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1 Abstract

Continuum Theory is an area of Topology concerning the study of compact and connected
metric spaces. While this might seem to simplify things, there are still some interesting
examples and open problems. We will cover some examples of continua and the Hahn-
Mazurkiewicz Theorem, which states that there exist continuous maps from the closed
interval onto Peano continua.

2 Cantor Sets and Dimension

2.1 Cantor Sets

First, we will define the middle-thirds Cantor set. Let C0 be the interval [0, 1]. Then
remove the open middle third of the interval to get

C1 =

[
0,

1

3

]
∪
[

2

3
, 1

]
Continue this process again by removing the open middle thirds out of both portions of
C1 to get

C2 =

[
0,

1

9

]
∪
[

2

9
,
1

3

]
∪
[

2

3
,
7

9

]
∪
[

8

9
, 1

]
This can then be continued iteratively to define all the sets Cn. Then the classical middle-
thirds Cantor set is

K =
∞⋂
n=0

Cn

The first five steps of the construction are given geometrically in Figure 1.

The measure of this set, in terms of Lebesgue measure, is zero. This can be seen by
summing the measures of the removed parts:

1

3
+

2

9
+

4

27
+ . . .+

2n

3n+1
+ . . . =

1

3
· 1

1− 2/3
= 1

To get a rough idea of what remains in the Cantor set, it is clear that for any Cn, the
endpoints of each interval in Cn will be in K.
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Figure 1

There are several topological properties that the Cantor set has. The first is that it is
compact. This is seen easily since only open sets are being removed, so the complement
of the open sets will remain closed. It is perfect since it has no isolated points. No matter
how small of a ball that is restricted around a point, at some step of the process, some
interval piece of a Cn was contained inside that ball, and so there are other points of
the final Cantor set which will also be inside any ball. Also, the Cantor Set is totally
disconnected since any set containing more than one point will be disconnected. Since
the Cantor set is a subset of R, this is equivalent to the Cantor set not containing any
intervals. The lengths of the intervals in Cn are 1/3n and as n goes to infinity, the lengths
of the intervals will approach zero. So the end result will have no intervals contained in
it, so the Cantor set is totally disconnected.

What is key about these properties is that they are also sufficient to describe the
Cantor set. Any set that is compact, perfect and totally disconnected is homeomorphic
to the middle-thirds Cantor set.1 Since we are mostly concerned in this paper about the
Cantor set from a topological perspective, we will refer to any set having these three
properties as a Cantor set.

So if instead of taking out the middle third of each interval, we can take out the
middle-fifth of each interval and end with a set that is homeomorphic to the middle-
thirds Cantor set. The measure of this set is still zero since the removed intervals sum
to

1

5
+

4

25
+ . . .+

4n

5n+1
+ . . . =

1

5
· 1

1− 4/5
= 1

One particular example of a Cantor set that does not have measure zero is the Smith-
Volterra-Cantor set. This particular set is created by removing the middle 1/4 in the
first step and by removing an interval of length 1/4n from each of the intervals during
the following steps. The first few steps are shown in Figure 2.

Figure 2

The total measure of the intervals removed from interval [0, 1] is

1

4
+

1

8
+

1

16
+ . . .+

1

2n+1
+ . . . =

1

4
· 1

1− 1/2
=

1

2

Thus the measure of this Cantor set is 1/2. So these two sets have completely different
measures, but are homeomorphic. In fact, by adjusting the width of the intervals, the
Cantor set can have any measure in [0, 1).

1[6] theorem 2-97, p.99
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In fact, by removing intervals of length 1/2nkn out of each interval at the n-th step,
for natural numbers k ≥ 2, the Lebesgue measure of the removed parts will approach

1

2k
· 1

1− 1/2k
=

1

2k − 1
→ 0 as k →∞

So the Lebesgue measure of these Cantor sets approaches one, though it can never equal
one since an interval of some measure is always removed during the first step.

Cantor sets are not restricted to subsets of R. The first few steps of one example, often
referred to as a Cantor dust, is given in Figure 3. This extension of the middle-thirds
Cantor set to the plane can also easily be extended to any number of dimensions.

Figure 3

One particularly interesting example of a Cantor set in R3 is Antoine’s necklace.
It is constructing by first taking a torus, and then within that torus, taking a chain
of tori. These smaller tori do not intersect. For the next step, within each of those
smaller tori, take another chain of even smaller tori. Continue this process indefinitely.
The intersection of all of these tori is Antoine’s necklace. See Figure 4.2 Since each
of the links of this necklace do not intersect one another, then the necklace is totally
disconnected. But even as a totally disconnected set in R3, its complement is not simply
connected.3 The chains are interlinked so much that there is no way for a line to pass
through them.

Figure 4

Another fascinating property of the middle-third Cantor set is that there exists a
one-to-one map of the Cantor set whose image is the interval [0,1]. It is easiest to show
this fact by thinking of the Cantor set in a different way.

It is possible to write an element n of the interval [0, 1] in the form

n =
a1
3

+
a2
32

+ . . .+
an
3n

+ . . . , where ai = 0, 1, or 2, for all i

This is often called ternary or base 3 and can also be expressed as

n =3 0.a1a2a3...

