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Abstract

Tropical geometry is the geometry over the max-plus algebra, and it is a
degeneration or limit of classical geometric objects under the logarithm or val-
uation map. In this article we will discuss how to tropicalize algebraic sets,
semialgebraic sets, and convex sets, and highlight an application to the trun-
cated moment problem in real algebraic geometry.

1 Tropical algebra and geometry

Tropicalization is a degeneration process that turns an algebraic or semialge-
braic set into a polyhedral set. Tropicalization of algebraic varieties, also known as
logarithmic limit sets or Maslov dequantization, was introduced by Bergman in [10]
to study the “exponential behavior at infinity” of subvarieties of the algebraic torus
(C \ {0})n. It was used by Viro to construct real plane curves with prescribed de-
gree and topology [35], by Mikhalkin in enumerative algebraic geometry [31], and
by Sturmfels for polynomial system solving [34, Chapter 9]. On the more algebraic
side, the tropical algebra, or max-plus algebra, has been linked to combinatorial
applications such as scheduling and discrete-event dynamical systems [15]. Recently
tropical geometry played an important role in the resolution of some long-standing
conjectures on complexity of linear programming [3, 4] and log-concavity of coeffi-
cients of characteristic polynomials of matroids [1, 7].

The main comprehensive reference on tropical geometry is the text by Maclagan
and Sturmfels [29]. The book by Joswig [27] focuses on combinatorial aspects of
tropical geometry and applications to optimization, while an earlier book by Iten-
berg, Mikhalkin, and Shustin focuses on patchworking and enumerative algebraic
geometry [22].

The tropicalization of a subset S of (R \ {0})n or (C \ {0})n can be defined as
its logarithmic limit set

lim
t→0

log 1
t
S,

consisting of points y ∈ Rn for which there is a sequence of points x(t) ∈ S such

that (log 1
t
|x(t)1 |, . . . , log 1

t
|x(t)n |) converges to y as t→ 0.

Instead of the parameter t being a real or complex number, we can consider it
an element of a field such as the field of Puiseux series in one variable t with real or
complex coefficients. A Puiseux series in variable t is a formal power series in t

1
n for

some natural number n. The complex Puiseux series form an algebraically closed
field, while the real Puiseux series form a real closed field.

With the Puiseux series, instead of taking the logarithmic limits, we can take
the valuation of the series, which is the smallest exponent appearing with a nonzero
coefficient. More generally, a non-Archimedean valuation on a field K is a map
ν : K→ R ∪ {∞} satisfying

1. ν(x) =∞ ⇐⇒ x = 0
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2. ν(xy) = ν(x) + ν(y)

3. ν(x+ y) ≥ min(ν(x), ν(y)).

A valuation is called trivial if it sends all of K \ {0} to zero. If K is algebraically
closed, then the image of any nontrivial valuation is a dense subset of R.

Tropical geometry arises as the image of usual geometry under the valuation
map. For a point x = (x1, . . . , xn) ∈ Kn, we will denote

trop(x) = (−ν(x1), . . . ,−ν(xn)).

And for a subset S ⊂ Kn, we can define its tropicalization as

trop(S) = {trop(x) | x ∈ S}.

The tropicalization map turns multiplication into usual addition, and almost
turns addition into maximum. We will see now that it is a hyperfield homomorphism.
The tropical semiring or the max-plus semiring is the set R ∪ {−∞} with tropical
addition a⊕ b = max(a, b) and tropical multiplication a� b = a+ b.

A hyperfield or hyperring is a set with a multiplication � and addition �, where
addition may be multivalued, that satisfies a set of axioms similar to those for a
field or a ring. Viro pioneered the use of hyperfields in tropical geometry [36], and
Baker and Bowler introduced a construction of matroids over hyperfields which unify
various matroid concepts such as oriented, valuated, and phased matroids [8].

The tropical hyperfield T is the set R∪ {−∞} with multiplication a� b = a+ b
and the addition defined by

a� b =

{
max(a, b) if a 6= b

[−∞, a] if a = b.

The tropical addition reflects how addition and valuation interact — we have

−ν(x+ y) = max(−ν(x),−ν(y)) if ν(x) 6= ν(y), and

−ν(x+ y) ≤ ν(x) = ν(y) otherwise.

A morphism of hyperfields ϕ : H1 → H2 is a map which induces a homomorphism
of multiplicative groups and satisfies ϕ(x � y) ⊂ ϕ(x) � ϕ(y). The negative of the
valuation −ν is a hyperfield homomorphism from K to the tropical hyperfield T,
that is, −ν(xy) = −ν(x)�−ν(y) and −ν(x+ y) ∈ −ν(x) �−ν(y).

