processes, in which the impacts of work-
piece imperfection and fixture errors on product quality
were explicitly explored. That model can be applied for both
variation prediction and root-cause diagnosis. By develop-
ing a state transition model, Mantripragada and Whitney
(1999) modeled the entire assembly sequence as a set of
discrete events to simulate and predict the propagation of
variation in mechanical assemblies. In their work, part er-
rors and fixture errors were treated together as a white noise
term at each assembly station. However, the state transition
model is difficult to apply to diagnose variation induced by
fixtures, because part errors and fixture errors are not dis-
tinguished in white noise terms. Furthermore, the impact of
those two types of errors on product quality was not explic-
itly modeled. The situation in machining processes is more
complex, because there is not only datum error and fixture
error, but also machine tool error. It is more challenging to
incorporate three types of errors into a process-level error
propagation model. Huang et al. (2000, 2003) first devel-
oped variation propagation model for MMPs. That model
was further linearized and studied by Djurdjanovic and Ni
(2001). Zhou et al. (2003) improved the modeling work in
Huang et al. (2000, 2003) by using a differential motion
vector. Root-cause identification has also been studied for
assembly processes (Ceglarek and Shi, 1996; Apley and Shi,
1998; Ding et al., 2002) and machining processes (Huang
et al., 2002)

The purpose of this paper is to present an analysis of
variation transmission and to apply the result to iden-
tify faulty operations based on the modeling work of
Huang et al. (2000, 2003). The remainder of the paper
includes four sections. In Section 2, the variation trans-
mission in MMPs is analyzed after a brief review of the
previously developed model. Process diagnosability assess-
ment and faulty operation identification are proposed in
Section 3. The diagnostic procedure is shown with a case
study in Section 4. Finally, the work is summarized in
Section 5.

2. Analysis of variation transmission

2.1. Review of the state space model for the MMPs

At operation k of an N-operation machining process, vari-
ation sources include fixture error ef

k, datum error ed
k, ma-

chine tool error em
k , and noise w(k) due to natural process

variation (Fig. 1). ef
k, ed

k, em
k and w(k) are assumed to be

mutually independent. In Huang et al. (2000, 2003), a state
space model is developed to describe the part deviation
transmission and observation:

x(k) = A(k)x(k − 1) + B(k)xu(k) + w(k),
y(k) = C(k)x(k) + v(k), (1)
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Fig. 1. Error transmission in a MMP.

where B(k)xu(k) is further represented as:

B(k)xu(k) = PRo
F(k)FRo

M(k)B(k)xu
M(k)

+[PRo
F(k)�FRM(k)B(k)MRo

F(k)FRo
P(k)Xo(k)

− PRo
F(k)FRo

M(k)B(k)�FRM(k)FTo
P(k)

− PRo
F(k)FRo

M(k)B(k)�MTF(k)
]

+ [
�PRF(k)B(k)FRo

P(k)Xo(k)

− PRo
F(k)B(k)�FTP(k)

]
. (2)

At the right-hand side (RHS) of Equation (2), the three
terms from left to right, are caused by em

k , ef
k and ed

k
respectively. Since em

k , ef
k and ed

k are independent, those
three terms at RHS of Equation (2) are also independent.
This separation is extremely important for the variation
analysis.

2.2. Analysis of variation transmission in a MMP

The part variation at operation k is expressed as the covari-
ance of vector x(k), i.e.:

Kk = cov (x(k)) . (3)

Assume that w(k) has a zero mean and covariance Kw(k),
and w(k) is independent of x(k − 1), x(k − 2), . . . , and x(0),
where x(0) represents the raw workpiece surface deviation.
By Equation (1), we have:

Kk = A(k)Kk−1AT (k) + B(k)Kxu(k)BT (k)

+ 2A(k)cov(x(k − 1), xu(k))BT (k) + Kw(k). (4)