2Weisstein, Eric W. ”Antoine’s Necklace.” From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/AntoinesNecklace.html

3Simply connected : Every image of S1 is homotopic to a point
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Conveniently, the middle third Cantor set is constructed at each step by splitting the
intervals into thirds and choosing only the first and last. This is the same as restricting
the ai’s to only 0 or 2, for all i. So another way to represent the Cantor set is the set of
numbers n such that n =3 0.a1a2..., where ai = 0 or 2, for all i.

This non-geometric representation allows an easy one-to-one map to be described
between the Cantor set and a closed interval. The map is given by

f(
a1
3

+
a2
32

+ . . .+
an
3n

+ . . .) =
a1/2

2
+
a2/2

22
+ . . .+

an/2

2n
+ . . .

This is the binary representation of the numbers in the interval [0, 1]. Since the ai for
the Cantor sets are either 0 or 2, then ai/2 will be 0 or 1.

This map also shows very concretely that two sets with different measures can still
have a one-to-one map between them. This brings up another concern when trying to
define a topologically invariant concept of dimension.

2.2 Fractal and Topological Dimensions

The dimension of the Cantor set does not seem to fall easily into any naturally numbered
dimension. It has too many points to be zero dimensional, but has a zero measure, which
makes it too small to be one-dimensional. The study of fractals necessitated a dimension
to be defined that gives an idea on how close to a naturally numbered dimension a
particular fractal is.

This particular definition4 is called the box dimension. The reason for this name is
that one way to think of this dimension is by counting the number of small boxes that it
takes to cover an object.

Definition 1. Let A be a subset of Rn and ε > 0. Denote by N(ε) the minimal number
of n-cubes of side length ε that are required in order to cover A. Then the box dimension
of A is given by

d = − lim
ε→0

logN(ε)

log ε

If the fractal in question is self-similar, then by fixing ε = r, where r is the ratio of
each smaller pieces to the original. Then there will be a fixed number of balls of radius
r to cover it, and this r will be fixed as well. So the box dimension can be simplified to

d =
logN

log 1/r

and no limit is necessary.
To try out these dimensions, lets look at the first two Cantor sets that were discussed.

The fractal dimension of the middle thirds Cantor set is

d =
log 2

log 3
≈ .6309

But the dimension of the middle-fifths Cantor set is

d =
log 2

log 5/2
≈ .7565

4[5]
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Since you are removing less from the middle-fifths Cantor set then its dimension is closer
to the dimension of the line than the middle-thirds Cantor set.

In order to calculate the dimension of the Smith-Volterra-Cantor set, we must use
the full definition of the box dimension as the intervals vary. The full calculation of this
dimension is in the appendix.

− log 2

log 3/8
≈ .7067

− log 4

log 5/32
≈ .7468

...

lim
n→∞

− log 2n

log

(
2n + 1

22n+1

) = 1

So the Smith-Volterra-Cantor set, which is still homeomorphic to the middle-thirds Can-
tor set, has a dimension exactly equal to one. If we consider the dimension Cantor dust
in Figure 3, it is

d =
log 4

log 3
≈ 1.2619

So the dimension of Cantor sets can even be greater than one. If we look at the dimension
of the n-dimensional extension of the Cantor dust, we find that it is

d =
log 2n

log 3
→∞ as n→∞

So the Cantor sets, which are all homeomorphically equivalent, can have dimension from
less than one all the way to infinity. Each of these variations of Cantor set has a different
fractal dimension. One thing that this makes very clear is that this definition of dimension
is not a topological property.

This conclusion might make one concerned on whether the dimensions of Rn and Rm

have any meaning topologically. Fortunately, Brouwer5 showed that if such a homeomor-
phism exists between Rn and Rm, then n equals m. This hints at the fact that there is a
way to define a dimension inductively which is preserved under homeomorphisms.

It is necessary to start the definition of an inductive dimension6 by asking what
dimension is the dimension of the empty set. It is clear that a single point should be zero
dimensional. Setting the dimension of the empty set to -1 works well with the inductive
definition for dimension.

Definition 2. A space X has dimension 0 at a point p if there are arbitrarily open
neighborhoods of p with empty boundaries.

If every point of a nonempty set X has dimension 0, then X has dimension 0.

Theorem 2.1. If a space X is compact, then X has dimension 0 if and only if it is
totally disconnected.

Definition 3. A space X has dimension ≤ n at a point p if p has arbitrarily small open
neighborhoods whose boundaries have dimension ≤ n− 1.

5[1]
6[7]
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X has dimension ≤ n, written dim X ≤ n, if every point of X has dimension ≤ n.
X has dimension n if dim X ≤ n is true and dim X ≤ n− 1 is false.
X has dimension ∞ if dim X ≤ n is false for all n.

This definition of dimension will be constant under homeomorphisms since empty
boundaries of open sets will still be empty boundaries of open sets after going through a
homeomorphism. The definition builds inductively up from there.

3 Continuum Theory

The term continuum was first formaly defined by Georg Cantor in order to try and
capture the essence of the real line R. Cantor said that a subset of a Euclidean space is
a continuum provided that for any two points a and b of the subset and a given ε > 0,
there exist a finite number of points p0 = a, p1, ..., pn = b such that the distance between
consecutive pi’s is less than ε.7. Prior to this, it was thought that a perfect set was enough
structure to describe a continuum. His Cantor set is a counterexample to that reasoning.
Since Cantor, the definition has evolved to the one presented below.

