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Abstract—This study explores the use of Convolutional Neural
Networks (CNNs) in surrogate modelling for solving the torsion
problem of elastic bars with arbitrary cross-section profiles.
The conventional approach to solving this problem, the finite
elements method (FEM), is computationally expensive and time-
consuming, limiting its use in real-time applications. To address
this, Convolutional Neural Networks (CNNs), a deep learning
technique that has shown success in various domains is used.
By training CNN models on datasets generated using FEM,
this study bypass the FEM process and efficiently obtain the
desired stress information. Further, a comparative analysis of
different CNN architectures are done to obtain the optimal trade-
off between accuracy and efficiency. This study adds to the
expanding collection of literature exploring the application of
deep learning methods in the field of computational mechanics.

Index Terms—Computational mechanics, convolutional neural
network, deep learning, finite elements method, machine learning,
surrogate modelling, stress analysis, theory of elasticity

I. INTRODUCTION

Deep learning techniques have achieved remarkable success
across a variety of domains in recent years. [1] In particular,
convolutional neural networks (CNNs) have been proven to
be highly effective for tasks such as image processing and
recognition. Through supervised learning, CNNs comprised of
multiple processing layers with adjustable parameters allow
computers to learn features and representations of an input-
output dataset through stochastic gradient descent and back-
propagation.

Elastic bars are widely used in mechanical designs. First for-
mulated by Saint-Venant in 1847, stress analysis of an elastic
bar under torsional load is an important problem in elasticity
theory and engineering. [2] Knowledge of the shear stress
distribution in the elastic bars, in particular the magnitude and
location of maximal stress, is crucial to identifying potential
points of failure. However, analytical solutions are available
only for a limited number of cross-section profiles. [3]

To solve the torsion problem for a bar with an arbitrary
cross-section profile, the finite elements method (FEM) can be
used. [4] A mesh is constructed to divide the domain into local
elements with discrete nodal points. The weak formulation
of the partial differential equations governing the problem is
then applied to these elements, creating a linear system of
equations that can be solved for the nodal solutions. Lastly,
post-processing is performed to obtain the desired information.

The FEM process is computationally expensive and time-
consuming, which precludes its use in applications where real-
time computation is required, such as design optimization and
post-disaster recovery. To provide approximate solutions that
are more efficient to compute, surrogate modelling techniques
based on CNNs can be used, which involves the training of
CNN models on datasets generated using FEM. Subsequently,
this study bypass the FEM process and instead perform
inference of the CNN model on the input to obtain the desired
information at a fraction of the time and computational cost
of FEM. [5]

Surrogate modelling techniques based on CNNs have re-
cently been used to solve various problems in computational
mechanics. In [6] and [7], Trent et al. and Bolando et al.
used such techniques to model the stress distribution of loaded
plates with rectangular and pentagonal shapes respectively.
In [8], Hashemi et al. used such techniques to model the
dynamical response of a truss structure under sinusoidal load.
In [9] and [10], Mianroodi et al. and Khorrami et al. used
such techniques to model the stress distribution in material
microstructures. In [11], Lin et al. used such techniques to
model the stress distribution of steel samples under tensile
test. In [12], Viquerat et al. used such techniques to model the
fluid drag over arbitrary 2D shapes in laminar flow. In [13],
Liang et al. used such techniques for stress analysis of the
aorta artery.

In the present study, we apply surrogate modelling tech-
niques based on CNNs to solve the torsion problem of an
elastic bar with an arbitrary cross-section profile. We further
provide a comparative analysis of different CNN architectures
to obtain the optimal trade-off between accuracy and effi-
ciency. This study adds to the expanding collection of literature
exploring the application of deep learning methods in the field
of computational mechanics.

II. METHODOLOGY

We first define the boundary value problem (BVP) govern-
ing the torsion problem of an elastic bar. To prepare the dataset
for training of CNNs, we generate a set of random 2D shapes
which are used as the dataset’s input bar cross-section profiles.
For the output labels, we use MATLAB to compute the FEM
solution of the BVP in these cross-section domains. Several
CNN architectures are presented, and for each architecture, a
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CNN is trained on the dataset, taking the bar cross-section
profiles as input and predicting the magnitude and location
coordinates of maximal stress.

