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Abstract

We consider a two-player network inspection game,
in which a defender allocates sensors with potentially
heterogeneous detection capabilities in order to detect
multiple attacks caused by a strategic attacker. The
objective of the defender (resp. attacker) is to minimize
(resp. maximize) the expected number of undetected
attacks by selecting a potentially randomized inspection
(resp. attack) strategy. We analytically characterize
Nash equilibria of this large-scale zero-sum game when
every vulnerable network component can be monitored
from a unique sensor location. We then leverage
our equilibrium analysis to design a heuristic solution
approach based on minimum set covers for computing
inspection strategies in general. Our computational
results on a benchmark cyber-physical distribution
network illustrate the performance and computational
tractability of our solution approach.

1. Introduction

Critical infrastructure networks such as electric,
gas, and water distribution systems are paramount for
the well-being of society. However, these networks
regularly face random disruptions as well as attacks
from strategic adversaries [1, 2]. In particular, recent
incidents have demonstrated that adversarial attackers
can disrupt or gain control of the cyber-physical
systems deployed in these networks by exploiting cyber
insecurities or physical faults. A most recent example is
the cyberattack against a major US fuel pipeline, which
caused disruptions in the fuel supply of the Eastern
United States [3]. Additional examples can be found
in [4, 5].

A key part of any defense strategy is to detect
attacks using sensors positioned in various locations
that continuously monitor the network. If a network
is small, this can be done easily by placing a sensor
at each location of interest. However, for medium or
large networks, it can be infeasible to position a sensor at

every location. Thus the problem of how to strategically
position a restricted number of sensors is crucial.

We employ a game-theoretic approach to study this
problem. Game theory has successfully been used to
study problems in the domain of cybersecurity (and
network security more broadly) [6, 7, 8, 9, 10, 11, 12,
13]. In particular, it has proven successful for sensor
allocation problems [13, 14, 15]. In our model, the
defender allocates heterogeneous sensors in order to
detect multiple attacks caused by a strategic attacker.
The sensors may differ in their detection accuracies,
which typically depend on the sensing technology
utilized. The defender (resp. the attacker) aims to
minimize (resp. maximize) the expected number of
undetected attacks. Thus we model the interactions
between both players using a zero-sum game, in
which both players may potentially select randomized
strategies. This feature is known to be desirable in
security settings in which finite resources are allocated
[14, 16].

Previous simultaneous security models, such as in
[17, 18, 19, 20], assume that each detection device
is homogeneous. In this work, we extend the model
in [14] by accounting for the potential heterogeneity
in detection accuracy of the sensors available to the
defender. In particular, we study how the detection
heterogeneity of the defender’s resources affects the
strategies of both players.

We study the mixed Nash Equilibria (NE) of this
game. As this is a zero-sum game, NE can be computed
by solving a linear program [21]. However, as the
network’s size increases, this linear program becomes
too computationally expensive to solve because of
the combinatorial nature of the players’ action sets.
Thus, we analyze equilibrium properties under certain
conditions, and leverage our results to provide a
computationally tractable heuristic solution approach
that computes inspection strategies in the general case
with good detection performance.

Our contributions are twofold: First, we analytically
solve the game and provide equilibrium properties when



each component in the network is monitored from a
unique sensor location. These results provide us with
valuable insight regarding the impact of the detection
accuracies, number of attacks, and network topology
on the players’ equilibrium strategies. Second, we
leverage our equilibrium results to design a heuristic
solution approach for computing inspection strategies
in general. Our approach is based on solutions to a
minimum set cover problem, which have been shown
to be effective for different inspection games [10, 11,
12, 13]. We then conduct a computational study on
a benchmark cyber-physical distribution network and
empirically validate the performance and computational
tractability of our solution approach.

The paper is structured as follows. In Section 2,
we introduce the network inspection game. In Section
3, we derive equilibrium properties and solve the game
when each component is monitored from a unique
sensor location. We then present in Section 4 our
heuristic approach for computing inspection strategies
in the general case and provide computational results
to validate our approach. Finally, we summarize our
contributions and plans for future work in Section 5.

2. Problem Description

We consider a network containing a set of vulnerable
components E that can be targeted by an attacker.
A defender has access to b1 ∈ N sensors that can
be positioned among a set of locations (nodes) V for
network monitoring. A sensor positioned at node v ∈
V monitors a subset of components Ev ⊆ E, which
we refer to as the monitoring set of v. For ease of
exposition, we denote n := |V | and [k] := {1, . . . , k}
for every k ∈ N.

We consider that sensors can potentially differ in
their detection capabilities. Specifically, for each sensor
k ∈ [b1], we let λk ∈ (0, 1] denote its accuracy,
i.e., the probability that it detects an attack conducted
against a given component within the monitoring set
of the node at which it is positioned. We order the
sensors so that λ1 ≥ · · · ≥ λb1 . Without loss of
generality, we assume that multiple sensors cannot be
simultaneously positioned at the same node. Indeed,
positioning additional sensors at a node v ∈ V can be
equivalently viewed as positioning them among b1 − 1
different copies of node v, where each copy has an
identical monitoring setEv . A sensor positioning is then
represented as a vector s = (s1, . . . , sb1) ∈ (V ∪{0})b1
such that si 6= sj for every (i, j) ∈ [b1]2 with i 6= j and
si, sj 6= 0. Here, sk ∈ V represents the node at which
sensor k ∈ [b1] is positioned by the defender, and sk = 0
corresponds to sensor k not being positioned within the

network. For consistency, we let E0 := ∅. We denote
the set of all sensor positionings as A1.

