MATH 3012 Quiz 2, March 15, 2013, WTT

1. Consider the poset shown below. The ground set is $X=\{a, b, c, d, e, f, g, h\}$. In the space to the right of the figure, write the reflexive, antisymmetric and transitive relation on X which defines this poset.

$$
\begin{aligned}
& P=\{(a, a),(b, b),(c, c),(d, d),(e, e),(f, f),(g, g),(h, h), \\
& (a, d),(c, d),(f, a),(f, g),(f, c),(f, d),(b, a),(b, c),(b, d), \\
& (e, f),(e, a),(e, g),(e, c),(e, d)\}
\end{aligned}
$$

2. Consider the following poset.

a. Find all points comparable to $k: \quad\{e, g, f, a, m, q, r, n\}$.
b. Find all points which cover $k:\{e, f\}$.
c. Find a maximal chain of size $2: \quad\{f, h\}$ or $\{j, h\}$.
d. Using the algorithm taught in class (recursively removing the set of minimal elements), find the height h of the poset and a partition of P into h antichains. Also find a maximum chain. You may indicate the partition by writing directly on the diagam.
The height h is 6 and $\{g, e, k, a, m, q\}$ is a maximum chain.
3. Find by inspection the width w of the following poset and find a partition of the poset into w chains. Also find a maximum antichain. You may indicate the partition by writing directly on the diagram.

a. The width w is 4 and $\{a, b, c, h\}$ is a maximum antichain.
b. This poset is not an interval order. Find four points which form a copy of $\mathbf{2}+\mathbf{2}:\{a, f, g, c\}$, also $\{a, f, g, h\}$.
4. Shown below is the diagram of an interval order. Use the algorithm taught in class to find an interval representation by computing the down-sets and up-sets in the space provided. Then use the First Fit coloring algorithm to find the width w and a partition of the poset into w chains. Also, find a maximum antichain.

$$
\begin{array}{ll}
D(a)=b, e, h & U(a)=d \\
D(b)=\emptyset & U(b)=a, c, d \\
D(c)=b, e, f, h & U(c)=d \\
D(d)=a, b, c, e, f, h & U(d)=\emptyset \\
D(e)=\emptyset & U(e)=a, c, d, f, g \\
D(f)=e & U(f)=a, c, d, g \\
D(g)=e, f & U(g)=\emptyset \\
D(h)=\emptyset & U(h)=c, d
\end{array}
$$

The width w is 3 and $\{a, c, g\}$ is a maximum antichain (there are several others).
5. Let 2^{15} be the poset consisting of all subsets of $\{1,2,3, \ldots, 15\}$, ordered by inclusion.
a. What is the height of this poset: 16.
b. What is the width of this poset: $\binom{15}{7}$, which of course is the same as $\binom{15}{8}$.
c. How many maximal chains does the poset have: 15 !.
d. How many maximal chains in this poset pass through the set $\{2,3,8,13\}$: 4! $\cdot 11$!.
6. Write the general solution to the homogeneous advancement operator equation:
$[A-(7-2 i)]^{3}(A-1)^{4} f=0$.
$f(n)=c_{1}(7-2 i)^{n}+c_{2} n(7-2 i)^{n}+c_{3} n^{2}(7-2 i)^{n}+c_{4}+c_{5} n+c_{6} n^{2}+c_{7} n^{3}$.
7. Find a particular solution to the advancement operator equation:
$\left(A^{2}-3 A+5\right) f=4 \cdot 3^{n}$.
We try $f(n)=c 3^{n}$. This requires:

$$
\begin{aligned}
4 \cdot 3^{n} & =\left(A^{2}-3 A+5\right) c 3^{n} \\
& =c 3^{n+2}-3 c 3^{n+1}+5 c 3^{n} \\
& =9 c 3^{n}-9 c 3^{n}+5 c 3^{n} \\
& =5 c 3^{n}
\end{aligned}
$$

This implies $4=5 c$ so that $c=4 / 5$ and $f(n)=4 / 53^{n}$ is a solution.
8. Write the inclusion-
exclusion formula for $S(n, m)$, the number of surjections from $\{1,2, \ldots, n\}$ to $\{1,2, \ldots, m\}$. Then use this formula to calculate $S(6,4)$.
$S(n, m)=\sum_{k=0}^{m}(-1)^{k}\binom{m}{k}(m-k)^{n}$.

$$
\begin{aligned}
S(6,4) & =\sum_{k=0}^{4}(-1)^{k}\binom{4}{k}(4-k)^{6} \\
& =\binom{4}{0} 4^{6}-\binom{4}{1} 3^{6}+\binom{4}{2} 2^{6}-\binom{4}{3} 1^{6}+\binom{4}{4} 0^{6} \\
& =1 \cdot 4096-4 \cdot 729+6 \cdot 64-4 \cdot 1 \\
& =1560
\end{aligned}
$$

9. Write the inclusion formula for the number d_{n} of derangements of $\{1,2, \ldots, n\}$. Then use this formula to calculate d_{6}. $d_{n}=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(n-k)!$

$$
\begin{aligned}
d_{6} & =\sum_{k=0}^{6}(-1)^{k}\binom{6}{k}(6-k)! \\
& =\binom{6}{0} 6!-\binom{6}{1} 5!+\binom{6}{2} 4!-\binom{6}{3} 3!+\binom{6}{4} 2!-\binom{6}{5} 1!+\binom{6}{6} 0! \\
& =1 \cdot 720-6 \cdot 120+15 \cdot 24-30 \cdot 6+15 \cdot 2-6 \cdot 1+1 \cdot 1 \\
& =265
\end{aligned}
$$

10. Note that $1800=25 \cdot 9 \cdot 8$. Use this information and the inclusion-exclusion formula to determine $\phi(1800)$, where ϕ is the Euler ϕ-function studied in class.

The prime factors of 1800 are 2, 3 and 5 . So

$$
\begin{aligned}
\phi(1800) & =1800\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{5}\right) \\
& =1800 \cdot \frac{1}{2} \cdot \frac{2}{3} \cdot 45 \\
& =\frac{2400}{5} \\
& =480 .
\end{aligned}
$$

11. True-False. Mark in the left margin.

F 1. There is a graph on 928 vertices in which no two vertices have the same degree.
F 2. There is a poset with 7403 points having width 65 and height 98.
T 3. There is a poset with 7403 points having width 85 and height 98.
F 4. The permutation $(8,1,4,9,3,6,2,7,5)$ is a derangement.
F 5. The number of partitions of an integer n into even parts is the same as the number of partitions of n into parts that are all the same.

Fun! 6. The partitions of a deranged surjection can be effectively computed using inclusionexclusion and the process will consistently result in a maximum antichain of prime factors.

