Investigation of Next-generation Silicon Radiation Detectors Enabled by Tunnel Oxide Passivating Contact

Yuguo Tao

2023 LANNS Symposium

May 12, 2023

LANNS

Silicon Radiation Detectors

Advantages (vs typical gas-filled detectors)

- ✓ Good energy resolution
- ✓ Fast timing characteristics
- ✓ Compactness and ruggedness

Applications

- Alpha particle spectroscopy
- Heavy ion and fission fragment spectroscopy
- Energy loss measurements particle identification
- X-ray spectroscopy
- Personnel monitors

http://bnl.gov

Alpha Particle X-Ray Spectrometer (APXS) <u>www.nasa.gov</u>

Configurations

- Diffused junction detectors
- Surface barrier detectors
- Fully depleted detectors
- Passivated planar detectors
- Position-sensitive detectors _

heavily doped *p*⁺ and *n*⁺ regions ("dead" areas or layers)

www.mirion.com

micronsemiconductor.co.uk

Operating Mechanism of Conventional Silicon Detectors

Gr Georgia Tech

The Leaking Bucket Story

Fix the "Leaking Bucket": Reduce the Carrier Recombination by Tunnel Oxide Passivating Contact

Operating Principle of Tunnel Oxide Passivating Contact

Lee, Wen-Chin, et al., IEEE Transactions on Electron Devices 48, no. 7 (2001): 1366-1373. Glunz, Stefan W., et al., Progress in Photovoltaics: Research and Applications (2021). Hollemann, Christina, et al., Progress in Photovoltaics: Research and Applications 27, no. 11 (2019): 950-958.

Tunneling ---- Quantum Tunneling, or Barrier Penetration

It is a quantum mechanical phenomenon in which an object such as an electron passes through a potential energy barrier that, according to classical mechanics, the object does not have sufficient energy to surmount.

The wider the barrier and the higher the barrier energy, the lower the probability of tunneling.

Fabrication of Tunnel Oxide Passivating Contact

(SC: Standard Clean)

Fabrication of Tunnel Oxide Passivating Contact (cont.)

Growth of phosphorus doped (n^+) and boron doped (p^+) amorphous silicon thin films

(< 20 nm)

Plasma Enhanced Chemical Vapor Deposition (PECVD)

(using He diluted B_2H_6 and PH_3 as dopant precursors, mixing with SiH₄ and H₂)

Fabrication of Tunnel Oxide Passivating Contact (cont.)

Obtaining polysilicon thin film by thermal annealing at high temperature

(800 ~ 900 °C in N₂)

- Solid phase crystallization of amorphous silicon thin film.
- Dopant activation.

Characterization Technique to Quantify Carrier Recombination

Quasi-steady-state photoconductance (QSSPC)

$$\frac{1}{\tau_{eff}} - \frac{1}{\tau_{Auger}} = \frac{1}{\tau_{SRH}} + 2\frac{J_{0e}(N_d + \Delta n)}{qn_i^2 W}$$

 τ_{eff} : measured effective excess carrier lifetime, τ_{Auger} : intrinsic Auger lifetime τ_{SRH} : SRH defect related bulk lifetime, J_{oe} : emitter saturation current density, W: wafer thickness, Δn : excess carrier density, q: elementary charge, n_i: intrinsic carrier concentration,

N_d: bulk doping level.

R. A. Sinton and A. Cuevas, Appl. Phys. Lett., vol. 69, no. 17, 1996.

Sample Structures for Comparing Conventional *n*⁺ and *p*⁺ Layers with *n*-type and *p*-type Tunnel Oxide Passivating Contact

J₀ of Conventional **n**⁺ and **p**⁺ Layers

Sheet resistance (ohm per square) is the resistance of a square piece of a thin material. Higher sheet resistance typically indicates lower doping level, and then lower recombination.

J₀ of *n*-type Tunnel Oxide Passivating Contact

- ♦ Excessive dopant in-diffusion → increasing Auger recombination.
- ✤ High pinhole density → increasing Shockley-Read-Hall recombination (polysilicon is defect-rich material).

Peibst, R., et al., Solar Energy Materials and Solar Cells 158 (2016): 60-67.

without metal *n*⁺ polysilicon high resistivity Si wafer 10000 $\Theta \Theta \Theta \Theta \Theta \Theta$ E_{C} *n*⁺ poly-Si without tunnel electron motion oxide (~ 1050 fA/cm²) $\Theta \Theta \Theta$ E_{F} J₀ [fA/cm²] (without metal contact) 1000 E_V *n*⁺poly-Si/SiO_x hole motion 100 defects in *n*⁺ polysilicon polysilicon → 10 polysilicon → tunnel oxi silicon wafer→ silicon wafer→ 300 800 875 650 950 (as-deposit) Annealing temperature [°C] $5\,\mathrm{nm}$

Prominence of Tunnel Oxide Layer

Comparison Conventional *n*⁺ and *p*⁺ Layers with *n*-type and *p*-type Tunnel Oxide Passivating Contact

Conclusion

Outlook

Acknowledgement

This material is based upon work supported by the Department of Energy / National Nuclear Security Administration under Award Number(s) DE-NA0003921.

Thank you