From their definitions in Huang et al. (2000, 2003),
A(k) and B(k) are block diagonal matrices with the
blocks either to be identity or zero matrices. Since
the product of two corresponding blocks are zero, we
have A(k)cov(x(k − 1), xu(k))BT (k) = 0, where “0” de-
notes a zero matrix. Equation (4) is thus simplified
as:

Kk = A(k)Kk−1AT (k) + B(k)Kxu(k)BT (k) + Kw(k). (5)

An expression of B(k)Kxu(k)BT (k) can be obtained by tak-
ing the covariance at both sides of Equation (2). Since the
three terms at the RHS of Equation (2) are independent,
Equation (5) can be rewritten as:

Kk = A(k)Kk−1AT (k) +
∏m

k
+

∏f

k
+

∏d

k
+ Kw(k), (6)

where
∏∏m

k ,
∏∏f

k and
∏∏d

k can be expressed as:∏m

k
= cov

[PRo
F(k)FRo

M(k)B(k)xu
M(k)

]

∏f

k
= cov

[PRo
F(k)�FRM(k)B(k)MRo

F(k)FRo
P(k)Xo(k)

− PRo
F(k)FRo

M(k)B(k)�FRM(k)F To
P(k)

− PRo
F(k)FRo

M(k)B(k)�MTF(k)
]

(7)

∏d

k
= cov

[
�PRF(k)B(k)FRo

P(k)Xo(k)

− PRo
F(k)B(k)�FTP(k)

]
.

Remark 1. Equation (6) indicates that the total part vari-
ation after operation k can be separated into five compo-
nents, i.e., the variation of uncut surfaces from previous
operations, the variations of machined surfaces due to em

k ,
ef

k, ed
k, and the natural process variation. The covariance

between the current operation and previous operations is
captured by

∏∏d
k, which is primarily caused by datum error

ed
k. Equation (6) is interpreted as a variation transmission

model which relates the part variation to variation sources.

Remark 2. This result is very helpful for design and manu-
facturing. For example, at the design stage, alternative fix-
ture designs for a certain operation k can be evaluated by
checking

∏∏f
k. By comparing KN , alternative operational se-

quences could be assessed based on the minimum variance
criteria. It is thus possible to reduce variations and optimize
the design variables at the process level, rather than at the
operation level.

The variation of part characteristics is expressed as the
covariance of vector y(k), i.e.:

Ky(k) = cov (y(k)) , (8)

Assume that v(k) has zero mean and covariance Kv(k),
and v(·) is independent of w(·) and x(·). By Equation (1),
we have:

Kv(k) = C(k)KkCT (k) + Kv(k), (9)

If only end-of-line observation Y(N) is available, by
Equation (1), we have:

y(N) = C(N)x(N) + v(N). (10)
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The solution of the state space equation is

x(N) =
N∑

i=1

Φ(N, i)B(i)xu(i) + Φ(N, 0)x(0)

+
N∑

i=1

Φ(N, i)w(i), (11)

y(N) =
N∑

i=1

C(N)Φ(N, i)B(i)xu(i) + C(N)Φ(N, 0)x(0) + ε

(12)
where matrix Φ(·,·) is defined as:

Φ(N, i) = A(N)A(N − 1) · · · A(i) and Φ(i, i) = I. (13)

Also, εε is the summation of all modeling uncertainties and
noise terms:

ε =
N∑

i=1

C(N)Φ(N, i)w(i) + v(N). (14)

Define γ(i) as:

γ(i) = C(N)Φ(N, i). (15)

Then Equation (12) is rewritten as:

y(N) =
N∑

i=1

γ(i)B(i)xu(i) + γ(0)x(0) + ε. (16)

Since x(0), w(·) and v(·) are mutually independent, by
Equation (16), we have:

Ky(N) =
N∑

i=1

γ(i)Ku
i γ

T(i)

+ 2
N∑

i=1

i∑
j=1

γ (i)B(i)cov (xu(i), xu(j)) BT (j)γT(j)

+γ(0)K0γ(0)T + Kε (17)

with Ku
i = ∏∏m

i + ∏∏f
i + ∏∏d

i (i = 1, 2, . . . , N).