A. Torsion problem of an elastic bar
We consider an isotropic homogeneous long prismatic bar

with a simply connected cross-section domain ⌦ and boundary
� in the y, z plane, which is fixed at x = 0 and twisted by
angle l↵ at x = l, as depicted in Fig. 1.

Fig. 1. An elastic bar under torsional load.

The torsion problem of such bars can be formulated using
the Airy stress function �(y, z) as a BVP. [3]

�� =
@2�

@y2
+

@2�

@z2
= �2 in ⌦ (1)

� = 0 on � (2)

The stress components ⌧xy and ⌧xz can then be given by
partial derivatives of �(y, z), where µ is the shear modulus.
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The modulus of shear stress |T | is defined accordingly. In
subsequent sections, we consider the case where ↵ = µ = 1.

|T | =
q
⌧2xy + ⌧2xz (4)

B. Generation of random 2D shapes
To generate random 2D shapes for the dataset’s input bar

cross-section profiles, we use composite cubic Bézier curves
to interpolate through a number of random points. [12] The
general equation for a segment of Bézier curve is:

C(t) =
nX

i=0

✓
n

i

◆
ti(1� t)n�iPi (5)

Where, for cubic Bézier curves, n = 3 and four control
points Pi are required, and parameter t 2 [0, 1]. The segment
starts at the first control point and ends at the fourth. For
continuity, the second control point of one segment should be
the reflection of the third control point of the previous segment
across the joining point. Fig. 2 shows a shape generated using
composite cubic Bézier curves.

Fig. 2. A shape generated using composite cubic Bézier curves with control
points and joint tangents indicated.

The number of random points used and the magnitude of the
joint tangents, which relates to the smoothness of the curve,
are randomised when generating shapes. A total of 50,000
shapes are generated, which are stored as binary images of
128⇥128 pixels in comma-separated values (CSV) format.
Some examples of the generated random shapes are presented
in Fig. 3.

Fig. 3. Examples of shapes generated using composite cubic Bézier curves
with the number of points used and joint tangents magnitude randomised.

C. FEM solution

For each of the shapes generated, we use MATLAB to
compute the FEM solution of the BVP in the cross-section
domain. First, the Image Processing Toolbox is used to obtain
the shape contours of the input image. The shape is then
meshed into linear triangular elements. The Partial Differential
Equations (PDE) Toolbox is used to solve for the nodal
solutions of  (y, z). Lastly, post-processing is performed to
compute the modulus of shear stress |T |. The magnitude and
location coordinates of maximal stress are stored as output
labels in CSV format.
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Fig. 4. FEM results for the torsion problem of an elastic bar with the cross-
section profile in Fig. 2: (a) Airy stress function  , (b) modulus of shear
stress |T | in normalized greyscale images.

D. CNN architecture

CNN model architectures typically comprises multiple con-
volutional layers, pooling layers, non-linear activation layers,
and fully-connected layers. [17] Convolutional layers perform
the convolution or cross-correlation operation on the input
image using a number of kernels to compute feature maps. In
pooling layers, such feature maps are sub-sampled to reduce
spatial dimensions and to extract the dominant features. An
activation function is then applied to introduce non-linearity,
such that complex decision boundaries can be learned. Fully-
connected layers are typically used at the end of a CNN to
flatten and combine the features in order to obtain the final
output.