3.1 Some basics

Definition 4. A topological space is a continuum if it is a nonempty, compact, connected
metric space.

If a continuum contains only one point, then it is called degenerate. As degener-
ate continuum are not that interesting, we will concern ourselves with nondegenerate
continuum for the rest of the paper.

Now, we will look at some examples of continuum to get a scope of what this definition
includes.

The first and simplest example is an arc. It is clear that a closed interval will satisfy
the definition of a continuum, so an arc will also be a continuum.

The next example of a continuum is the topologist’s sine curve, shown in Figure 5.
It is the graph of y = sin 1/x for x-values in (0, 1] combined with the closure arc from
(0,−1) to (0, 1). This set is connected, but not locally connected nor arc-connected.

Figure 5

7[8]
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Figure 6 shows the Warsaw circle, which is a way to adjust the topologist’s sine curve
to be arc-connected. But note that the Warsaw circle is still not locally connected.

Figure 6

Nothing in the definition of a continuum limits the number of dimensions. Spaces
which are homeomorphic to the closed balls Bn = {(xi)ni=1 ∈ Rn : ‖x‖ ≤ 1} are continua.
Even spaces homeomorphic to the Hilbert cube, defined as

∞∏
i=1

Ii, where Ii = [0, 1]

with the product topology8, are continua.
Continua can have many different dimensions, from only one or two dimensions, all

the way to n or even infinite dimensions.

3.2 Interesting constructions

Besides these examples, there are two main constructions to make more interesting and
complex continua. The first is to take infinite intersections of nested continua and the
other route is a structure called an inverse limit.

Theorem 3.1. Let X1 ⊃ X2 ⊃ . . . where each of the Xi are continua. Then X = ∩∞i=1Xi

is a continuum.

Proof. To show that X 6= ∅, we will actually show that if U ⊂ X1 is an open subset and
X ⊂ U , then there exists some N such that Xi ⊂ U , for all i ≥ N .
Let U ⊂ X1 open subset such that X ⊂ U Suppose, for a contradiction that, that for
each i = 1, 2, 3, ... that there exists an xi ∈ Xi−U . Then {xi} is a sequence in X1, which
is a compact metric space. So we can choose a sequence which converges to some point
p ∈ X1. Also, since U is open in X1, then p /∈ U . Since for each m, xi ∈ Xm, for all
i ≥ m, then p ∈ Xm. Thus p ∈ X ⊂ U . This is a contradiction.

X is compact since for each Xi, X1 −Xi is an open set in X1. So

X = X1 −
∞⋃
i=2

(X1 −Xi)

8Basis elements are of the form
∏∞

i=1 Ui, where Ui is open in [0, 1], and all but finitely many of the
Ui are equal to [0, 1]. [12]
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is a closed subset of X1. Since X1 is compact, then X is compact.
X is clearly metric since every point of X is also a point of X1. So the metric on X1

can be simply restricted to the points of X.
To show that X is connected, suppose U and V are disjoint open subsets of X such

that U ∪V = X. Since X is compact, then U and V are closed and compact. Since X1 is
normal, then there exist open disjoint sets A and B of X1 such that U ⊂ A and V ⊂ B.
From the first part of the proof, A∪B satisfies the conditions of U . Thus there exists an
N such that Xi ⊂ A∪B, for all i ≥ N . For such an Xi, U ⊂ Xi ∩A and V ⊂ Xi ∩B are
nonempty disjoint open sets. Thus Xi is not connected. But Xi is a continuum, so this
is a contradiction. Thus X is connected.

The first example of a continua that can be created using the intersections of nested
continua is the Sierpinski Universal Curve. Let X1 be the unit square, [0, 1] × [0, 1].
We can find X2 by dividing X1 into nine equal squares and removing the middle one.
Similarly, divide each of the smaller squares in X2 into nine more squares and remove
the middles to get X3. Continue this process for the rest of the Xi’s. Figure 7 shows this
process a few steps down the line.

Figure 7

Definition 5. A curve is a one-dimensional continuum.

The reason that the Sierpinski curve is called universal is that it contains a homeo-
morphic image of every one-dimensional continua in the plane.9

Another type of continua that can come from this construction are indecomposable
continua.

Definition 6. A continuum is said to be decomposable if it can be written as the union
of two subcontinuum.

A continuum is indecomposable if it is not decomposable.

9See the appendix for a translation of Sierpinski’s 1916 proof of this fact.
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Definition 7. A simple chain from x to y is a collection of sets {U1, U2, ..., Un}, called
links, such that

(i) a ∈ Ui if and only if i = 1,
(ii) b ∈ Ui if and only if i = n, and
(iii) Ui ∩ Uj 6= ∅ if and only if |i− j| ≤ 1.

For the example of an indecomposable continuum, let a, b, and c be distinct points
in R2. Let An be a simple chains whose links are closed balls with radii less than 1/2n

such that
(i) if n = 3k + 1, then An is a chain from a to c through b,
(ii) if n = 3k + 2, then An is a chain from b to a through c,
(iii) if n = 3k, then An is a chain from c to b through a, and
(iv) ∪An ⊂ ∪An−1.

Then let Xn be the union of the links in An. Thus X = ∩∞i=1Xn will be a continuum,
since the Xn are nested continuum. Figure 8 has the first three simple chains of this
construction.

