MATH 3012 Quiz 2, October 30, 2003, WTT

1. Note that $3960=2^{3} \times 3^{2} \times 5 \times 11$. Compute $\phi(3960)$.

$$
\begin{aligned}
\phi(3960) & =3960\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{5}\right)\left(1-\frac{1}{11}\right) \\
& =3960 \frac{1}{2} \frac{2}{3} \frac{4}{5} \frac{10}{11} \\
& =1320
\end{aligned}
$$

2. Consider the partitions of an integer n. What is the conclusion to be drawn from the following computation? Verify your answer when $n=7$.

$$
\begin{aligned}
(1+x)\left(1+x^{2}\right)\left(1+x^{3}\right) & \left(1+x^{4}\right)\left(1+x^{5}\right)\left(1+x^{6}\right) \cdots \\
=\frac{1-x^{2}}{1-x} \frac{1-x^{4}}{1-x^{2}} \frac{1-x^{6}}{1-x^{3}} & \frac{1-x^{8}}{1-x^{4}} \frac{1-x^{10}}{1-x^{5}} \frac{1-x^{12}}{1-x^{6}} \cdots \\
& =\frac{1}{1-x} \frac{1}{1-x^{3}} \frac{1}{1-x^{5}} \frac{1}{1-x^{7}} \frac{1}{1-x^{9}} \frac{1}{1-x^{11}} \cdots
\end{aligned}
$$

The computation shows that the number of partitions of an integer into distinct parts is equal to the number of partitions into odd parts. For $n=7$, there are 5 of each type:

$$
5+2 \quad 4+3 \quad 4+2+1 .
$$

3. Let A denote the advancement operator, i.e., $A f(n)=f(n+1)$. Find the general solution of the following equation:

$$
\left(A^{2}+4 A-12\right) f(n)=0
$$

The polynomial factors as $(A+6)(A-2)$, and the roots are -6 and +2 . So the general solution is $f(n)=c_{1}(-6)^{n}+c_{2} 2^{n}$.
4. For the equation in the preceding problem, find the particular solution given $f(0)=8$ and $f(1)=-8$.

We solve the following two equations:

$$
\begin{gathered}
c_{1}+c_{2}=8 \\
-6 c_{1}+2 c_{2}=-8
\end{gathered}
$$

to obtain $c_{1}=3$ and $c_{2}=5$. So the particular solution is $f(n)=3(-6)^{n}+5(2)^{n}$.
5. Show that G is planar.

Here's a redrawing of the graph without edge crossings, which shows that G is planar.

6. Show that G is hamiltonian by listing the vertices in an appropriate order, starting with vertex 1.

7. Show that G has an euler circuit by listing the vertices (with repetition allowed) in an appropriate order, starting with vertex 1 .

8. Show that G is an interval graph.

9. Find $\omega(G)$, and list a set of vertices which forms a clique of maximum size.

10. Find a proper coloring of G using $\chi(G)$ colors.

The following sequence forms a hamiltonian cycle in G :

$$
1,9,6,2,3,8,5,10,7,1
$$

The following sequence forms an euler circuit in G :

$$
1,5,6,2,5,3,2,7,3,4,7,1
$$

The following intervals form a representation of the given graph.

The maximum clique size is 3 . The vertices $\{2,4,6\}$ form a clique of size 3 . There are several other such sets.

Here is a proper coloring of the graph using the colors $\{1,2,3\}$.

11. Verify Euler's formula for the following planar graph.

For this drawing, $V=6, E=8$ and $F=4$. Thus

$$
V-E+F=6-8+4=2
$$

12. Suppose G is a graph with 120 vertices and 4037 edges. Explain why G is non-planar. Also explain why G contains a triangle.

By Euler's formula, we know that a planar graph on n vertices contains at most $3 n-6$ edges, so a planar graph with 120 vertices has at most 357 edges. By Turán's theorem, a triangle-free graph on n vertices has at most $\left\lceil\frac{n^{2}}{4}\right\rceil$ edges, so a triangle free graph with 120 vertices has at most 3600 edges.