Early CNN architectures include LeNet [18], which is
applied to the recognition of handwritten digits. In [19],
Krizhevsky et al. proposed AlexNet which pioneered the use
of dropout layers and rectified linear unit (ReLU) activation.
VGGNet [20] increased the depth of the CNN and used
small-size kernel filters. To address the problem of vanishing
gradients, ResNet [14] uses residual blocks with shortcut
connections, as shown in Fig. 5(a). This architecture is further
improved with ResNetV2. [21]

In [15], Szegedy et al. proposed Inception blocks which
concatenate the outputs from kernels of different sizes, as
shown in Fig. 5(b). This architecture is further improved with
InceptionV3 [22], Xception [23], as well as InceptionResNet
[24] which incorporates residual connections. Other architec-
tures under consideration include DenseNet blocks [16] which
concatenate outputs from all preceding layers, as depicted in
Fig. 5(c), and EfficientNet [25] [26] which incorporated the
compound coefficient technique for model scaling.

In the present study, the CNN architectures are adapted to
account for the input image shape of (128,128,1) and an output
dimension of 3 with linear activation.

E. Training of the CNNs

Prior to the training of the CNNs, we pre-process the dataset
by performing feature scaling on the coordinate and stress
values, which are normalized to [0,1]. We then perform data
augmentation by transposing the images by the two diagonals,

expanding the dataset to n = 150, 000 samples. We split the
dataset randomly to assign 80% of samples to the training set
and the remaining 20% to the validation set.

For the training of the CNNs, we define the mean squared
error (MSE) loss function, where Yi and Ŷi are the true and
predicted labels respectively. The MSE can also be used as an
evaluation metric for the maximal stress location coordinates,
which is equivalent to the mean Euclidean squared distance
between the true and predicted points.

MSE =
1

n

nX

i=1

(Yi � Ŷi)
2 (6)

We also define the mean absolute percentage error (MAPE)
as an evaluation metric for the maximal stress magnitude.

MAPE =
1

n

nX

i=1

�����
Yi � Ŷi

Yi

����� (7)

We use the Adaptive Moment Estimation (Adam) optimizer
to train the CNN models. [27] In every training step, the
parameters of the CNN model are updated to minimise the
loss function through gradient descent and back-propagation.

III. RESULTS

The CNN models are implemented in TensorFlow and
trained on a high-performance computer equipped with an
NVIDIA A100 80GB GPU using a batch size of 64. To
ensure the models will generalize well to new input cross-
section profiles, we train for up to 20 epochs following the last
improvement in total MSE loss on the validation dataset, and
save the model with the lowest validation loss. The training
results of the CNN models, including inference time per step
and evaluation metrics, are presented in Table I.

A. Time efficiency

When choosing the most appropriate CNN surrogate model
architecture, it is important to consider the trade-off between
the accuracy of results and time efficiency. An inaccurate
model is of no practical engineering use, but a slow inference
time defeats the purpose of using a surrogate model over FEM.

One major factor is the computational resources available
for inference of the CNN models. There might be use-case
scenarios where high-performance GPUs are not available,
and only CPUs are used. For comparison, we measure the
inference time of the CNN models on a machine equipped with
an NVIDIA A100 80GB GPU, as well as on a MacBook Pro
with an Intel CPU. Fig. 6 and 7 show the plots of validation
losses against the GPU and CPU inference time per step of
the trained CNN models.

B. Model size

Another criterion for choosing a CNN surrogate model
architecture is the model size or the number of model param-
eters. A larger model will require more memory and storage
space for performing inference. Fig. 8 shows the plots of
validation losses against the number of model parameters.
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Fig. 5. CNN architectures: (a) Residual block [14], (b) Naı̈ve version of Inception block [15], (c) DenseNet block [16]

C. Optimal CNN architecture

Based on these considerations and the training results, we
evaluate the CNN model architectures. We can observe that the
EfficientNet models perform worse than all other architectures,
and thus we will not consider these models.

The best performance by total MSE is achieved with
DenseNet201 and InceptionResNetV2 models, but this comes
at a cost of time efficiency as both have a GPU inference time
per step of 21 ms. In addition, while these models perform well
in predicting the maximal stress location coordinates, their
performance is average in predicting the stress magnitude.

