Super Student

MATH 3012 Quiz 1, September 16, 2004, WTT

1. Consider the family of all strings of length 20 formed from the seven letter alphabet $\{A, B, C, D, E, F, G\}$.
a. What is the total number of strings?

A string of 20 letters; 7 choices for each. Total is 7^{20}.
b. How many strings have exactly 4 A's?

First choose the positions for the four A's. In the other sixteen positions, we have six choices. Answer is $\binom{20}{4} 6^{16}$.
c. How many strings have exactly four A's, five B's, eight C's and three D's?

This is the multinomial coefficient $\binom{20}{4,5,8,3}$. Another way to express this is $\frac{20!}{4!5!8 \cdot 3!}$.
d. Of the strings described in part c, how many have all five B's before the three D's?

Consider the eight positions occupied by B's and C's as a single new letter, say X. So the answer is $\binom{20}{4,8,8}$, or $\frac{20!}{4!8!8!}$.
e. Of the strings described in part d, how many have the five B's and the three D's occuring together as a block of eight consecutive characters?

Now these eight positions become a single letter. So the answer is $\binom{13}{1,4,8}$, or $\frac{13!}{1!4!8!}$.
2. How many integer value solutions to the following equations and inequalities:
a. $x_{1}+x_{2}+x_{3}=54$, all $x_{i}>0$.

53 gaps; choose two. Answer is $\binom{53}{2}$.
b. $x_{1}+x_{2}+x_{3}=54$, all $x_{i} \geq 0$.

Add three artificial apples. 56 gaps; choose two. Answer is $\binom{56}{2}$.
c. $x_{1}+x_{2}+x_{3}<54$, all $x_{i} \geq 0$.

Same as $x_{1}+x_{2}+x+3<=53$. Now add x_{4} to make an equation: $x_{1}+x_{2}+x_{3}+x_{4}=53$.
Apply same reasoning as in part b. Answer is $\binom{56}{3}$.
d. $x_{1}+x_{2}+x_{3} \leq 54$, all $x_{i} \geq 0$.

Add x_{4} to make an equation: $x_{1}+x_{2}+x+3+x_{4}=54$. Apply same reasoning as in part b. Answer is $\binom{57}{3}$.
e. $x_{1}+x_{2}+x_{3}=74$, all $x_{i}>0, x_{3}>7$.

Take off 7 in advance for x_{3}. Then we have $x_{1}+x_{2}+x_{3}^{\prime}=67$ with x_{1}, x_{2} and x_{3}^{\prime} all positive. Answer is $\binom{66}{2}$.
3. In three space, consider moves from one point with integer coordinates to another formed by adding one of $(1,0,0),(0,1,0)$ and $(0,0,1)$. How many paths from $(0,0,0)$ to $(4,7,13)$ can formed with such moves?

A total of 24 moves, 4 of which use coordinate 1, 7 use coordinate 2 and 13 use coordinate 3 .
Answer is $\binom{24}{4,7,13}$, or $\frac{24!}{4!} 7!13!$.
4. Prove by induction: $1+4+7+\cdots+(3 n-2)=n(3 n-1) / 2$.

When $n=1$, the left hand side is $3 \cdot 1-2=1$, while the right hand side is $1(3 \cdot 1-1) / 2=1$. Therefore the formula is valid when $n=1$. Now assume the formula is valid when $n=k$, where k is some positive integer, i.e.,

$$
1+4+7+\cdots+(3 k-2)=k(3 k-1) / 2
$$

Then it follows that:

$$
\begin{aligned}
1+4+7+\cdots+(3 k-2)+[3(k+1)-2] & =k(3 k-1) / 2+[3(k+1)-2] \\
& =\frac{3 k^{2}-k}{2}+3 k+1 \\
& =\frac{3 k^{2}-k}{2}+\frac{6 k+2}{2} \\
& =\frac{3 k^{2}+5 k+2}{2} \\
& =\frac{(k+1)(3 k+2)}{2} \\
& =\frac{(k+1)[3(k+1)-1)}{2}
\end{aligned}
$$

This shows that the formula also holds when $n=k+1$. By the principle of induction, it then holds for every positive integer n.
5. Use the Euclidean algorithm to find $d=\operatorname{gcd}(2340,924)$.

By repeated long division:

$$
\begin{aligned}
2340 & =2 \times 924+492 \\
924 & =1 \times 492+432 \\
492 & =1 \times 432+60 \\
432 & =7 \times 60+12 \\
60 & =5 \times 12+0
\end{aligned}
$$

It follows that $\operatorname{gcd}(2340,924)=12$.
Then find integers x and y so that $d=2340 x+924 y$.
Rewrite the equations as:

$$
\begin{aligned}
492 & =2340-2 \times 924 \\
432 & =924-1 \times 492 \\
60 & =492-1 \times 432 \\
12 & =432-7 \times 60
\end{aligned}
$$

Substitute to obtain

$$
\begin{aligned}
12 & =432-7 \times 60 \\
& =1 \times 432-7 \times(1 \cdot 492-1 \cdot 432) \\
& =8 \cdot 432-7 \cdot 492 \\
& =8(1 \cdot 924-1 \cdot 492)-7 \cdot 492 \\
& =8 \cdot 924-15 \cdot 492 \\
& =8 \cdot 924-15(2340-2 \cdot 924) \\
& =38 \cdot 924-15 \cdot 2340
\end{aligned}
$$

6. Find the coefficient of $x^{4} y^{8} z^{23}$ in $(3 x-2 y-7 z)^{35}$.

$$
\binom{35}{4,8,23} 3^{4}(-2)^{8}(-7)^{23}
$$

7. Consider the partially ordered set (poset) shown below:

a. Find the set of maximal elements.

$$
\operatorname{MAX}(P)=\{6,12,11,1\}
$$

b. Find the height h of this poset and find a partition into h antichains.

$$
\begin{aligned}
& A_{1}=\{6,12,11,1\} \\
& A_{2}=\{13,4,2,9,10\} \\
& A_{3}=\{8,14,16,3\} \\
& A_{4}=\{5,7\} \\
& A_{5}=\{15\}
\end{aligned}
$$

So the height h of this poset is 5 .
c. Find a chain of h points in this poset.

Starting with the point 15 from A_{5} and back-tracking, we find the maximum chain:

$$
C=\{15,5,8,13,6\}
$$

d. Find an antichain containing 6 points.

Here is one (there may be several more):

$$
A=\{4,16,8,1,9,10\}
$$

e. Show that the width of the poset is 6 by finding a partition into 6 chains.

Here is a partition into six chains. There are many other ways to accomplish this same goal.

$$
\begin{aligned}
& C_{1}=\{6,13,8,5,15\} \\
& C_{2}=\{12,4,14,7\} \\
& C_{3}=\{2,16\} \\
& C_{4}=\{11,10\} \\
& C_{5}=\{9,3\} \\
& C_{6}=\{1\}
\end{aligned}
$$

Scoring:

1. Problem 1: Five parts, 2 points each, total 10 points.
2. Problem 2: Five parts, 2 points each, total 10 points.
3. Problem 3: 5 points.
4. Problem 4: 15 points.
5. Problem 5: First part (gcd) 10 points, second part 5 points, total 15 points.
6. Problem 6: 10 points.
7. Problem 7: Five parts, 5 points each, total 25 points.
