MATH 3012 Quiz 2, October 12, 2004, WTT

1. Note that $67375=5^{3} \times 7^{2} \times 11$. Compute $\phi(67375)$.

$$
\begin{aligned}
\phi(67375) & =67375\left(1-\frac{1}{5}\right)\left(1-\frac{1}{7}\right)\left(1-\frac{1}{11}\right) \\
& =5^{3} \cdot 7^{2} \cdot 11 \cdot \frac{4}{5} \cdot \frac{6}{7} \cdot \frac{10}{11} \\
& =5^{2} \cdot 7 \cdot 4 \cdot 6 \cdot 10 \\
& =42000
\end{aligned}
$$

2. (a) Write all the partitions of the integer 8;

$$
\begin{aligned}
8 & =8 \text { distinct parts } \\
& =7+1 \quad \text { distinct parts, odd parts } \\
& =6+2 \text { distinct parts } \\
& =6+1+1 \\
& =5+3 \text { distinct parts, odd parts } \\
& =5+2+1 \quad \text { distinct parts } \\
& =5+1+1+1 \quad \text { odd parts } \\
& =4+4 \\
& =4+3+1 \text { distinct parts } \\
& =4+2+2 \\
& =4+2+1+1 \\
& =4+1+1+1+1 \\
& =3+3+2 \\
& =3+3+1+1 \text { odd parts } \\
& =3+2+2+1 \\
& =3+2+1+1+1 \\
& =3+1+1+1+1+1 \quad \text { odd parts } \\
& =2+2+2+2 \\
& =2+2+2+1+1 \\
& =2+2+1+1+1+1 \\
& =2+1+1+1+1+1+1 \\
& =1+1+1+1+1+1+1+1 \text { odd parts }
\end{aligned}
$$

(b) Of the partitions listed in part (a), how many use distinct parts?

There are 6 partitions of the integer 8 into distinct parts.
(c) Of the partitions listed in part (a), how many use odd parts?

There are 6 partitions of the integer 8 into odd parts. More generally, for every integer n, the number of partitions of n into odd parts equals the number of partitions of n into distinct parts.
3. Write the inclusion/exclusion formula for the number of onto functions from $\{1,2, \ldots, m\}$ to $\{1,2, \ldots, n\}$.

$$
\sum_{i=0}^{n}(-1)^{i}\binom{n}{i}(n-i)^{m}
$$

4. Write the inclusion/exclusion formula for the number of derangements of $\{1,2, \ldots, n\}$.

$$
\sum_{i=0}^{n}(-1)^{i}\binom{n}{i}(n-i)!
$$

5. Let A denote the advancement operator, i.e., $A f(n)=f(n+1)$. Find the general solution of the following equation:

$$
\left(2 A^{2}+7 A-15\right) f(n)=0
$$

Note that we can factor the quadratic $2 A^{2}+7 A-15$ as $(2 A-3)(A+5)$ so the roots are $\frac{3}{2}$ and -5 . Therefore the general solution is $c_{1}\left(\frac{3}{2}\right)^{n}+c_{2}(-5)^{n}$.
6. For the equation in the preceding problem, find the particular solution given $f(0)=6$ and $f(1)=-4$.

Substituting $n=0$ and $n=1$ in the formula for the general solution, we obtain the following two equations for c_{1} and c_{2} :

$$
\begin{aligned}
c_{1}+c_{2} & =6 \\
\frac{3}{2} c_{1}-5 c_{2} & =-4
\end{aligned}
$$

The solution to this system is $c_{1}=4$ and $c_{2}=2$. So the answer is then $4\left(\frac{3}{2}\right)^{n}+2(-5)^{n}$.
7. Find the general solution of the following equation:

$$
(A-1)^{2}(A-3)^{4}(A-4+i)^{3} f(n)=0
$$

$$
\begin{aligned}
f(n)= & c_{1}+c_{2} n \\
& +c_{3} 3^{n}+c_{4} n 3^{n}+c_{5} n^{2} 3^{n}+c_{6} n^{3} 3^{n} \\
& +c_{7}(4-i)^{n}+c_{8} n(4-i)^{n}+c_{9} n^{2}(4-i)^{n}
\end{aligned}
$$

8. Let r_{n} denote the number of regions in the plane determined by n circles-provided each pair of circles intersects in exactly two points. (a) Write a recurrence equation for r_{n}.

Label the n circles as $C_{1}, C_{2}, \ldots, C_{n}$. Circle C_{n} intersects each other circle in exactly two points, so there are $2(n-1)$ points of intersection on C_{n}. These points divide circle C_{n} into $2(n-1)$ arcs, and each of these arcs divides an "old" region into two "new" ones. So the recursion is

$$
r_{n}=r_{n-1}+2(n-1)
$$

(b) Solve the recurrence equation in part (a).

The general solution to the homogeneous equation $r_{n}=r_{n-1}$ is $f(n)=c$. We look for a particular solution to the non-homogeneous equation of the form $f(n)=A n+B n^{2}$. Substituting, we obtain:

$$
\begin{aligned}
A n+B n^{2} & =A(n-1)+B(n-1)^{2}+2(n-1) \\
& =A n-A+B n^{2}-2 B n+B+2 n-2
\end{aligned}
$$

Equating coefficients, we obtain the two equations:

$$
\begin{aligned}
2-2 B & =0 \\
-A+B & =2
\end{aligned}
$$

Thus $B=1$ and $A=-1$. So the solution is $f(n)=n^{2}-n+c$. Substituting $n=1$ and noting that $r_{1}=2$, we obtain $2=f(1)=1^{2}-1+c=c$. It follows that the final answer is $f(n)=n^{2}-n+2$.
9. (Extra Credit) Explain how the principle of inclusion/exclusion is used to derive the formula in Problem 3 for the number of onto functions.

Consider the set X of all functions from $\{1,2, \ldots, m\}$ to $\{1,2, \ldots, n\}$. For each $j=$ $1,2, \ldots, n$, we say that a function $f \in X$ satisfies property P_{j} if j is NOT in the range of f. Now let S be a set of i properties. Then the number of functions from X which satisfy the properties in S is $(n-i)^{m}$. By the principle of inclusion/exclusion, the number of onto functions is then:

$$
\sum_{i=0}^{n}(-1)^{i}\binom{n}{i}(n-i)^{m}
$$