The third-best model architecture, DenseNet121, exhibits
good performance in predicting both the magnitude and the
location coordinates of maximal stress. At just 7.03 million
parameters and a GPU inference time per step of 12 ms,
it achieved an MSE of 3.5646 ⇥ 10�3 for the maximal
stress location coordinates and an MAPE of 2.9057% for the
magnitude. It appears to be the optimal trade-off between
accuracy of results and efficiency. Fig. 9 shows examples of
inference results of the trained DenseNet121 model on some
input cross-section profiles.

IV. CONCLUSIONS

In the present study, we trained surrogate models using
convolutional neural networks (CNNs) to solve the torsion
problem of elastic bars with arbitrary cross-section profiles.

To generate the dataset for training of CNNs, we first used
composite cubic Bézier curves to generate a set of 50,000

random 2D shapes which are stored as binary images. Taking
these shapes as input cross-section profiles, we use MATLAB
to compute the finite elements method (FEM) solutions to the
boundary value problem governing the torsion of an elastic bar
and stored the magnitude and location coordinates of maximal
stress as output labels. We performed feature scaling and data
augmentation to expand the dataset to 150,000 samples.

We trained the CNN models with 12 different architectures
and conducted a comparative analysis based on the evaluation
metrics and inference time. We concluded that among the
architectures considered, DenseNet121 presents the optimal
trade-off between accuracy and efficiency. With 7.03 million
parameters and a GPU inference time per step of 12 ms,
it achieved an MSE of 3.5646 ⇥ 10�3 for the maximal
stress location coordinates and an MAPE of 2.9057% for the
magnitude.

The findings of the present study show the viability of
using surrogate models based on CNNs to bypass the time-
consuming and computationally expensive FEM process in
the stress analysis of elastic bars with arbitrary cross-section
profiles under torsion.

This study adds to the expanding collection of literature
exploring the application of deep learning methods in the
field of computational mechanics. Future research could in-
vestigate the use of alternative CNN architectures to improve
performance, as well as the application of surrogate modelling
techniques based on CNNs in other engineering problems.
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TABLE I
TRAINING RESULTS OF THE CNN MODELS

CNN Architecture Inference Time Per Step Evaluation Metrics (Validation)
# Name Ref Parameters GPU (ms) CPU (ms) Total MSE (e-3) Coord MSE (e-3) Max MAPE (%)
R1 ResNet50V2 [21] 23.6 M 7 33 2.5332 3.6807 3.2987
R2 ResNet101V2 [21] 42.6 M 11 59 2.5455 3.6974 3.2646
R3 ResNet152V2 [21] 58.3 M 16 82 2.5760 3.7034 3.7070
I1 InceptionV3 [22] 21.8 M 10 23 2.5849 3.7369 4.0755
I2 Xception [23] 20.9 M 5 37 2.5966 3.6261 4.5185
I3 InceptionResNetV2 [24] 54.3 M 21 53 2.4259 3.4810 3.2870
E1 EfficientNetV2B0 [26] 5.92 M 9 14 2.9678 4.2907 4.1292
E2 EfficientNetV2S [26] 20.3 M 16 38 2.8995 4.2328 3.2296
E3 EfficientNetV2M [26] 53.2 M 25 73 2.8504 4.1497 3.3052
D1 DenseNet121 [16] 7.03 M 12 44 2.4411 3.5646 2.9057
D2 DenseNet169 [16] 12.6 M 16 57 2.4881 3.6230 2.9073
D3 DenseNet201 [16] 18.3 M 21 71 2.4205 3.5169 3.5357

Fig. 6. GPU inference time plotted against (a) total MSE, (b) max stress coordinates MSE and (c) max stress magnitude MAPE of the CNN models.

Fig. 7. CPU inference time plotted against (a) total MSE, (b) max stress coordinates MSE and (c) max stress magnitude MAPE of the CNN models.

Fig. 8. Number of model parameters plotted against (a) total MSE, (b) max stress coordinates MSE and (c) max stress magnitude MAPE of the CNN models.
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Fig. 9. Inference results of the trained DenseNet121 model on some input cross-section profiles (a) with satisfactory performance (low total MSE) and (b)
with poor performance (high total MSE); green and red dots indicate the true and predicted points of maximal stress respectively.
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