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Silicon Radiation Detectors

www.mirion.com

Alpha Particle X-Ray Spectrometer 

(APXS)

Applications

❖ Alpha particle spectroscopy

❖ Heavy ion and fission fragment spectroscopy

❖ Energy loss measurements – particle identification

❖ X-ray spectroscopy

❖ Personnel monitors

Configurations

▪ Diffused junction detectors

▪ Surface barrier detectors

▪ Fully depleted detectors

▪ Passivated planar detectors

▪ Position-sensitive detectors

micronsemiconductor.co.uk

www.nasa.gov

http://bnl.gov

Advantages (vs typical gas-filled detectors)

✓ Good energy resolution 

✓ Fast timing characteristics 

✓ Compactness and ruggedness

heavily doped p+ and n+ regions 

(“dead” areas or layers)

http://www.mirion.com/
https://www.nasa.gov/
http://bnl.gov/


Operating Mechanism of Conventional Silicon Detectors
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The Leaking Bucket Story

Option 1
keep as is

Option 2
fix it

Option 3
trash it

Image courtesy: Andar Software
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Fix the “Leaking Bucket”: Reduce the Carrier 
Recombination by Tunnel Oxide Passivating Contact



Operating Principle of Tunnel Oxide Passivating Contact
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➢ Band bending by creating an accumulation layer.

➢ Difference in the tunneling barrier heights for 

electrons and holes.

➢ Properly controlled dopant in-diffusion.

➢ Appropriate pinhole density.  

Lee, Wen-Chin, et al., IEEE Transactions on Electron Devices 48, no. 7 (2001): 1366-1373.

Glunz, Stefan W., et al., Progress in Photovoltaics: Research and Applications (2021).

Hollemann, Christina, et al., Progress in Photovoltaics: Research and Applications 27, no. 11 (2019): 950-958.



Tunneling ---- Quantum Tunneling, or Barrier Penetration

The wider the barrier and the higher the barrier energy, the lower the probability of tunneling.

https://toutestquantique.fr/en/tunnel-effect

It is a quantum mechanical phenomenon in which an object such as an electron passes through a potential

energy barrier that, according to classical mechanics, the object does not have sufficient energy to surmount.

Classical mechanics

Quantum mechanics

carrier
potential barrier

ParticleWave

https://toutestquantique.fr/en/tunnel-effect


Fabrication of Tunnel Oxide Passivating Contact

Heated HNO3 acid
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Growth of an ultra-thin oxide layer

(~1.5 nm ≈ 15 angstroms)

SC-I (NH4OH + H2O2) 

(SC: Standard Clean)

4𝐻𝑁𝑂3 → 4𝑁𝑂2 + 2𝐻2𝑂 + 𝑂2
2𝑁𝑂2 + 𝑆𝑖 → 𝑆𝑖𝑂2 + 2𝑁𝑂



Fabrication of Tunnel Oxide Passivating Contact (cont.)
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Growth of phosphorus doped (n+) and boron 

doped (p+) amorphous silicon thin films 

(< 20 nm)
Plasma Enhanced Chemical Vapor Deposition (PECVD)

(using He diluted B2H6 and PH3 as dopant precursors, mixing with SiH4 and H2)

4-inch Si wafer



Fabrication of Tunnel Oxide Passivating Contact (cont.)
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Obtaining polysilicon thin film by thermal annealing at high temperature 

(800 ~ 900 ºC in N2)
➢ Solid phase crystallization of amorphous silicon thin film.

➢ Dopant activation.



TEM Image of Tunnel Oxide Passivating Contact
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Characterization Technique to Quantify Carrier Recombination

R. A. Sinton and A. Cuevas, Appl. Phys. Lett., vol. 69, no. 17, 1996.

1

𝜏𝑒𝑓𝑓
−

1

𝜏𝐴𝑢𝑔𝑒𝑟
=

1

𝜏𝑆𝑅𝐻
+ 2

𝑱𝟎𝒆(𝑁𝑑 + ∆𝑛)

𝑞𝑛𝑖
2𝑊

Quasi-steady-state photoconductance (QSSPC) 

𝜏𝑒𝑓𝑓: measured effective excess carrier lifetime,

𝜏𝐴𝑢𝑔𝑒𝑟: intrinsic Auger lifetime

𝜏𝑆𝑅𝐻: SRH defect related bulk lifetime, 

Joe: emitter saturation current density,

W: wafer thickness, 

Δn: excess carrier density, 

q: elementary charge, 

ni: intrinsic carrier concentration,

Nd: bulk doping level.
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Sample Structures for Comparing Conventional n+ and p+ Layers 
with n-type and p-type Tunnel Oxide Passivating Contact
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J0 of Conventional n+ and p+ Layers

Conventional p+ layer sheet resistance [Ω/□]
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Sheet resistance (ohm per square) is the resistance of a square piece of a thin material. Higher sheet 

resistance typically indicates lower doping level, and then lower recombination. 



J0 of n-type Tunnel Oxide Passivating Contact 

n+ poly-Si/SiOx

n+ poly-Si without 

tunnel oxide (~ 1050 

fA/cm2)

875 950800650

(as-deposit)

J
0

[f
A

/c
m

2
] 
(w

it
h
o

u
t 
m

e
ta

l 
c
o

n
ta

c
t)

Annealing temperature [ºC]

without metal

300

Peibst, R., et al., Solar Energy Materials and Solar Cells 158 (2016): 60-67. 

❖ Excessive dopant in-diffusion → increasing Auger 

recombination.

❖ High pinhole density → increasing Shockley-Read-Hall 

recombination (polysilicon is defect-rich material).
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Prominence of Tunnel Oxide Layer
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Comparison Conventional n+ and p+ Layers with n-type 
and p-type Tunnel Oxide Passivating Contact 

Conventional p+ layer sheet resistance [Ω/□]
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Conclusion
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J0 [fA/cm2] With passivation With Metal

Conventional n+ layer 15 ~ 90 800 ~ 6000

n-type tunnel oxide Passivating contact ~5 ~5

J0 [fA/cm2] With passivation With Metal

Conventional p+ layer 10 ~ 70 1500 ~ 6000

p-type tunnel oxide Passivating contact ~10 ~10



Outlook
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