Remark 3. Equation (17) is interpreted as the observed vari-
ation transmission model. Since it is directly related with
design specifications, critical operations can be identified
based on their impacts on Ky(N).

Remark 4. There are four terms on the RHS of Equa-
tion (17) with the number of operations N fixed once the
process design is determined. Although the magnitudes of
those four terms can be reduced by using better precision
machine tools, fixtures or workpiece, it also increases the
manufacturing cost. The second term, however, is deter-
mined by process planning. If the surfaces machined in
the ith operation are not used as datum at operation j,
then cov (xu(i), xu(j)) = 0. Therefore, Equation (17) sug-
gests that, without increasing manufacturing cost, product
dimensional variations can be reduced by reducing corre-
lations among operations, i.e., avoiding choosing surfaces

machined at previous operations as datums for current op-
erations.

Remark 5. Equation (17) could be used together with Equa-
tion (6) to identify faulty operations in MMPs. This is
demonstrated in Section 3 with a process-level diagnostics.

3. Faulty operation identification in a MMP

Based on the variation transmission analysis, this section
develops a methodology to identify faulty operations in a
MMP. Due to the process complexities, faulty operations
may not be distinguished from each other. Therefore, the
process diagnosability problem is studied in Section 3.1
with discussions on the diagnosable conditions. Section 3.2
presents the concept of virtual machining to isolate vari-
ations among operations. Hypothesis testing is applied in
Section 3.3 to determine faulty operations.

3.1. Process diagnosability

A machining process is called diagnosable if every faulty
operation can be uniquely identified based on a given mea-
surement strategies. Clearly, if both the machined surfaces
and the machining datums can be measured, the process is
diagnosable. However, sometimes the previously used da-
tums are machined or certain surfaces may be machined
twice or more. In that case, direct measurements for those
datums or surfaces are not available. Hence, the diagnosis
is not straightforward.

Three results are derived from the state space model to
investigate whether datum loss or multiple cutting on sur-
faces exist in the process (derivation is omitted). In the fol-
lowing results, B(j) is the indicator matrix which labels all
surfaces that are machined at operation j and D(k) is the
datum selection matrix for choosing the datum for oper-
ation k (Huang et al., 2000, 2003). They are block diag-
onal matrices with each block having dimension (6 + m)
by (6 + m), where (6 + m) is the dimension for one sur-
face and m represents the number of size parameter for the
surface.

Result 1. If there exists operations k and j with j > k and
k > 1, satisfying D(k)B(j) 	= 0, then the datum used at op-
eration k will be machined at operation j.

Result 2. If there exists operations k and j with j > k and k >

1, satisfying B(k)B(j) 	= 0, then some surfaces machined at
operation k is machined again at operation j.

Result 3. If there is no datum loss and no multiple cutting
on the same surfaces, then:


B(i)B(j) = 0
for all i = 1, · · · , N, and i < j < N.

D(i)B(j) = 0,

(18)
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Fig. 2. Virtual operation and real operation.

3.2. Variation isolation by virtual machining

If an operation does not use previously machined surfaces
as datums, variations of currently machined surfaces are not
affected by previous operations. Then the diagnosis can be
simplified as a single operation problem. Otherwise, it is
necessary to isolate variations among operations so as to
identify the faulty operations. The concept of virtual ma-
chining is proposed to isolate variations among operations.

Definition 1. Virtual machining in the context of variation
isolation is defined as the simulated machining operation
based on Equation (1) with extra assumptions that machine
tool errors and fixture errors do not exist. At virtual oper-
ation k, datum error ed

k is the same as that in the real oper-
ation k. Denote by X′(k) the output from virtual operation
k (Fig. 2).