2 Tropicalizing algebraic varieties

For a polynomial f =
∑
ad1,...,dnx

d1
1 · · ·xdnn ∈ K[x1, . . . , xn], let trop(f) be the

polynomial �− ν(ad1,...,dn)�Xd1
1 � · · · �Xdn

n over the tropical hyperfield obtained
by replacing usual operations with tropical operations and each coefficient with
its negative valuation. (The powers of the tropical variables Xi’s refer to tropical
multiplication.)

For example over the field of Puiseux series K = C{{t}} = ∪m≥0C((t1/m)) where
the valuation is the order of the lowest degree term of the series

trop(1 + (2t−3 + 1)x2 − xy+ 5t
1
2 y2) = 0� (−3�X �X)� (X � Y )� (

1

2
� Y � Y ).
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For a point x ∈ Kn, we have f(x) = 0 =⇒ trop(f)(trop(x)) 3 −∞ since tropical-
ization is a hyperfield morphism. The only way for a hyperfield sum to contain −∞
is to have maximum attained twice. This means that when evaluating the tropical
polynomial trop(f) at the point trop(x), the maximum is attained at least twice.
The tropical hypersurface of a tropical polynomial F in n variables is defined to be

V(F ) = {x ∈ Rn | the maximum is attained at least twice in F (x)}.

We saw earlier that f(x) = 0 =⇒ trop(x) ∈ V(trop(f)). The following is a converse
of this statement.

Theorem 2.1 (Kapranov’s Theorem) For a polynomial f in n variables we have

V(trop(f)) = {trop(x) | x ∈ Kn, f(x) = 0}

where K is an algebraically closed extension of the field of definition of f with a
non-trivial non-Archimedean valuation, and the closure is in the Euclidean topology.

If f is defined over C, then K can be taken to be the field of the Puiseux series over
C, and the closure is just passing from the rationals to real numbers.

For a polynomial f =
∑

a∈A cax
a, we have

trop(f) = max
a∈A
{trop(ca) + (x · a)} = max

a∈A
{(x, 1) · (a, trop(ca))}.

In particular, when all the coefficients of f have valuation 0, i.e. trop(ca) = 0 for all
a ∈ A, then V(trop(f)) consists of vectors x such that the maximum of {x·a | a ∈ A}
is attained at least twice. This depends only on the Newton polytope of f , which
is the convex hull of A. More precisely, the tropical hypersurface V(trop(f)) is the
union of outer normal cones to the edges of the Newton polytope of f . The normal
fan of the Newton polytope of f can be recovered from its tropical hypersurface.

If the coefficients of f do not all have the same valuation, then instead of just
the Newton polytope, we need to consider the regular subdivision of the Newton
polytope induced by the tropicalization of the coefficients.

The fundamental theorem of tropical geometry says that the various ways to
tropicalize an algebraic set coincide. For an algebraic set V ⊂ Cn, let I(V ) denote
the ideal in C[x1, . . . , xn] consisting of polynomials vanishing on V , and let VK
denote the set of points in Kn defined by the same polynomial equations that define
V . Proofs for various parts and variations can be found in [33, 26, 32, 29].

Theorem 2.2 (Fundamental Theorem of Tropical Geometry)
Let V ⊂ (C \ {0})n be an algebraic set. The following subsets of Rn coincide.

1. the logarithmic limit set limt→0 log 1
t
V

2. {−ν(x) | x ∈ VK ∩ (K \ {0})n} where K is an algebraically closed field exten-
sion of C with a non-trivial non-Archimedean valuation ν

3.
⋂
f∈I(V ) V(trop(f))

4. {w ∈ Rn | inw(I(V )) does not contain a monomial }



240 Josephine Yu

Figure 1: The Newton polygon (left) and the tropical hypersurface (right) of the
polynomial 2x + 3x2 + 5y + 7xy + 11x2y + 13xy2. The coefficients have valuation
zero, so they do not affect the picture. The rays of the tropical curve, appropriately
weighted, sum to zero.

In (2) the closure is the Euclidean closure. The closure is not needed if the valuation
maps K surjectively onto R as in the case of generalized Puiseux series where non-
rational exponents are allowed. In (4) inw(I(V )) denotes the initial ideal of the ideal
I(V ) as in Gröbner theory. Kapranov’s Theorem is the equivalence of (2) and (3)
for the case when the algebraic set V is defined by a single polynomial f . In (3) the
intersection can be taken to be finite, and a finite subset of I(V ) that does the job
is called a tropical basis.

