Progress in Polysiloxane Organic Scintillators

Mackenzie Duce LANNS Symposium May 12, 2023

Nal(TI) detector

Nal(TI) detector

Metrics: Light Yield

- Light yield: Photons emitted by scintillator per absorbed energy
 - Convention: 50% of Compton peak

LABORATORY FOR ADVANCED NUCLEAR NONPROLIFERATION AND SAFETY

Alternative: Location of most derivative

6

Scintillators

Metrics: Pulse Shape Discrimination

• Pulse shape discrimination (PSD)

 $PSD = \frac{Q_{tail}}{Q_{total}}$

• PSD ε [0,1]

LABORATORY FOR ADVANCED NUCLEAR NONPROLIFERATION AND SAFETY

Ellis et al, Pulse Shape Discrimination for Homeland Security Applications, 2016

When do we use plastic (organic) scintillators?

Organic scintillator for real-time neutron dosimetry

 KA Beyer, A Di Fulvio, L Stolarczyk... - ... protection dosimetry, 2018 - academic.oup.com

 ... an organic scintillator for spectrometry and dosimetry of out-of-field secondary neutrons from

 clinical proton beams. The detector consists of an EJ-299-34 crystalline organic scintillator, ...

 ☆ Save 59 Cite Cited by 8 Related articles All 8 versions ≫

Warhead verification as inverse problem: **Applications** of neutron spectrum unfolding from **organic-scintillator** measurements

CC Lawrence, <u>M Febbraro</u>, M Flaska... - Journal of Applied ..., 2016 - aip.scitation.org ... -spectrum unfolding with **organic** scintillation detectors, with an aim at future **applications** in the ... The unfolding capability of three different **organic scintillators** will be compared—the ... ☆ Save 55 Cite Cited by 22 Related articles All 5 versions ≫

[HTML] Digital pulse shape discrimination in organic scintillators for fusion applications

B Esposito, Y Kaschuck, A Rizzo, L Bertalot... - Nuclear Instruments and ..., 2004 - Elsevier

... Stilbene and NE213 organic scintillators are commonly used for neutron and y-ray detection

... The importance of DPSD for fusion applications and its advantages with respect to analog ...

☆ Save 55 Cite Cited by 77 Related articles All 9 versions ⇒

[HTML] Real-time source localisation by passive, fast-neutron time-of-flight with **organic scintillators** for facility-installed **applications**

V Astromskas, SC Bradnam, <u>LW Packer</u>... - Nuclear Instruments and ..., 2021 - Elsevier Fast neutron time-of-flight (ToF) has been used to characterise the location of a source of a mixed radiation field. Two EJ-309 **organic scintillators** and a fast, digital, data acquisition ...

☆ Save 59 Cite Cited by 3 Related articles All 3 versions ⇒>>

[HTML] Organic scintillators with long luminescent lifetimes for radiotherapy dosimetry

AR Beierholm, LR Lindvold, CE Andersen - Radiation measurements, 2011 - Elsevier

- ... the application of temporal stem signal removal for fibre-coupled organic scintillators seems
- ... dose measurements is insufficient if the scintillator luminescent lifetime is not significantly ...
- ☆ Save 55 Cite Cited by 9 Related articles All 8 versions ⇒>>

Aren't we done with scintillator science?

Aren't we done with scintillator science?

Stability Issues in Plastic (PVT) Scintillators

Zaitseva, NIMA

- Eljen plastic scintillators made with PVT plastic matrix
- PVT requires overloading of dopant -> poor stability
- **30%** decrease in light yield in 6 months

Georgia Tech

Polysiloxane Scintillators as an Alternative

	PVT	Polysiloxane
Transparency	Yes	Yes
Physical Properties	Hard, rigid	Variable
Radiation Hardness	No	Yes
Thermal Stability	No	Yes
Fabrication	5 days, air sensitive	3hrs, in air
PSD	@ 20wt% dopant	@ 5wt% dopant
TRL	9, deployed	4-5, lab work

https://www.sciencedirect.com/science/article/pii/S0254058412009376?via%3Dihub

Improving Polysiloxane Scintillators

• Goals:

- Short processing time (3h in air)
- Long term stability
- Good pulse shape discrimination (PSD)
- High light yield (LY)

ACS APPLIED POLYMER MATERIALS

Polysiloxane Scintillators for Efficient Neutron and Gamma-Ray Pulse Shape Discrimination

Allison Lim, Jonathan Arrue, Paul B. Rose, Alan Sellinger*, and Anna S. Erickson*

13

LABORATORY FOR ADVANCED NUALE LEIM, J. Arrue, P. Rose, A. Sellinger,, A. Erickson, ACS Appl. Polym. Mater., 2020, 2, 8, 3657-3662

Improving Polysiloxane Scintillators: Boron Loading

• Goals:

- Short processing time (3h in air)
- Long term stability
- Good pulse shape discrimination (PSD)
- High light yield (LY)
- Construct a three particle imager

ACS APPLIED POLYMER MATERIALS

Polysiloxane Scintillators for Efficient Neutron and Gamma-Ray Pulse Shape Discrimination

Allison Lim, Jonathan Arrue, Paul B. Rose, Alan Sellinger*, and Anna S. Erickson*

14

Aboratory for advanced nucle Lim, J. Arrue, P. Rose, A. Sellinger,, A. Erickson, ACS Appl. Polym. Mater., 2020, 2, 8, 3657-3662

Boron Loading

Boron-10 enriched molecules

¹A. Mahl, H.A. Yemam, R. Fernando, J.T. Koubek, A. Sellinger, U. Greife, NIM A, 2018, 880, 1-5

Metrics: PSD/FOM

Pulse shape discrimination (PSD)

$$PSD = \frac{Q_{tail}}{Q_{total}}$$

• PSD ∈ [0,1]

- *S* = separation of n and gamma lobe
- Figure of merit (FoM)

$$FOM = \frac{S}{FWHM_{\gamma} + FWHM_{n}}$$

• "Efficient" FOM at 1.27

Successful Thermal Neutron Sensitivity

			Therm	al Neutr	on Islai	nd FoM		~550keV FoM			
		Gamr Thern	na- nal	Fast- Therm	al	Gamr Fast	na-	Gamma-Fast			
B-10	Matrix	5% PHF	5% PPO	5% PHF	5% PPO	5% PHF	5% PPO	5% PHF	5% PPO		
5%	KER6000	0.56	0.57	0.34	0.36	0.85	0.85	1.09	0.81		
Phenyl	Wacker	х	0.47	x	0.36	x	0.76	0.69	x		
40/ 7.1.1	KER6000	0.58	x	0.38	x	0.89	x	1.17	0.78		
4% I OIYI	Wacker	х	x	x	x	0.34	0.36	0.64	0.62		
5%	KER6000	0.58	0.61	0.35	0.35	0.85	0.89	1.10	1.21		
Trifluoro	Wacker	x	0.45	x	0.36	x	0.73	0.56	0.69		

Boron-Doped Polysiloxanes: Light Yield

		Light (%EJ	Yield 200)
B-10 enriched molecule	Matrix	5% PHF	5% PPO
5% Dhonyl	KER6000	53	45
5% Filenyi-	Wacker	49	45
49/ Tobal	KER6000	62	39
4 % 101yi-	Wacker	39	23
EQ/ Trifluoro	KER6000	55	51
	Wacker	39	33

Georgia Tech

Best Array Candidate: Tolyl-, KER6000, PHF

- Thermal Island FOM:
 - Gamma-Thermal: 0.58
 - Fast-Thermal: 0.38
 - Gamma-Fast: 0.89
- Cs-137 Compton Edge FOM:
 1.17

19

Georgia

• LY: 62% EJ200

Best Array Candidate: Tolyl-, KER6000, PHF

- Thermal Island FOM:
 - Gamma-Thermal: 0.58
 - Fast-Thermal: 0.38
 - Gamma-Fast: 0.89
- Cs-137 Compton Edge FOM:
 - 1.17
- LY: 62% EJ200
- Challenge: Separating contributions from each particle