By definition 1, the output difference between the vir-
tual operation k and the real operation k is only caused by
em

k and ef
k. Therefore, for a given diagnosable process, the

variation isolation can be performed in three steps:

Step 1. Collect measurement data at the final operation
and compute statistics. Find out y(k): µy(k) =
E(y(k)) and Ky(k) = cov(y(k)).

Fig. 3. Variation isolation among operations.

Step 2. Since the measurement data for machining datums
is available, virtual machining can be performed
based on the following equations:

x′(k) = A(k)x(k − 1) + B(k)xu′
(k) + w(k), (19)

y′(k) = C(k)x′(k) + v(k). (20)

Since B(k)xu′
(k) is only caused by ed

k, it can be sim-
plified from using Equation (2) as:

B(k)xu′
(k) = �PRF(k)B(k)FRo

P(k)Xo(k)

−PRo
F(k)B(k)�FTP(k) (21)

Denote µy′(k) = E(y′(k)) and Ky′(k) = cov(y′(k)).
Step 3. By comparing sample statistics of y(k) and y′(k),

the occurrence of faults can be identified by per-
forming hypothesis testing.

The above procedure can be repeated for operations
N, N − 1, . . . , 2, 1. As a result, variation isolation among
operations can be achieved. Figure 3 shows the concept of
variation isolation among operations.

3.3. Faulty operation identification by hypothesis testing

Suppose y(k) (k ∈{1, 2, . . . , N}) is measurable with n1 sam-
ples, we can compute sample mean µ̂y(k) and sample covari-
ance Sy(k).
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As the machining datum data is available from y(k −
1), xu′

(k) is attainable by Equation (21). We can take n2
samples of y′(k) through simulation and compute µ̂y′(k) and
Sy′(k).

The faulty operation can be determined by hypothesis
testing on the samples from y(k) and y′(k). Let y(k) and y′(k)
be p-variant vectors. For each operation, the hypothesis test
procedure is given as follows:

1. H0 : Ky(k) = Ky′(k) vs. H1 : Ky(k) 	= Ky′(k)
If the H0 hypothesis is rejected at level α, faults are as-
sumed to occur at operation k and we terminate the test.
If the H0 hypothesis fails to be rejected, we go on to the
second test in step 2.

The details of this hypothesis test can be found in
Muirhead (1982). A likelihood ratio statistics is defined
as:

	∗
k =

(
det

((
n1 − 1)Sy(k)

))(n1−1)/2(
det

((
n2 − 1)Sy′(k)

))(n2−1)/2

[
det

(
(n1 − 1)Sy(k) + (n2 − 1)Sy′(k)

)](n1+n2−2)/2

× (n1 + n2 − 2)((n1+n2−2)/2)P

(n1 − 1)((n1−1)/2)P (n2 − 1)((n2−1)/2)p . (22)

For large M = ρ(n1 + n2 − 2) with:

ρ = 1 − 2p2 + 3p − 1
6(p + 1)(n1 + n2 − 2)

(
n1 − 1
n2 − 1

+ n2 − 1
n1 − 1

+ 1
)

,

the approximate distribution of the test statistics is:

P(−2ρ log 	∗
k ≤ x) = P

(
χ2

f ≤ x
) + r

M2

[
P

(
χ2

f +4 ≤ x
)

−P
(
χ2

f ≤ x
)] + O(M−3), (23)

where P(χ2
f ≤ x) is the chi-square distribution with f

degrees of freedom. Here f = (p(p + 1))/2, and:

r = p(p + 1)
48

{
(p − 1)(p + 2)

(
n1 − 1
n2 − 1

+ n2 − 1
n1 − 1

+ 1
)

−6 [(n1 + n2 − 2)(1 − ρ)]2
}
.

Fig. 4. Design specifications of cylinder head.

We reject H0 if −2ρ log 	∗
k > cf (α), where cf (α) de-

notes the upper α quantile of the χ2
f distribution.