For varieties defined over arbitrary algebraically closed fields, the logarithmic
limits may no longer make sense, but the equivalence of (2), (3), and (4) still hold.
One can also tropicalize using Berkovich analytic spaces; see for example [21].

The set in the theorem is called the tropicalization of V , denoted trop(V ). It is
clear from (2) that trop(V ∪ U) = trop(V ) ∪ trop(U) and trop(V ∩ U) ⊆ trop(V ) ∩
trop(U).

Theorem 2.3 (Structure Theorem for Tropical Varieties) Let V be an irre-
ducible variety of dimension d in (k \ {0})n where k is an algebraically closed field.
Then trop(V ) is a pure d-dimensional balanced polyhedral complex. Moreover it is
d− ` connected through codimension one where ` is the dimension of lineality of the
polyhedral complex. That is, it is still connected after removing all codimension-two
faces and d− `− 1 codimension-one faces.

The fact that the tropicalization is a polyhedral complex follows from the charac-
terization (4) of the Fundamental Theorem. The dimension statement is due to
Bieri and Groves [11]. The balancing condition, or the zero tension condition is a
generalization of the statement that the sum of normal vectors to edges of a polygon
is zero, where the vectors are scaled by the lengths of the edges. Connectivity was
proven in [14] and [16] and was strengthened in [30] for characteristic zero and in [20]
for prime characteristic.

Below we will discuss some examples of tropicalizations. Tropicalization can
help uncover combinatorial features of an algebraic variety. But perhaps more im-
portantly tropicalization can lead to some very useful purely combinatorial construc-
tions even when there are no algebraic varieties present.
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Figure 2: A polytope (left) and the union of normal cones to its edges (right).

When V is a hypersurface defined by a single polynomial f , trop(V ) is the
union of normal cones to edges of the Newton polytope of f . This construction of
the tropical hypersurface makes sense for arbitrary polytopes. Using the tropical
description, some computational problems in polytopes become simpler; for example
the tropical hypersurface of the Minkowski sum of two polytopes is just the union
of their hypersurfaces. The tropical description is shown to be useful for computing
the secondary fan of point configurations [24] and McMullen’s polytope algebra [25].

For a linear space L over C, trop(L) depends only on the matroid of L, that
is, the linear independence among columns of a matrix whose rows span L [34, 6].
The tropicalization is called the Bergman fan. The construction of Bergman fans
(and more generally tropical linear spaces of valuated matroids) make sense even
when the matroid is not representable by linear independence. They are crucial in
the work of Adiprasito, Huh, and Katz who proved the conjecture of Rota, Heron,
and Welsh on the log-concavity of the coefficients of the chromatic polynomials of
matroids, regardless of representability over a field [1, 7]. The Bergman fan is used
to develop a Hodge theory that gives combinatorial inequalities. The tropical linear
spaces are also essential in the tropical scheme theory of Maclagan and Rincón [28].

The tropicalization of an algebraic curve is a graph. The divisor theory on
curves “tropicalizes” to chip firing games on graphs and inspires purely combinatorial
versions of Riemann–Roch and Abel–Jacobi theory for graphs [9].

3 Tropicalizing semialgebraic sets

A semialgebraic subset of Rn is a set defined by a finite Boolean expression of
polynomial inequalities. They can be tropicalized similarly to algebraic sets, using
logarithmic limits, valuations, and max-plus algebra. The definition of logarithmic
limit sets is exactly the same as before. To use valuations, we need to consider
a real closed (instead of algebraically closed) field extension K with a nontrivial
non-Archimedean valuation which is compatible with the ordering. That is, the
non-Archimedean absolute value |x| = e−ν(x) must satisfy

0 ≤ a ≤ b =⇒ |a| ≤ |b|.
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Concretely we can consider the field of Puiseux series with real coefficients, which
is real closed, with ordering given by

x > y if the leading coefficient of x− y is positive.

For a polynomial f over K, we can obtain a tropical polynomial trop(f) as before.
For any x ∈ Kn

>0 and a polynomial f over K, if f(x) ≥ 0, then the maximum is
attained at a positive term in trop(f) (trop(x)). Let us define

{trop(f) ≥ 0} = {a ∈ Rn | maximum is attained at a positive term in trop(f)(a)}.

This is an abuse of notation, since we need to keep track of the signs of the original
polynomial f . A neater formulation is to use, as in [23], the tropical real hyperfield
introduced in [36]. For example tropicalizing the inequality x ≥ 0 gives all of R, but
tropicalizing x ≤ 1 gives R≤0.

