Evaluating Antineutrino-Based Safeguards using the RETINA System

Presented by Matthew Dunbrack 2023 LANNS Symposium-2

LABORATORY FOR ADVANCED NUCLEAR NONPROLIFERATION AND SAFETY

November 3, 2023

Motivation

Background

The Reactor Evaluation Through Inspection of Near-field Antineutrinos (RETINA) System

Evaluating Antineutrino-Based Safeguards

Scenario Sensitivity Challenges

Assessing Sensitivity with ML Processing Assessing Sensitivity for Specific Scenarios

(Old Results)	Individualized Models (Detection Probability)	Unseen Models (Detection Probability)
Diverted 1 Assembly	2.28%	1.40%
Diverted 2 Assemblies	0.27%	< 0.01%
Diverted 3 Assemblies	0.15%	< 0.01%

Does not work well for "unseen" scenarios Limited computational resources means there will always be unseen scenarios

Georgia Tech

Future Work

Scenario

Selection

Agent

Temporal Difference Learning

Test and Learn from Unseen Scenarios

The RETINA System

 Customized detector modeling with the Mobile Antineutrino
Demonstrator (MAD) project – led
by Lawrence Livermore National Laboratory A state of the sta

The system will converge to a global diversion detection sensitivity using the most robust model

Acknowledgement

	Gr
Ň	

The Consortium for Monitoring, Technology, and Verification would like to thank the DOE-NNSA for the continued support of these research activities.

This work was funded by the Consortium for Monitoring, Technology, and Verification under Department of Energy National Nuclear Security Administration award number DE-NA0003920.

Thank you

References

- 1. Office of Nuclear Energy. "Advanced Reactor Technologies." *Energy.gov*
- 2. Waldrop, M. M. Nuclear goes retro with a much greener outlook. Knowable Magazine | Annual Reviews

Extra Slides

Detection Probability Objective Functions

We've created a methodology for guiding detection objectives using **State-Specific Factors (SSFs)**, or safeguards relevant factors used by the IAEA to develop State-level safeguards approaches

Detection Probability_{Scenario} = $\alpha^* DP_{SSF-1} + \beta^* DP_{SSF-2} + \gamma^* DP_{SSF-3} + \delta^* DP_{SSF-4} + \epsilon^* DP_{SSF-5} + \zeta^* DP_{SSF-6}$

Technical Approach

The Reactor Evaluation Through Inspection of Near-field Antineutrinos (RETINA) System **Spectra Simulation System Sensitivity** Spectra Processing Customizable Objects Null and Alternative Spectra from User-Input Reactors Detectors Scenarios • • ٠ **Objects** Modular Configuration Plug-in inputs from outputs Profile Construction for Parameter Convergence Multiple reactors and detectors allowed Verification Boundaries Detection • Probability Collection Period **Diversion Simulation Customizable Reactor Inventories** High-fidelity diversion modeling with End users can evaluate potential use cases and ٠ customizable diversion assemblies, develop strategic system improvements orgia elements, quantities, and replacement fuel

Antineutrino Detection

Inverse-Beta Decay: $\bar{v}_e + p = e^+ + n$

https://arxiv.org/pdf/1801.05386.pdf

Profile Construction

Generate Sample Detection Spectra

 $y_{i,0} \sim N(Counts_{Bkgd,i}, \sigma_{Counts_{Bkgd,i}})$

 $x_{i,0} \sim Pois(y_{i,0} \mid y_{i,0} \in W)$

 $y_{i,1} \sim N(Counts_{Tot,i}, \sigma_{Counts_{Tot,i}})$

 $x_{i,1} \sim Pois(y_{i,1} \mid y_{i,1} \in W)$

Determine Likelihood Values and Form Ratio Profiles

$$\lambda_0 = \ln(\frac{\prod_{i=0}^{15} L(x_{i,0} \in X_{i,0})}{\prod_{i=0}^{15} L(x_{i,0} \in X_{i,1})}) \qquad \lambda_1 = \ln(\frac{\prod_{i=0}^{15} L(x_{i,1} \in X_{i,0})}{\prod_{i=0}^{15} L(x_{i,1} \in X_{i,1})})$$

Repeat Until Reaching our Desired Statistics

