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On a Cantor curve which contains a one-to-one and continuous image
of any given curve.

Note by W. Sierpinski, presented by Emile Picard.

The goal of this note is to construct a (planar) Cantor curve Cy such that,
if C is a given (planar) Cantor curve, there always exists a one-to-one and
continuous image C' of the curve C where all of the points are points of the
curve C.

The curve Cy will be defined as follows. Let @) be a given square, for example
the square whose vertices are the points (0, 0), (0,1), (1,0) and (1,1). Divide the
square (Q into nine smaller squares and exclude the interior of the one which
contains the center of the square ). For each of the eight remaining squares, do
the same process ad infinitum. Together, all of the points of ) which are not
excluded obviously constitute a Cantor line; this is the curve Cj.

Let C now be an arbitrarily given Cantor curve: I claim that there exists a
curve C’, completely contained within Cj, which is the one-to-one and continu-
ous image of the curve C. To demonstrate this, it is obvious that it suffices to
show that there exists a curve K which is a one-to-one and continuous image of
the curve Cy and which contains all of the points of the curve C.

To define the curve K, first construct a square U such that the curve C is
contained in the interior of U. Like the coordinates axes, take the sides of the
square U. Divide the square U into nine new squares: let V' be the one of them
which contains the center of the square U.

We say, to be brief, that a rectangle R has the property P, if the sides are
parallel to the coordinate axes and it does not contain any point of the curve C'
in its interior.
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Let R be a rectangle that has the property P which is in the interior of the
square V (such a rectangle obviously exists, since the curve C is nowhere dense
in the plane). Denote by z1, the abscissa! of the left side of the rectangle R; by
x5 for the right side; by y; the ordinate? of the bottom, and by - for the top.
Also set zg = 0, yo = 0. The four lines

T =T, T = T2, Y=Y, Yy=1Y2

divide the square U into 9 rectangles whose lower left points are (zq,ys)(a =
0,1,2; 8 =0,1,2); we denote by U, s the rectangle which has the point (z4,y3)
in the lower left (obviously, we have that U3 ;1 = R). Divide each of the nine
rectangles U, g into nine equal rectangles; let V, g always be the one which
contains the center of the rectangle U, g.

We are going to now construct nine rectangles S, g that have the property
P. In general, if 0 denotes a symbol defining a rectangle S, having sides that
are parallel to the coordinate axes, we will always denote by z/ the abscissa of
the left side of the rectangle S,, by ] the abscissa of the right side, by y/ the
ordinate of the bottom and by y/ for the top.

The nine rectangles S, 3 will now be defined by recursion as follows. In
the interior of V, g, we will choose a rectangle S, g having the property P at
contained in one part between the parallel lines y = y;,_; 5,y =y, _; 5 and the
other part between the parallel lines z =z, 5 |,z =1, 5 ; (ifa=0o0r =0,
one can omit one or the other of these conditions). We have

Tay = To2  Taz =Tao,  Yp =Ysp  Ys = Yap
where o = 0,1,2; 8 =0, 1,2 and we denote by R, s the rectangle formed by the
lines

x:xa17 x:xaza y:yﬂla y:y,ﬂz

One easily sees that the rectangle R, g will be contained in S, g; thus it does
not contain any point of the curve C' in its interior. We also have

Loy = Ta, Yy = Yp
where a, 8 = 0,1,2. The lines
T = Toayans Y =818 (a17a27617ﬁ2 2071,2)

divide the square U into 81 rectangles whose lower left points are (T, s, Y18, );
we denote by Uy, o, 8, 8, the rectangle whose lower left is the point (o, 0y, ¥s1 8, )-
We now suppose that we have already defined the rectangles

Sa1a2~-an7175152~~,3n—1 and Uala2‘-»an’ﬁlﬁ2~~6n

where aq, a2, ..., On, 61752) ) B’n =0,1,2.

lthe perpendicular distance from a point to the vertical axis, ie, the horizontal coordinate
2the perpendicular distance from a point to the horizontal axis, ie, the vertical coordinate



Divide each of these rectangles Uy, qas...a0,818s...3, into nine equal rectangles
and let Vi, . .o, 8:...8, always be the one in the middle.

The indices ai,as,...,an, B1, B2, ..., Bn have been given, we denote by
Uy, ..vn.5:...8, the rectangles Ug, ¢, n,..n, Whose right edge coincides with the
left edge of rectangle Uy, ..a,.6,...8, and by Ua, .. .a,,5,..5, the ones whose top
edge coincides with the bottom edge of rectangle Uy, . .4, 8;...8, -

In the interior of the rectangle Vi, . .a,...5, we find a rectangle
Saq...an,p1...8, Which possesses property P and is contained in one part between
the parallels y =y, 5 5 andy =y  _ 5 5 andin the other part
between the parallels z = x, , s s andz =a; . 5 5. (Inthe case
a1 = ... = a, = 0 omit the first condition and in the case g, = ... = 3, = 0,
the other.) The rectangles S, ...a,.4:..5, Will thus be determined by recurrence.
We have

— / _ "
xalu'anl - xal...a"2...2? "I"Uél‘na'n,2 - xal‘..an2...2
— ) — a0
Ypy..8n1 = Y2..28,..8, Ypy..802 = Y2..28,..8,

and we denote by R,,.. a, 8..8, @ rectangle formed by the lines

T=2Tay..anly, T =Taj..an2y Y =Ypi..Bals Y =YBi..8,2
The lines

T = xal...(xnanJru y= yﬁl-uﬂnﬂypru (Oél, vy g1, /617 "'7Bn+1 = 07 17 2)

divide the square U into 32"*2 rectangles whose bottom left sides are respec-
tively the points (Ta,..anii>¥B:...8.0,) @ Wwhich we respectively denote by
U(¥1~~an+1,51~-,3n+1'

Thus, having already defined (for a given value n) the rectangles
Uai...an 61...8,» We can always define the rectangles Uy, ...ap 1818051

We now exclude from the square U the interior of the rectangle R and of

all the rectangles R, . o, 8.8, (X1 Qny B, B = 0,1,2;n = 1,2,3,..).
We denote by K the set of all the points of square U which remain : this is
obviously a Cantor curve and any point of the curve C' is a point of the curve
K.

Now let ¢ be an element of the interval (0,1) and
t = (0.c1cac3...)3
be the representation of the fraction in base 3. We have
p(t) = Im zeye, e, () = M yere, e,

One easily sees that the functions ¢(t) and ¥ (t) are well-defined in the interval
(0,1) and that in this interval they are continuous and increasing functions of
the variable ¢.

By making the correspondence of any point (z,y) of the curve Cy to the
point [¢(x),1(y)] of the curve K, we have, as one easily sees, a one-to-one and
continuous map from the curve Cy to the curve K. The property of the curve
Cy is thus demonstrated.

We remark that we have demonstrated, as observed by M. E. Mazurkiewicz,
that any point of Cj is a ramification point of infinite order.