As stated above, we always have

trop ({x ∈ Kn : f(x) ≥ 0}) ⊆ {trop(f) ≥ 0}

but the containment can be strict, even if the valuation ν : K\{0} → R is surjective.
For example, over real Puiseux series K, let S = {(x, y) ∈ K2 : (x−2)2+(y−2)2 ≤ 1}.
Then trop(S) consists of a single point (0, 0). However {trop(1 − (x − 2)2 − (y −
2)2) ≥ 0} consists of two rays in directions (0,−1) and (−1, 0). However, if we use
tropicalization of more inequalities satisfied by S, such as 1 ≤ x ≤ 3, 1 ≤ y ≤ 3,
then we do obtain exactly trop(S).

As in the case of algebraic sets, the three ways of tropicalizing coincide for
semialgebraic sets. Another way, using analytification, can be found in [23].

Theorem 3.1 (Fundamental Theorem of Real Tropical Geometry)
Let S ⊂ Rn

>0 be a semialgebraic set. Then the following subsets of Rn coincide.

1. the logarithmic limit set limt→0 log 1
t
S

2. {−ν(x) | x ∈ SK} where K is a real closed field extension of R with a non-
trivial non-Archimedean valuation compatible with the order

3.
⋂
f≥0 on S{trop(f) ≥ 0}

The descriptions (2) and (3) also work for semialgebraic sets over more general real-
closed fields such as the real Puiseux series. The equivalence of (1) and (2) can
be found in [2] and (2) and (3) in [23]. In (3) finitely many inequalities suffice.
In other words, every semialgebraic set has a finite “tropical basis.” Moreover, any
tropical polynomial inequality valid on trop(S) can be “lifted” to a usual polynomial
inequality valid on S.

Tropicalizations of semialgebraic sets are closed polyhedral complexes [2, 5] al-
though the dimension of the tropicalization can be strictly smaller than the dimen-
sion of the original set, unlike in the case of complex algebraic varieties.

Compared to algebraic varieties, there are fewer known examples of tropicaliza-
tions of semialgebraic sets. In fact there is no known algorithms for computing them.
Tropicalizations of polytopes over real Puiseux series are tropical polytopes, and
they are polyhedral complexes dual to subdivisions of products of simplices [18, 19].
Tropicalization of spectrahedra are related to stochastic mean payoff games, in that
feasability problems for the former are equivalent to solving the latter. [5].
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4 Tropical Convexity

Tropical operations naturally extend to tropical addition and tropical scalar mul-
tiplication on Rn. A subset of Rn is called tropically convex if it is closed under
tropical linear combinations. That is, a set C ⊂ Rn is tropically convex if for every
x,y ∈ C and a, b ∈ R we have (a� x)⊕ (b� y) ∈ C. The tropical convex hull of a
subset of Rn is the smallest tropically convex set containing it.

A tropical polytope is the tropical convex hull of a finite set of points. Develin and
Sturmfels showed that the tropical convex hull of n points in Rd is dual to a regular
subdivision of the product of simplices ∆n−1 ×∆d−1 induced by the coordinates of
these points [18]. The dimension of the tropical convex hull is called the tropical
rank of the d × n matrix whose columns are the original points, and it coincides
with the largest integer r such that the matrix contains a “non-vanishing” r × r
tropical minor, that is, an r× r submatrix where the maximum is attained twice in
its tropical determinant [17].

Let K be a real closed field with a non-trivial non-Archimedean valuation com-
patible to the order, for example, the field of Puiseux series over R where positive
elements are those with positive leading (smallest degree) coefficient. It follows
directly from the definitions that the tropicalization of convex cones in Kn

>0 are
tropically convex, and every tropically convex set arises this way. Note that we do
not put non-negativity restrictions on the coefficients a, b in the definition since the
tropicalization of K>0 is all of R.

Tropicalization can be used to construct examples of extreme behavior, what
happens “at the limit” using the logarithmic limit set point of view. We can take
K to be the field of real Puiseux series (in variable t) convergent on a punctured
neighborhood of 0 ∈ R. Then a polytope or a convex set over K can be viewed as
a family of convex sets over R as t→ 0. This was used in [3] to prove that a family
of linear programming algorithms — log-barrier interior point methods — are not
strongly polynomial. It is still an open question to determine whether there exists
a strongly polynomial algorithm for linear programming.

We say that S has the Hadamard property if S is closed under coordinate-wise
(Hadamard) multiplication. It is known that if S is semialgebraic then trop(S) is a
rational polyhedral complex [2, 5] and if S has Hadamard property then trop(S) is
a closed convex cone, which is equal to the closure of the conical hull of log(S) [12].
Therefore, if S is a semialgebraic subset of (R \ {0})n with the Hadamard property
then trop(S) is rational polyhedral cone.