2. H0 : µy(k) = µy′(k) vs. H1 : µy(k) 	= µy′(k)with
Ky(k) = Ky′(k) (unknown covariance).
If the H0 hypothesis is rejected at level α, mean shifts are
assumed to occur at operation k. If the H0 hypothesis
fails to be rejected, no fault occurs at operation k. We
can use Hotelling’s T2 for this hypothesis test. The two-
sample T2-statistic is given by:

T2
α,p,n1+n2−2 = (

µ̂y(k) − µ̂y′(k)

)T

×
[(

1
n1

+ 1
n2

)
(n1−1)Sy(k) + (n2−1)Sy′(k)

n1 + n2 − 2

]−1

×(µ̂y(k) − µ̂y′(k)), (24)

with n1 + n2 − 2 > p.
Although the dimension of y(k) is p, the number of

varied components in y(k) is less than p at each operation
because surfaces are not machined only in one operation
(for N > 1). As a result, Ky(k) is always a singular matrix.
Since hypothesis tests require covariance matrices to be
full rank, instead of y(k), we test its sub-vector, whose
components vary in y(k). More precisely, we reorganize
y(k) and y′(k) as:

y(k) = [y1(k) | y2(k) | · · · | yN(k)]T , (25)
y′(k) = [y1′

(k) | y2′
(k) | · · · | yN ′

(k)]T , (26)

where yj(k) and yj′(k) denote the sub-vector affected by
operations at operation j.

By definition of yj(k) and yj′(k), it is clear that sub-
vectors yk(k) and yk′

(k) are sufficient for the hypothesis
testing. As a result, we replace y(k) and y′(k) with yk(k)
and yk′

(k) in Equations (22) and (24). p is still used to
denote the dimension of the sub-vector.

4. Case study

It is essential to validate the model (Equation (1) before
performing variation transmission analysis and process
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Table 1. Description of characteristics

Characteristics Specifications, (mm) Operation

(1) Distance between cover
face M and datum
surface D

117.0 ± 0.1 1st

(2) Distance between joint
face A and datum
surface D

2.50 ± 0.1 2nd

(3) Parallelism between M
and A

0.050

(4) Diameter of hole B 15.00 ± 0.05
(5) Distance between slot S

and D
100.7 ± 0.1 3rd

(6) Parallelism between A
and S

0.050

diagnosis. The model validation has been done in Huang
et al. (2003) with a V-6 cylinder head as an example,
where Coordinate Measuring Machine measurements on
machined parts were compared with model predictions un-
der normal and faulty cutting conditions. The comparison
results were satisfactory. Validation experiments are also
helpful to understand process capabilities.

To illustrate the process-level diagnostics, this section
utilizes the same V-6 cylinder head to show the diagno-
sis procedure. The part and design specifications are shown
in Fig. 4.

Descriptions of the characteristics are given in Table 1.
The association between characteristics and operations is
illustrated by the first and the third column in Table 1.

Three operations are performed to manufacture the part
according to the design specifications (Table 2). Figure 5
graphically shows the operational sequence, where the Ti’s
(i = 1, 2, . . . , 6) are the six locators used as datums. The
primary datum surface D consists of T1, T2 and T3. Surface
M1 represents the cover face M after the first operation on
it. The convention applies to other surfaces.

During simulation studies, faults are purposely intro-
duced into the process. At operation 1, the variations of
the fixture locating pins are increased. At operation 2, the
heights of the fixture locating pins are increased. Assume
that the level of noise is relatively small compared to the
variation of the fixture locating pins, e.g., 10 times smaller
in the simulation.

Fig. 5. Operational sequence.