Figure 8

This continuum is indecomposable since any subcontinuum Y which contains the
points a and b will also be contained within all of the Xn, where n = 3k. So Y will
also contain all of X since it is connected and removing any of the links of Xn would
disconnect it.. So no proper subcontinuum of X will contain two of a, b, or c.

Another construction to create more continua is inverse limits.

Definition 8. An inverse sequence is the sequence {Xi, fi}∞i=1, where the Xi are coordi-
nate spaces, fi : Xi+1 → Xi are bonding maps. The sequence is often written

X1
f1←− X2

f2←− X3
f3←− · · · .

The inverse limit, written lim
←
{Xi, fi}∞i=1, is defined as

lim
←
{Xi, fi}∞i=1 = {(xi)∞i=1 ∈

∞∏
i=1

Xi : fi(xi+1) = xi, for all i}
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Often, the inverse limit is often abbreviated to X∞ = lim
←
{Xi, fi}∞i=1. Similarly to

nested intersections, if all of the Xi are continua, then the inverse limit is a continuum as
well. If the Xi are compact metric spaces, then the inverse limit is also a compact metric
space.10

One example of a continuum that can be described by an inverse limit is the p-solenoid.
The coordinate spaces are each simple closed curves S2 and the bonding maps are each
f : x→ xp. This is homeormorphic to the geometric representation of a p-solenoid which
consists of nested torii which wrap around p times at each step.

3.3 Extra connectivity

Now, we will look at continua which have some ’extra strong’ connectedness. This will
allow us to find some elegant and strong results on these types of continua.

Definition 9. Let S be a topological space and p ∈ S. Then S is connected im kleinen
(cik) at p if every neighborhood of p contains a connected neighborhood of p.

Note that the neighborhoods in this definition are not necessarily open. The restriction
to open neighborhood leads to the next definition.

Definition 10. Let S be a topological space and p ∈ S. Then S is locally connected at
p if every open neighborhood of p contains a connected open neighborhood of p.

The difference between these two definitions can be seen at point P of the example
in Figure 9.11 Within each layer, there are countably many trapezoids are less than 1/2n

away from the largest trapezoid in the layer. Then this set is cik at P , since each closed
layer is connected. But it is not locally connected at P , since an open set containing a
layer would also contain the disconnected tops of the trapezoids of the next layer.

Figure 9

So when looking at individual points, these two definitions are different. But the next
theorem considers what happens globally for these two definitions.

10[13]
11[11]
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Theorem 3.2. Let S be a topological space.The following are equivalent:
(i) S is locally connected at every point.
(ii) the components of each open subset of S are open.
(iii) S is cik at every point.

3.4 Peano Continua

The class of continua that are locally connected at every point have a particularly strong
theorem, called the Hahn-Mazurkiewicz Theorem. First though, we will give a name to
this type of continua.

Definition 11. A metric space X is a Peano space if and only if
(i) X is locally connected at every point,
(ii) the components of each open subset of X are open, or
(iii) X is cik at every point.

A Peano continuum is a Peano space which is a continuum.

Theorem (Hahn-Mazurkiewicz). Every Peano continuum is a continuous image of
the closed interval [0, 1].

The proof of the Hahn-Mazurkiewicz Theorem will require a few lemmas first.

Lemma 3.3. For any compact metric space X, there exists a continuous map f from the
Cantor set onto X.

Proof. Choose finite covers A0,A1,A2, ... such that
(1) each A ∈ An is closed
(2) for all A ∈ An, diamA < 1/2n

(3) An+1 refines An.

Then make A0 = {A0
1, A

0
2, ..., A

0
k0
} disjoint by defining B0

i = A0
i × {i}. Let B0 =

k0⋃
i=1

B0
i

For A1 = {A1
1, A

1
2, ..., A

1
k1
}, if A1

j ⊂ A0
i , then define B1

ij = A1
j×{i}×{j}. Again, define

B1 to be the union of these disjoint sets.Then, define the bonding mapf1 : B1 → B0 by
f1(a, i, j) = f(a, i).

Continue to disjoint the An in the same manner. We have created an inverse sequence.
Create a second inverse sequence by setting Xn = X and identity bonding maps gn. Then
define maps hn : Bn → Xn by hn(a, i, j, ..., p) = a. With all of this we have the following
diagram:

B0
f1←−−− B1

f2←−−− B2
f3←−−− · · ·yh0 yh1 yh2

X0 ←−−−
g1

X1 ←−−−
g2

X2 ←−−−
g3

· · ·

Then X∞ = X and since each of the hn are continuous and onto, then h∞ is also
continuous and onto. B∞ is totally disconnected.

B∞ is not perfect, but B∞ × K is perfect (K is the Cantor set). Thus B∞ × K
is homeomorphic to K (since perfect and totally disconnected). Consider the following
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maps:
H : K → B∞ ×K , a homeomorphism
π : B∞ ×K → B∞ , a projection map (continuous and onto)

h∞ : B∞ → X∞ , continuous and onto
Φ : X∞ → X , a homeomorphism

Then f = Φh∞πH is a continuous and onto map from K to X.

We will need a few definitions for the next few lemmas.

Definition 12. Let X be a connected space and x ∈ X. If X \ {x} is not connected,
then x is a cut point. If X \ {x} is connected, then x is a non-cut point.