For example, the cone of positive semidefinite n×n matrices has the Hadamard
property. Its tropicalization is a polyhedral cone, which is the tropical convex hull
of the usual linear space consisting of tropical rank one symmetric matrices [37]. It
can be characterized using subdivisions of the twice-dilated simplex 2∆n−1.

Tropicalization of a binomial inequality is a linear inequality, so knowing (the
conical hull of) trop(S) tells us about binomial inequalities on S. This was also
used to derive binomial inequalities for graph homomorphism density profiles from
extremal graph theory, even when the sets are not semialgebraic [12].
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5 Tropical geometry and moment problems

Let S ⊂ Rn be a closed semialgebraic set. Usually we take S = Rn or S = Rn
≥0.

Let A be a finite subset of Nn, considered as a set of monomials. The moment cone
MA(S) is the closure of{(∫

xαdµ

)
α∈A
∈ RA | µ is a nonnegative Borel measure supported on S

}
.

The (truncated) moment problem is the membership problem for MA(S). That is
given L ∈ RA, determine whether it comes from moments of a nonnegative Borel
measure. By linearly extending, L can be considered as a real valued linear function
on the space of polynomials with monomials in A. For L to be in the moment
cone, it is necessary that L takes nonnegative values on the polynomials which are
nonnegative on S. In fact, this necessary condition is also sufficient — the moment
cone MA(S) consists of all linear functions L that are nonnegative on the cone of
nonnegative polynomials on S supported on A, that is, MA(S) is the convex dual
of the nonnegative cone PosA(S) of polynomials which are nonnegative on S. It is
generally very difficult to compute (the generators of) the nonnegative cone PosA(S).

If S is closed under Hadamard product, then so is MA(S). We have seen earlier
that the tropicalization of such a set is a closed convex cone. Thus trop(MA(S)) is a
closed convex rational polyhedral cone. The linear inequalities valid on trop(MA(S))
correspond to binomial inequalities on MA(S). In this way knowing trop(MA(S))
helps with the moment problem which asks for inequalities defining MA(S). The
following is one of the main results in [13].

Theorem 5.1 Let S ⊂ Rn
≥0 be a semialgebraic set with the Hadamard property such

that the intersection with the positive orthant is dense in S. The tropicalization of the
truncated moment cone MA(S) is the rational polyhedral cone of functions h : A→ R
satisfying the following linear inequalities:

1. (Convexity)
∑r

i=1 λih(ai) ≥ h(b) for all a1, . . . , ar, b ∈ A, λi ≥ 0,
∑r

i=1 λi = 1;

2. (Non-increasing) h(a) ≥ h(b) whenever a− b ∈ trop(S)∨.

Here trop(S) is a rational polyhedral cone, and trop(S)∨ denotes its convex dual
cone. For example, when S = Rn

≥0, we have trop(S) = Rn, so the condition (2) is
vacuous. When S is the unit cube [0, 1]n, we have trop(S) = Rn

≤0, so the condition
(2) says that the function h is decreasing in coordinate directions.

Instead of the cone of nonnegative polynomials, it is often easier to understand
the cone of sum-of-square (SOS) polynomials, and semidefinite programming can
be used to do computations with them. The dual cone of SOS polynomials is often
called the pseudo-moment cone. An important question is to characterize for which
S and A the moment and pseudo-moment cones coincide.

When S is not all of Rn, there can be different choices on what we mean by “sum
of squares”. If S is the positive orthant, then all monomials are nonnegative on S,
thus we allow monomial multipliers when taking the sums of squares. Similarly,
when S = [0, 1]n we allow the (1 − xi) termss to be multiplied by the squares. In
general, being “sum of squares” may depend not only on S but also on the choice
of semialgebraic description of S.
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We can describe tropicalizations of pseudo-moment cones similarly to the above
theorem, where the convexity condition is replaced by the following midpoint con-
vexity condition: h(a1) + h(a2) ≥ 2h(b) for all a1, a2, b ∈ A with a1 + a2 = 2b.

The first known polynomial that is nonnegative on R2 but is not SOS is the
Motzkin polynomial 1 + x2y4 + x4y2− 3x2y2. The monomial support A in this case
is

A = {(0, 0), (2, 4), (4, 2), (2, 2)}.

The midpoint convexity condition is vacuous on A, but there is a convexity condition
m(0,0) + m(2,4) + m(4,2) ≥ 3m(2,2), showing that there is a nonnegative polynomial
on this support which is not SOS.
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