Table 2. Operational sequence and locating datums

Locating datums
(primary + secondary + Operation

Operation tertiary datum) descriptions

1 D(T1, T2, T3) + (T4, T5) + T6 Mill cover M
2 M1 + (T4, T5) + T6 Mill joint face A

Drill hole B and C
3 A1 + B + C Mill slot S

SPC charts are used to show the failure of SPC to
identify faulty operation(s). Initially 100 parts are simu-
lated under normal conditions. Then 50 parts are selected
for control charting with a sample size of five. For char-
acteristic 5, i.e., “Distance between slot S and D”, the X-
bar chart and S chart with three sigma control limits are
shown in Fig. 6(a and b) respectively. Then 100 parts are
simulated under faulty machining conditions. The moni-
toring results are shown in Fig. 6(c and d). The S-chart
in Fig. 6(d) shows eight consecutive points lying one side
of the central line and two points out of the upper con-
trol limits. This chart indicates that there might be an in-
crease in process variation. The X̄ chart in Fig. 6(c) shows
all the points lying at one side of the central line and
four points out of the upper control limit. This chart in-
dicates that there might be a mean shift in the process.
Apparently the process is out of control. However, by
analyzing the potential root causes for the characteristic
5, operations are found coupled. There are three candi-
date operations that could potentially contribute to the
out-of-control signal, i.e., operation 3 (because the slot is
milled in this operation), operation 2 (because joint face
A is machined in operation 2 and will be used as the da-
tum in operation 3), and operation 1 (because the datum
used to machine joint face A is machined in operation 1).
Thus, the SPC chart fails to distinguish the candidate
operations.

The proposed diagnostic is applied to identify the faulty
operation(s). The six characteristics are divided into three
sub-vectors (yk(k)) as shown in Table 3. It is easy to
prove that the process is diagnosable by Result 3. Then

Table 3. Sub-vector yk(k)

Operation k yk(k) Characteristics of interest p

1 y1(1) Distance between cover face
M to surface D

1

2 y2(2) Distance between joint face A
and surface D

Parallelism between M and A
Diameter of hole B

3

3 y3(3) Distance between slot S and
D

Parallelism between A and S

2
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Fig. 6. Simulation results for characteristic 5: (a) the X-bar chart under normal conditions; (b) the S-chart under normal conditions;
(c) The X-bar chart under faulty conditions; and (d) the S-chart under faulty conditions.

collect 50 parts under faulty machining conditions. With
sample information about machining datums, virtual ma-
chining is performed to generate 50 virtual parts. Set level
α = 0.05, and conduct hypothesis test to identify the faulty
operation(s).

The results are shown in Table 4. The hypothesis testing
correctly identifies that variation changes in the first oper-
ations (39.545 > 3.8415). Because of this, the mean test is
unnecessary for operation 1. A mean shift is identified at the
second operation (27.2155 > 8.2574), while operation 3 is
found to be stable (0.04076 < 7.8147 and 0.0353 < 6.2389).
Although the three operations are coupled, the proposed di-
agnostic is able to identify faulty operations among three
potential faults.

Table 4. Hypothesis testing results

Operation 1 Operation 2 Operation 3

Covariance test Mean test Covariance test Mean test Covariance test Mean test

Test statistics 39.545 N/A 9.0937 27.2155 0.040 76 0.0353
Threshold 3.8415 N/A 12.5916 8.2574 7.8147 6.2389

5. Summary

In this paper, variation transmission in MMPs is analyzed
based on a state space model. The part variation at each
operation is explicitly divided into five components: (i)
the variation of uncut surfaces from previous operations;
(ii) the variations of machined surfaces due to the cur-
rent cutting operation; (iii) the fixture; (iv) the datums; and
(v) the natural process variation. This result is very helpful
for both design and manufacturing, such as in the evalua-
tion of alternative fixture designs or the optimization of the
operational sequence.

Based on the variation transmission analysis, a method-
ology is developed to identify faulty operations in the MMP.
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Variation isolation among operations is performed based
on the concept of virtual machining. The hypothesis testing
successfully identifies faulty operations. The conditions for
a MMP to be diagnosable are also addressed.
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