Definition 13. Let a and b be points in X. The image of a one-to-one continuous
mapping f : [0, 1]→ X, where f(0) = a and f(1) = b, is an arc.
If, for any x, y ∈ X, there exists an arc in X from x to y, then X is arc-connected.

Lemma 3.4. If M is a continuum with exactly two non-cut points, then M is an arc.

The proof of this Lemma involves defining a partial order on the cut points between
particular points p and q. Then it can be found that restricting to only the set of these
cut points and p and q results in a linear order. From there it is straightforward to define
a homeomorphism on a dense subset of M to the interval I = [0, 1].12

Lemma 3.5. Peano continua are arc-connected.

Proof. Let P be a Peano continuum and a, b distinct points in P . Since P is both
connected and locally connected, then there exists a simple chain C1 from a to b such
that C1 = {U11, U12, ..., U1k1} where each link U1i is connected, open, and has a diameter
less than 1.13

Define C∗1 =
⋃k1
i=1 U1i. Since each of the U1i is connected and U1i∩U1,i+1 6= ∅, then C∗1

is connected. For any x ∈ C∗1 , x is in at most two links of the chain C∞. So there exists
an open connected neighborhood Vx of x such that diamVx < 1/2 and Vx is completely
contained within the links that contain x. Since C∗1 is connected, it is possible to extract
from the family of Vx’s a simple chain from a to b. Name this chain C2 = {U21, ..., U2k2},
and repeat this product inductively such that if Uni is a link of Cn, then

(i) diamUni <
1

2n

(ii) Uni ⊂ Un−1,j, for some link Un−1,j ∈ Cn−1.
Let each

C∗n =
kn⋃
i=1

Uni

. Then each C∗n is a continuum and C∗n ⊂ C∗n−1, for all n. Thus

A =
∞⋂
n=1

C∗n

is a continuum.

12[3] , [13]
13[3]
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The next thing to show is that every point besides a and b are cut points.14 Let
x ∈ A \ {a, b}. Then x is contained in at most two links of Cn. Let Dn denote the union
of the links occurring before these two links and by En the union of the links occurring
after. Then (

⋃∞
n=1Dn) ∩ A and (

⋃∞
n=1En) ∩ A are a separation of A \ {x}. Thus x is a

cut point.
So A is an arc between a and b. Thus P is arc-connected.

Lemma 3.6. Let P is a Peano continuum and ε > 0. There exists a δ > 0 such that if
x, y ∈ P with d(x, y) < δ, then there exists an arc from x to y with diameter less than ε.

Proof. For each x ∈ P , let Vx be a connected open neighborhood of x lying in the ball
B(x, ε/5). Then the family of Vx’s is an open cover of P . Since P is compact, we can
refine this to a finite cover {V1, ..., Vn}.

Define Ai as the union of all the Vj such that the distance between the sets Vi and
Vj is greater than 0. Let δi = d(Vi, Ai) and δ = infAi 6=∅ δi. Since there are only finitely
many Vi, then δi is only zero if Ai = ∅. Thus δ > 0.

Choose an x, y ∈ P such that d(x, y) < δ. Without loss of generality, suppose that
x ∈ Vi. Since d(x, y) < δ, then y /∈ Ai. Either y ∈ Vi or y ∈ Vj where d(Vi, Vj) = 0.

If y ∈ Vi, then Vi is a Peano continuum containing x and y. Thus there is an arc
between x and y contained in the ball B(x, ε/5), which has a diameter less than ε.

If y ∈ Vj where d(Vi, Vj) = 0, then Vi ∪ Vj is a Peano continuum with a diameter less
than ε and which contains x and y. So there is an arc between x and y with a diameter
less than ε.

Finally, we arrive at the proof of our big theorem.15

Proof of Hahn-Mazurkiewicz Theorem. Suppose P is a Peano continuum. Then by Lemma
3.3, there exists a map f : K → P (K is the Cantor set). I \K consists of a countable
collection of disjoint open intervals, I = {I1, I2, ...}. Specify the intervals In by (an, bn).
Also, we can assume that I is linearly ordered by decreasing size.

If, for In, f(an) = f(bn), then extend f by defining f(x) = f(an), for all x ∈ In. If
f(an) 6= f(bn), then by Lemma 3.6, there exist δn corresponding to ε = 1

2n
such that if

d(x, y) < δn, then there exists an arc between x and y with diameter less than 1
2n

. Since f
is uniformly continous on K, 16 then for δn, one can choose a ηn such that if d(x, y) < ηn
for x, y ∈ K, then d(f(x), f(y)) < δn in P . We will choose the ηn such that η1 > η2 > . . ..

For all Ij that have a diameter greater than or equal to η1, denote by αj the arc in
P with a domain of [aj, bj] going from f(aj) to f(bj). Extend the map of f by setting
f(x) = αj(x) for all x ∈ [aj, bj].