Gaussian Mixture Model: Fitting Routine

Phenyl, KER6000, PHF

Gate	Means	Stds	FWHMs	FoM	R^2
69	0.191, 0.300	0.019, 0.024	0.044, 0.064	1.08	0.96
70	0.180, 0.288	0.019, 0.023	0.044, 0.055	1.09	0.95
71	0.180, 0.288	0.019, 0.023	0.044, 0.055	1.09	0.95
72	0.170, 0.275	0.018, 0.023	0.043, 0.055	1.09	0.93

Thermal Neutron Island: 3 Gaussians

- Fit results for Phenyl, KER6000, PhF sample's thermal neutron island.
- FOMs

LABORATORY FOR ADVANCED NUCLEA NONPROLIFERATION AND SAFETY

- nfast, nthermal = 0.59 +/- 0.01
- nfast, gamma = 0.84 +/- 0.01
- nthermal, gamma = 0.37 +/- 0.01

Conclusions & Future Work

Conclusions

- Found a good scintillator candidate for three particle imaging
- Developed strategy for separating particle contributions
- New samples for array construction have arrived

Future Work

- Construct array, physically
- Particle separation strategy may need to account for gamma from boron-capture interaction
- Error of GMM must be more closely examined
- Develop training set and keep GMM through iterations
- Implement Luke Maloney's image reconstruction algorithm

Thank you

- LANNS group members supporting polysiloxane work
 - Alex England
 - Ian Schreiber
 - Jana Shade
 - Pierre O'Driscoll
 - Anna Schafer
 - Dr. Anna Erickson
 - Dr. Yuguo Tao
- Caleb Chandler, Dr. Allen Sellinger

Light Yield – Compton Edge

Clustering

KER6000

Wacker

CSM-GT Polysiloxanes (Matrices)

• Polymer resins used:

- Wacker Lumisil 579
 - LED encapsulant
- Shin-Etsu KER-6000
 - LED encapsulant
- Wacker SILRES H62C
 - electronics encapsulant

			EXTR	A SOI	FT			SOFT	9	ME	DIUM OFT	/	NEDIU HARD	M		HAR	D			EXTRA	HARD	
SHORE 00	0	10	20	30	40	5	0	60	70	80)	90		100						_		
SHORE A						0	10	20	30	40	50	60	70	8	BO	90		100				
SHORE D												0	10 2	20 3	0	40	50	60	70	80	90	100
																			_			
	0						()	\sum					A CAN		1			5				
	'GU	MMI' JE CANDY	LLY	GEL	SHOE	_	RUBB	ER BAND	PENCI	L ERASER		TIRE T	READ	SH	IOE HEE	EL	SHOPP W	ING CART HEEL		HARD H	AT	

R.I.

1.53

1.51

1.50

Wacker 579

KER-6000

SilRes H62C

Hardness

25 Shore A

22 Shore A

65 Shore D

-	and the	-		
	No.	1		-
14	4		12	No.
1	5		21	1
<		and and a	= 1	12
100	-		2	

Mix

2-component

2-component

1-component

Cure

150 °C / 1 hr

150 °C / 10 hr

100 °C / 1 hr, 150 °C / 2 hr

CSM-GT Polysiloxanes (Dopants)

- Primary dopants (fluorophore):
 - 9,9-dimethyl-2-phenyl-9H-fluorene (PHF) : Custom fluorophore developed by Colorado
 - 2,5-diphenyloxazole (PPO) : Industry-standard fluorophore
- Secondary dopant (wavelength shifter):
 - 9,9-dimethyl-2,7-distyryl-9H-fluorene (SFS)

Fabrication Process (Colorado School of Mines)

• Thanks: Caleb Chandler, Alan Sellinger

Add xylenes

add Part A, mix, add Part B

Vortex, then cure at 150 C for 3 hrs in air

Common Fabrication Issues

Dopant Precipitation on Surface

Internal Precipitation

<image>

Cracked

Surface Coloration

Air Bubbles Trapped

Ion quenching in boron-doped organic scintillators

¹³⁷Cs Compton Edge Comparison

Figure 2: Number of counts vs uncalibrated pulse area in scintillating PVT based samples as measured through exposure to a 137 Cs γ -source using the same PMT bias value.

35

Georgia

Neutron Capture Cross Section

36

Georgia Tech

Energy levels of an organic molecule with pi-electron structure

