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On a Cantor curve which contains a one-to-one and continuous image
of any given curve.

Note by W. Sierpiński, presented by Émile Picard.

The goal of this note is to construct a (planar) Cantor curve C0 such that,
if C is a given (planar) Cantor curve, there always exists a one-to-one and
continuous image C ′ of the curve C where all of the points are points of the
curve C0.

The curve C0 will be defined as follows. Let Q be a given square, for example
the square whose vertices are the points (0, 0), (0, 1), (1, 0) and (1, 1). Divide the
square Q into nine smaller squares and exclude the interior of the one which
contains the center of the square Q. For each of the eight remaining squares, do
the same process ad infinitum. Together, all of the points of Q which are not
excluded obviously constitute a Cantor line; this is the curve C0.

Let C now be an arbitrarily given Cantor curve: I claim that there exists a
curve C ′, completely contained within C0, which is the one-to-one and continu-
ous image of the curve C. To demonstrate this, it is obvious that it suffices to
show that there exists a curve K which is a one-to-one and continuous image of
the curve C0 and which contains all of the points of the curve C.

To define the curve K, first construct a square U such that the curve C is
contained in the interior of U . Like the coordinates axes, take the sides of the
square U . Divide the square U into nine new squares: let V be the one of them
which contains the center of the square U .

We say, to be brief, that a rectangle R has the property P , if the sides are
parallel to the coordinate axes and it does not contain any point of the curve C
in its interior.

∗All footnotes have been added by the translator. This is a rough translation of the article
by this name published in the ’Comptes Rendus De L’Academie Sciences’ in 1916. It can be
found at gallica.bnf.fr/ark:/12148/bpt6k3115n/
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Let R be a rectangle that has the property P which is in the interior of the
square V (such a rectangle obviously exists, since the curve C is nowhere dense
in the plane). Denote by x1, the abscissa1 of the left side of the rectangle R; by
x2 for the right side; by y1 the ordinate2 of the bottom, and by y2 for the top.
Also set x0 = 0, y0 = 0. The four lines

x = x1, x = x2, y = y1, y = y2

divide the square U into 9 rectangles whose lower left points are (xα, yβ)(α =
0, 1, 2;β = 0, 1, 2); we denote by Uα,β the rectangle which has the point (xα, yβ)
in the lower left (obviously, we have that U1,1 = R). Divide each of the nine
rectangles Uα,β into nine equal rectangles; let Vα,β always be the one which
contains the center of the rectangle Uα,β .

We are going to now construct nine rectangles Sα,β that have the property
P . In general, if σ denotes a symbol defining a rectangle Sσ having sides that
are parallel to the coordinate axes, we will always denote by x′σ the abscissa of
the left side of the rectangle Sσ, by x′′σ the abscissa of the right side, by y′σ the
ordinate of the bottom and by y′′σ for the top.

The nine rectangles Sα,β will now be defined by recursion as follows. In
the interior of Vα,β , we will choose a rectangle Sα,β having the property P at
contained in one part between the parallel lines y = y′α−1,β , y = y′′α−1,β and the
other part between the parallel lines x = x′α,β−1, x = x′′α,β−1 (if α = 0 or β = 0,
one can omit one or the other of these conditions). We have

xα1
= x′α,2, xα2

= x′′α,2, yβ1
= y′2,β , yβ2

= y′′2,β

where α = 0, 1, 2;β = 0, 1, 2 and we denote by Rα,β the rectangle formed by the
lines

x = xα1
, x = xα2

, y = yβ1
, y = yβ2

.

One easily sees that the rectangle Rα,β will be contained in Sα,β ; thus it does
not contain any point of the curve C in its interior. We also have

xα0 = xα, yβ0 = yβ

where α, β = 0, 1, 2. The lines

x = xα1α2 , y =β1β2 (α1, α2, β1, β2 = 0, 1, 2)

divide the square U into 81 rectangles whose lower left points are (xα1α2
, yβ1β2

);
we denote by Uα1α2,β1β2

the rectangle whose lower left is the point (xα1α2
, yβ1β2

).
We now suppose that we have already defined the rectangles

Sα1α2...αn−1,β1β2...βn−1
and Uα1α2...αn,β1β2...βn

where α1, α2, ..., αn, β1, β2, ..., βn = 0, 1, 2.

1the perpendicular distance from a point to the vertical axis, ie, the horizontal coordinate
2the perpendicular distance from a point to the horizontal axis, ie, the vertical coordinate
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Divide each of these rectangles Uα1α2...αn,β1β2...βn
into nine equal rectangles

and let Vα1...αn,β1...βn
always be the one in the middle.

The indices α1, α2, ..., αn, β1, β2, ..., βn have been given, we denote by
Uγ1...γn,β1...βn

the rectangles Uξ1...ξn,η1...ηn whose right edge coincides with the
left edge of rectangle Uα1...αn,β1...βn and by Uα1...αn,δ1...δn the ones whose top
edge coincides with the bottom edge of rectangle Uα1...αn,β1...βn .

In the interior of the rectangle Vα1...αn,β1...βn
we find a rectangle

Sα1...αn,β1...βn
which possesses property P and is contained in one part between

the parallels y = y′γ1...γn,β1...βn
and y = y′′γ1...γn,β1...βn

and in the other part
between the parallels x = x′α1...αn,δ1...δn

and x = x′′α1...αn,δ1...δn
. (In the case

α1 = ... = αn = 0 omit the first condition and in the case β1 = ... = βn = 0,
the other.) The rectangles Sα1...αn,β1...βn will thus be determined by recurrence.
We have

xα1...αn1 = x′α1...αn2...2, xα1...αn2 = x′′α1...αn2...2

yβ1...βn1 = y′2...2β1...βn
, yβ1...βn2 = y′′2...2β1...βn

and we denote by Rα1...αn,β1...βn
a rectangle formed by the lines

x = xα1...αn1, x = xα1...αn2, y = yβ1...βn1, y = yβ1...βn2.

The lines

x = xα1...αnαn+1
, y = yβ1...βnβn+1

, (α1, ..., αn+1, β1, ..., βn+1 = 0, 1, 2)

divide the square U into 32n+2 rectangles whose bottom left sides are respec-
tively the points (xα1...αn+1 , yβ1...βn+1) : which we respectively denote by
Uα1...αn+1,β1...βn+1 .

Thus, having already defined (for a given value n) the rectangles
Uα1...αn,β1...βn

, we can always define the rectangles Uα1...αn+1,β1...βn+1
.

We now exclude from the square U the interior of the rectangle R and of
all the rectangles Rα1...αn,β1...βn(α1, ..., αn, β1, ..., βn = 0, 1, 2;n = 1, 2, 3, ...).
We denote by K the set of all the points of square U which remain : this is
obviously a Cantor curve and any point of the curve C is a point of the curve
K.

Now let t be an element of the interval (0, 1) and

t = (0.c1c2c3...)3

be the representation of the fraction in base 3. We have

ϕ(t) = lim
n=∞

xc1c2...cn , ψ(t) = lim
n=∞

yc1c2...cn .

One easily sees that the functions ϕ(t) and ψ(t) are well-defined in the interval
(0, 1) and that in this interval they are continuous and increasing functions of
the variable t.

By making the correspondence of any point (x, y) of the curve C0 to the
point [ϕ(x), ψ(y)] of the curve K, we have, as one easily sees, a one-to-one and
continuous map from the curve C0 to the curve K. The property of the curve
C0 is thus demonstrated.

We remark that we have demonstrated, as observed by M. E. Mazurkiewicz,
that any point of C0 is a ramification point of infinite order.
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