MATH 3012 Final Exam, May 4, 2006, WTT

1. All four parts of this problem are concerned with ternary strings of length n, i.e., words of length n with letters from the alphabet $\{0,1,2\}$.
a. How many ternary words of length 23 ?
b. How many ternary words of length 23 with eight 0 's, nine 1's and six 2's?
c. Let t_{n} denote the number of ternary strings that do not have a 1 followed immediately by a 2 . Find (but do not solve) a linear recurrence equation satisfied by t_{n}.
2. How many lattice paths from $(2,3)$ to $(17,12)$ pass through $(4,6)$ and $(8,10)$?
3. How many integer valued solutions to the following equations and inequalities:
a. $x_{1}+x_{2}+x_{3}+x_{4}=40$, all $x_{i}>0$.
b. $\quad x_{1}+x_{2}+x_{3}+x_{4}=40$, all $x_{i} \geq 0$.
c. $x_{1}+x_{2}+x_{3}+x_{4} \leq 40$, all $x_{i} \geq 0$.
4. Use the Euclidean algorithm to find $d=\operatorname{gcd}(168,1320)$.
5. Use your work in the preceding problem to find integers x and y so that $d=168 x+1320 y$.
6.

a. Find the set of minimal elements of this poset.
b. How many elements of are incomparable with the point labeled 12 ?
c. Explain why $\{3,16,17\}$ is not a maximal antichain.
d. For each x, let height (x) denote the maximum size of a chain having x as its greatest element. Writing directly on the diagram, label each point with the integer representing its height.
e. Find the height h of this poset
f. Find a chain of h points.
7.

a. This poset is an interval order and has 5 distinct down sets. Find them.
b. This poset also has 5 distinct up sets. Find them.
c. Find the unique interval representation for this poset where every element is assigned an interval with integer endpoints from $\{1,2,3,4,5\}$.
8. Define an interval order P with point set $X=\{a, b, c, d, e, f, g, h, i, j\}$. by the following interval representation.

Use the First Fit algorithm to a partition of this poset into a minimum number of chains. Provide your answer by labeling the intervals in the diagram with positive integers so that all elements assigned the same integer form a chain. Then find a maximum antichain in this poset.
9.

Use the Greedy Algorithm and alphabetic order to find an euler circuit in the graph above. Your answer should be given as a sequence of partial circuits starting with the trivial circuit (a).
10.

In the space below, list in order the edges which make up a minimum weight spanning tree using, respectively Kruskal's Algorithm (avoid cycles) and Prim's Algorithm (build tree). For Prim, use vertex a as the root.
Kruskal's Algorithm

Prim's Algorithm

11.

a. Show that this graph is hamiltonian by listing the vertices in an order which forms a cycle of size 10 .
b. Explain why this graph has neither an euler circuit nor an euler path.
12. A data file digraph_data.txt has been read for a digraph whose vertex set is [6]. The weights on the directed edges are shown in the matrix below. Apply Dijkstra's algorithm to find the distance from vertex 1 to all other vertices in the graph. Also, for each x, find a shortest path from 1 to x.

W	1	2	3	4	5	6
1	0	13	51	20	34	7
2	60	0	28	9	19	8
3	46	60	0	19	9	60
4	16	43	17	0	8	14
5	23	11	7	13	0	28
6	19	8	82	16	28	0

13. Write the general solution of the advancement operator equation: $(A-2)^{3}(A-1)^{4}(A+6)^{2}(A-8) f=0$.
14. Find a particular solution to the advancement operator equation: $\left(A^{2}-9 A+18\right) f(n)=$ $20(2)^{n}$.
15. Find the unique solution to the advancement operator equation: $\quad\left(A^{2}-9 A+18\right) f(n)=$ $20(2)^{n}$ with $f(0)=3$ and $f(1)=16$.
16. Let X be a set and let $\mathcal{P}=\left\{P_{1}, P_{2}, \ldots, P_{m}\right\}$ be a family of properties. For each subset $S \subseteq\{1,2, \ldots, m\}$, let $N(S)$ denote the number of elements of X which satisfy property P_{i} whenever $i \in S$. Write the Inclusion-Exclusion formula for the number of elements of X which satisfy none of the properties in \mathcal{P} :
17. Write the Inclusion-Exclusion formula for the Euler- ϕ function.
18. Use the formula from the preceding problem to find $\phi(n)$ when $n=2^{4} \times 3^{2} \times 5^{3}$.
19. Let $R(n, m)$ denote the least positive integer t so that every graph on t vertices contains a complete subgraph of size n or and independent set of size m. Bob claims that $R(3,3)=R(4,4)=6$. Alice replies that Bob is only half right. $R(3,3)=6$ but $R(4,4)>6$. Explain why Alice's assertion that $R(4,4)>6$ is correct.
20. What is the formula for the number of labeled trees with vertex set $\{1,2, \ldots, n\}$?
21. How many ways are there to assign labels from the set $\{1,2, \ldots, 10\}$ to the unlabeled tree shown below?

22.

a. What is the current value of the flow?
b. What is the capacity of the cut $V=\{S, A, C, I, E, G, H\} \cup\{B, D, F, J, T\}$.
c. Carry out the labeling algorithm, using the pseudo-alphabetic order on the vertices and list below the labels which will be given to the vertices.
d. Use your work in part c to find an augmenting path and make the appropriate changes directly on the diagram.
e. Carry out the labeling algorithm a second time on the updated flow. It should halt without the sink being labeled. Find a cut whose capacity is equal to the value of the flow.
23.

In the figure above, we show a poset and the bipartite graph associated with it. The darkened edges form a maximum matching in the graph. Find the minimum chain partition determined by this matching.