If Ik is an interval such that η2 ≤ diam Ik < η1, then by choice of η1, there exists an
arc αk from f(ak) to f(bk) with a diameter less than 1

2
. Extend the map f onto αk just as

before. This process can be continued inductively. For each Im, where ηn+1 ≤ diam Im <
ηn, extend the map f from [am, bm] onto an arc with diameter less than 1

2n
. Denote the

finale extension as the map F .
Let ε > 0. Since f : K → P is uniformly continuous, there exists a δ > 0 such that

d(f(x), f(y)) < ε whenever d(x, y) < δ. Also, there exists some N such that 1
2N

< ε.
Then there are only finitely many Im such that diam Im > ηN . The arc αm in P is

14Every continuum has at least two non-cut points.[13]
15[3]
16Heine-Cantor Theorem: If f : M → N is continuous, M and N are metric spaces and M is compact,

then f is uniformly continuous. [12] Thm 27.6
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the image of Im and by Lemma 3.6, there exists a δm such that the diameter of the arc
between two points F (xm), F (ym) ∈ αm is less than ε, whenever d(xm, ym) < δm. Let δ∗

denote the minimum between δ, 1
2N

, and all the δm for which diam Im > ηN . By using δ∗,
F is shown to be uniformly continuous, and thus F is continuous.

3.5 Space-filling curves

In particular, we can utilize the Hahn-Mazurkiewicz Theorem to know that the product
space [0, 1] × [0, 1] is a continuous image of the interval [0, 1]. Unfortunately, the Hahn-
Mazurkiewicz Theorem does not give any information as to how this map is created. The
first map that accomplished this was described by Giuseppe Peano in 1890.17

These types of maps are classified as space-filling curves. Note that the interval [0, 1]
and the product space [0, 1]× [0, 1] have different topological dimensions. This does not
contradict the topological invariance of dimension, since this map does not have to be
one-to-one. In fact, it is necessarily not one-to-one, since the map will be continuous
and onto. Space-filling curves are not even limited to finite dimensions; the infinite
dimensional Hilbert cube is a Peano continuum.

The first three steps of the map that Peano described from [0, 1] onto the unit square
[0, 1]× [0, 1] are shown in Figure 10. To get from the first step to the second step of this
curve, cut the unit square into nine equal squares. By dividing the interval [0, 1] also into
nine parts, we can place a copy of the curve in the first step into each of these squares.
In the first interval [0, 1/9], map the first curve to the lower left square. In the second
interval, map a rotated version of the first curve into center left curve.

Figure 10

Continue this mapping to fill the other seven subsquares, rotating as needed to keep
the curve connected. Then this process can be continued further by subdividing the
square infinitely and the resulting map will be a continuous map from [0, 1] onto the unit
square [0, 1]× [0, 1].

17[2]
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4 Open Problems

Within the area of Continuum Theory, there are several open problems. These have been
collected for many years in a published collection, called the Houston Problem Book.18

More problems, including the one that we will be looking at are on the website ”Open
Problems in Continuum Theory.”19

4.1 Is every aposyndetic homogeneous curve mutually
aposyndetic?

Remember that a curve is a one-dimensional continuum.

Definition 14. A space X is said to be aposyndetic if for any two points x and y of X
there is a subcontinuum A such that x is in the interior of A and y is in the complement
of A.
A space X is mutually aposyndetic if for any two points x and y of X there are disjoint
subcontinuum A and B such that x is in the interior of A and y is in the interior of B.

Definition 15. A space X is homogeneous if for any two points p and q of X there exists
a homeomorphism h from X onto itself such that h(p) = q.

From an article by F. Burton Jones20, if a continuum in the plane is both homogeneous
and aposyndetic, then it is the simple closed curve, i.e., homeomorphic to a circle. Since
a simple closed curve is mutually aposyndetic, then any counterexample to this open
problem must be a curve that is not embeddable in the plane. Now we will define a term
which relates to aposyndetic.

Definition 16. A space X is said to be semi-locally-connected, written SLC, if for any
point x of X and neighborhood N of x, there exists an open subset V of N containing x
such that the complement of V in X has finitely many components.

When looking at a space locally, SLC is very different from aposyndetic. But the next
theorem shows that these are equivalent globally.

Theorem 4.1. A continuum is aposyndetic iff it is SLC.21

Proof. Suppose that X is aposyndetic and x ∈ X. Let N be a neighborhood of x. Then
x /∈ X −N .

If y ∈ X −N , define Uy to be a subcontinuum of X such that y ∈ IntUy and x /∈ Uy.
Then the collection of sets IntUy is an open cover of X −N . Since X −N is compact,
then the Uy’s can be reduced to a finite cover {U1, U2, ...Un}.

So V = ∩ni=1(X −Ui) is an open subset of N containing x such that X − V = ∪ni=1Ui
is a connected set. Thus X is SLC.

Suppose that X is SLC. Let x, y ∈ X and ε > 0 such that y /∈ B = B(x, ε).
So X − B is a neighborhood of y. Thus there exists an open subset V of X − B

containing y such that X − V has finitely many components. Since theses components

18[4]
19[14]
20[10]
21[9]
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are also closed and disjoint, then each of these components is open in X − V . Let A
be the component which contains x. Since x ∈ B and B ∩ V = ∅, then x is not in the
boundary of X − V .

So x ∈ IntA in X, y /∈ A, and A is connected and closed. Thus X is aposyndetic.

Next, we will introduce weak triods and a result about them.22

Definition 17. A continuumX is be the essential sum of the subcontinuaXi (1 ≤ i ≤ n),
written

X = X1 ⊕X2 ⊕ · · · ⊕Xn,

provided that

X =
n⋃
i=1

Xi and Xk 6⊂
⋃
i 6=k

Xi for each k = 1, ..., n.

Definition 18. A continuum X is called a weak triod provided that X = X1 ⊕X2 ⊕X3

where ∩3i=1Xi 6= ∅.

Theorem 4.2. If X = Y ⊕ Z and X is not a weak triod, then X − Y and X − Z are
connected.

Note that X = Y ⊕ Z is the same as saying X is a decomposable continuum. The
next theorem will show that aposyndetic continua are also decomposable.

Definition 19. A continuum X is said to be freely decomposable if for any two distinct
points x, y ∈ X, then X is the sum of two continua, neither of which contains both x and
y.

Theorem 4.3. Every aposyndetic continuum is freely decomposable.23

Clearly, a freely decomposable continuum is also decomposable. With the previous
work, we now arrive at our final theorem related to this open problem.

Theorem 4.4. If X is an aposyndetic continuum and not a weak triod, then X is mu-
tually aposyndetic.

Proof. Let X be an aposyndetic continuum and not a weak triod. Let a, b ∈ X. By
Theorem 4.3, there exist subcontinua Y and Z such that X = Y ⊕ Z with a ∈ Y and
b ∈ Z. Also, a /∈ Z and b /∈ Y .

By Theorem 4.2, X − Y and X − Z are connected. Also, note that a ∈ X − Z and
X − Z is open. Since X is SLC by Theorem 4.1, then there exists an open subset V of
X − Z whose complement has finitely many components. Also, choose V small enough
such that V ( X −Z. Denote the components of X −V by Ci, i = 1, ..., n. Without loss
of generality, let C1 be the component which contains b.

Define K = (X − Z) ∪ (∪ni=2Ci) and M = C1. Since X − Z is connected and the Ci
are closed and intersect the boundary of V 24, both K and M are subcontinua of X. So
X = K ⊕M and thus X −K and X −M are connected.

Also, b ∈ Int(Z) ∩ C1 ⊂ X −K and a ∈ V ⊂ X −M .

22[13] p 208
23[9]
24[13] p. 73
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Note that X −K = C1 − Int(K) and X −M = (∪ni=2Ci) ∪ V .
Since V ⊂ Int(K), and components are always disjoint, then X −K and X −M are

disjoint subcontinua of X. Also, a ∈ X −M and b ∈ X −K are open, so a and b are in
the respective interiors of X −M and X −K. Since a and b were chosen arbitrarily, X
is mutually aposyndetic.

So any counterexample to the open problem must be a weak triod. This means that
it must also contain a triod of type 3 and type 4.25

25[16]
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5 Appendix

5.1 Calculation

lim
n→∞

− log 2n

log

(
2n + 1

22n+1

) = lim
n→∞

log 2n

log

(
22n+1

2n + 1

)

= lim
n→∞

1

2n
· 2n · log 2

2n + 1

22n+1
·
(

((2n + 1) · 2 · 22n+1 · log 2)− (22n+1 · 2n · log 2)

(2n + 1)2

)
= lim

n→∞

log 2

(2n + 1) · 2 · log 2− 2n · log 2

2n + 1

= lim
n→∞

2n + 1

2n+1 − 2n + 2

= lim
n→∞

2n · log 2

2n+1 · log 2− 2n · log 2

= lim
n→∞

1

2− 1

= 1
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5.2 Translation of Sur une courbe cantorienne qui contient une
image biunivoque et continue de toute courbe donnée.

On a Cantor curve which contains a one-to-one and continuous image of any given curve.
Note by W. Sierpiński, presented by Émile Picard.26

The goal of this note is to construct a (planar) Cantor curve C0 such that, if C is a
given (planar) Cantor curve, there always exists a one-to-one and continuous image C ′

of the curve C where all of the points are points of the curve C0.
The curve C0 will be defined as follows. Let Q be a given square, for example the

square whose vertices are the points (0, 0), (0, 1), (1, 0) and (1, 1). Divide the square Q
into nine smaller squares and exclude the interior of the one which contains the center of
the square Q. For each of the eight remaining squares, do the same process ad infinitum.
Together, all of the points of Q which are not excluded obviously constitute a Cantor
line; this is the curve C0.

Let C now be an arbitrarily given Cantor curve: I claim that there exists a curve
C ′, completely contained within C0, which is the one-to-one and continuous image of the
curve C. To demonstrate this, it is obvious that it suffices to show that there exists a
curve K which is a one-to-one and continuous image of the curve C0 and which contains
all of the points of the curve C.

To define the curve K, first construct a square U such that the curve C is contained
in the interior of U . Like the coordinates axes, take the sides of the square U . Divide
the square U into nine new squares: let V be the one of them which contains the center
of the square U .

We say, to be brief, that a rectangle R has the property P , if the sides are parallel to
the coordinate axes and it does not contain any point of the curve C in its interior.

Let R be a rectangle that has the property P which is in the interior of the square
V (such a rectangle obviously exists, since the curve C is nowhere dense in the plane).
Denote by x1, the abscissa27 of the left side of the rectangle R; by x2 for the right side;
by y1 the ordinate28 of the bottom, and by y2 for the top. Also set x0 = 0, y0 = 0. The
four lines

x = x1, x = x2, y = y1, y = y2

divide the square U into 9 rectangles whose lower left points are (xα, yβ)(α = 0, 1, 2; β =
0, 1, 2); we denote by Uα,β the rectangle which has the point (xα, yβ) in the lower left
(obviously, we have that U1,1 = R). Divide each of the nine rectangles Uα,β into nine
equal rectangles; let Vα,β always be the one which contains the center of the rectangle
Uα,β.

We are going to now construct nine rectangles Sα,β that have the property P . In
general, if σ denotes a symbol defining a rectangle Sσ having sides that are parallel to the
coordinate axes, we will always denote by x′σ the abscissa of the left side of the rectangle
Sσ, by x′′σ the abscissa of the right side, by y′σ the ordinate of the bottom and by y′′σ for
the top.

The nine rectangles Sα,β will now be defined by recursion as follows. In the interior
of Vα,β, we will choose a rectangle Sα,β having the property P at contained in one part
between the parallel lines y = y′α−1,β, y = y′′α−1,β and the other part between the parallel

26[15]
27the perpendicular distance from a point to the vertical axis, ie, the horizontal coordinate
28the perpendicular distance from a point to the horizontal axis, ie, the vertical coordinate
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lines x = x′α,β−1, x = x′′α,β−1 (if α = 0 or β = 0, one can omit one or the other of these
conditions). We have

xα1 = x′α,2, xα2 = x′′α,2, yβ1 = y′2,β, yβ2 = y′′2,β, (α = 0, 1, 2; β = 0, 1, 2)

and we denote by Rα,β the rectangle formed by the lines

x = xα1 , x = xα2 , y = yβ1 , y = yβ2 .

One easily sees that the rectangle Rα,β will be contained in Sα,β; thus it does not contain
any point of the curve C in its interior. We also have

xα0 = xα, yβ0 = yβ (α, β = 0, 1, 2).

The lines
x = xα1α2 , y =β1β2 (α1, α2, β1, β2 = 0, 1, 2)

divide the square U into 81 rectangles whose lower left points are (xα1α2 , yβ1β2); we denote
by Uα1α2,β1β2 the rectangle whose lower left is the point (xα1α2 , yβ1β2).

We now suppose that we have already defined the rectangles

Sα1α2...αn−1,β1β2...βn−1 and Uα1α2...αn,β1β2...βn (α1, α2, ..., αn, β1, β2, ..., βn = 0, 1, 2).

Divide each of these rectangles Uα1α2...αn,β1β2...βn into nine equal rectangles and let
Vα1...αn,β1...βn always be the one in the middle.

The indices α1, α2, ..., αn, β1, β2, ..., βn have been given, we denote by Uγ1...γn,β1...βn
the rectangles Uξ1...ξn,η1...ηn whose right edge coincides with the left edge of rectangle
Uα1...αn,β1...βn and by Uα1...αn,δ1...δn the ones whose top edge coincides with the bottom
edge of rectangle Uα1...αn,β1...βn .

In the interior of the rectangle Vα1...αn,β1...βn we find a rectangle Sα1...αn,β1...βn which
possesses property P and is contained in one part between the parallels y = y′γ1...γn,β1...βn
and y = y′′γ1...γn,β1...βn and in the other part between the parallels x = x′α1...αn,δ1...δn

and
x = x′′α1...αn,δ1...δn

. (In the case α1 = ... = αn = 0 omit the first condition and in the case
β1 = ... = βn = 0, the other.) The rectangles Sα1...αn,β1...βn will thus be determined by
recurrence. We have

xα1...αn1 = x′α1...αn2...2, xα1...αn2 = x′′α1...αn2...2

yβ1...βn1 = y′2...2β1...βn , yβ1...βn2 = y′′2...2β1...βn

and we denote by Rα1...αn,β1...βn a rectangle formed by the lines

x = xα1...αn1, x = xα1...αn2, y = yβ1...βn1, y = yβ1...βn2.

The lines

x = xα1...αnαn+1 , y = yβ1...βnβn+1 , (α1, ..., αn+1, β1, ..., βn+1 = 0, 1, 2)

divide the square U into 32n+2 rectangles whose bottom left sides are respectively the
points (xα1...αn+1 , yβ1...βn+1) : which we respectively denote by Uα1...αn+1,β1...βn+1 .

Thus, having already defined (for a given value n) the rectangles Uα1...αn,β1...βn , we can
always define the rectangles Uα1...αn+1,β1...βn+1 .

We now exclude from the square U the interior of the rectangle R and of all the
rectangles Rα1...αn,β1...βn(α1, ..., αn, β1, ..., βn = 0, 1, 2;n = 1, 2, 3, ...). We denote by K the
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set of all the points of square U which remain : this is obviously a Cantor curve and any
point of the curve C is a point of the curve K.

Now let t be an element of the interval (0, 1) and

t = (0.c1c2c3...)3

be the representation of the fraction in base 3. We have

ϕ(t) = lim
n=∞

xc1c2...cn , ψ(t) = lim
n=∞

yc1c2...cn .

One easily sees that the functions ϕ(t) and ψ(t) are well-defined in the interval (0, 1) and
that in this interval they are continuous and increasing functions of the variable t.

By making the correspondence of any point (x, y) of the curve C0 to the point
[ϕ(x), ψ(y)] of the curve K, we have, as one easily sees, a one-to-one and continuous
map from the curve C0 to the curve K. The property of the curve C0 is thus demon-
strated.

We remark that we have demonstrated, as observed by M. E. Mazurkiewicz, that any
point of C0 is a ramification point of infinite order.
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