To analyze the problem of strategically positioning
sensors in the network, we introduce a zero-sum game
Γ := 〈{1, 2}, (∆(A1),∆(A2)), (−U,U)〉. In this game,
Player 1 (P1) is the defender who selects a sensor
positioning s ∈ A1. Simultaneously, Player 2 (P2) is
an attacker who selects a subset of components T ∈ 2E

to target, where |T | ≤ b2 and b2 ∈ [|E|] is the number of
attack resources he has at his disposal. We refer to such
a subset of components as an attack plan, and denote the
set of all attack plans as A2.

In such security settings, it may be beneficial for
one or both players to randomize their strategies. This
feature is especially important for applications where
sensing resources can be regularly moved throughout a
network, which increases the strategic uncertainty faced
by the attacker and hence generally achieves a higher
protection level [10, 22]. Thus, we allow P1 and P2
to select mixed strategies. A mixed strategy for the
defender (resp. attacker) is a probability distribution
over the set of sensor positionings A1 (resp. the set of
attack plans A2). Namely, we define the set of mixed
inspection and attack strategies as ∆(A1) := {σ1 ∈
[0, 1]|A1| |

∑
s∈A1

σ1
s = 1} and ∆(A2) := {σ2 ∈

[0, 1]|A2| |
∑
T∈A2

σ2
T = 1} respectively, where σ1

s

(resp. σ2
T ) represents the probability assigned to the

sensor positioning s ∈ A1 (resp. the attack plan T ∈
A2) under the inspection strategy σ1 (resp. the attack
strategy σ2). We assume that the players’ strategies are
independent randomizations.

In this model, we assume that the sensors are
safe from possible damage during an attack; only
the components in the network can be targeted.
Additionally, we assume that detection is independent
across attacks and sensors, and that if an attack against
a component is detected, then the defender can nullify
the damage. Hence, in our model we consider an attack
on a component by P2 to be successful if and only if it
is not detected by P1. As such, P1 (resp. P2) seeks
to minimize (resp. maximize) the expected number
of undetected attacks which, for any strategy profile
(σ1, σ2) ∈ ∆(A1)×∆(A2), is given by

U(σ1, σ2) := E(σ1,σ2)

[∑
e∈T

b1∏
k=1

(
1− λk1{e∈Esk

}

)]
,

where the expectation is taken over all pairs of actions
(s, T ) ∈ A1 × A2, which are selected with probability
σ1
s · σ2

T by the players’ strategies.
Next, we show an instantiation of the zero-sum game

Γ via an example.



Example 1. We consider an example of a network
represented in Figure 1.
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Figure 1. Game instance on a network containing 5

nodes and 9 components.

In this example, the set of nodes is
V = {v1, . . . , v5}, the set of components is
E = {e1, . . . , e9}, and the monitoring sets are
Ev1 = {e1, e2, e3}, Ev2 = {e3, e6, e7}, Ev3 =
{e3, e4, e5}, Ev4 = {e7, e8, e9}, and Ev5 = {e8}.
The defender has two sensors. Sensor 1 (in green)
has accuracy λ1 = 0.9, and sensor 2 (in yellow) has
accuracy λ2 = 0.5. In this example, the defender
selects the randomized inspection strategy σ1 defined
by σ1

s = 0.4 and σ1
s′ = 0.6, with s = (v4, v3) and

s′ = (v1, v2). Simultaneously, the attacker selects the
randomized attack strategy σ2 defined by σ2

T = 0.2 and
σ2
T ′ = 0.8, with T = {e1, e3} and T ′ = {e4}. For this

example, the expected number of undetected attacks is
given by

U(σ1, σ2) = σ1
sσ

2
T (1 + (1− λ2))

+ σ1
sσ

2
T ′(1)

+ σ1
s′σ

2
T ((1− λ1) + (1− λ1)(1− λ2))

+ σ1
s′σ

2
T ′(1− λ2)

= 0.698.

4
In simultaneous games, a solution concept is given

by Nash Equilibrium. Specifically, a strategy profile
(σ1∗, σ2∗) ∈ ∆(A1) × ∆(A2) is a Nash Equilibrium
(NE) of Γ if for all (σ1, σ2) ∈ ∆(A1) × ∆(A2), we
have

U(σ1∗, σ2) ≤ U(σ1∗, σ2∗) ≤ U(σ1, σ2∗).

Equivalently, at a NE, σ1∗ (resp. σ2∗) is a best
response to σ2∗ (resp. σ1∗). We refer to σ1∗ (resp. σ2∗)

as an equilibrium inspection strategy (resp. equilibrium
attack strategy). Additionally, we refer to U(σ1∗, σ2∗)
as the value of the game. Since Γ is a finite zero-sum
game, the value U(σ1∗, σ2∗) exists and is identical for
every strategy profile (σ1∗, σ2∗) ∈ ∆(A1)×∆(A2) that
is a NE. In other words, the value of the game is unique
and well-defined.

Furthermore, the zero-sum game Γ can be solved
using the following linear programming problem [21]:

(P) min
σ1∈∆(A1)

max
T∈A2

U(σ1, T ).

Specifically, the equilibrium inspection strategies,
equilibrium attack strategies, and value of the game Γ
are given by the optimal primal solutions, optimal dual
solutions, and optimal value of (P), respectively.

However, solving (P) becomes intractable even for
medium-sized networks due to the combinatorial nature
of the players’ sets of actions: the number of variables
and constraints in (P) are given by 1 + |A1| = 1 +∑b1
i=0 i!

(
n
i

)
and 1+|A2| = 1+

∑b2
j=0

(|E|
j

)
, respectively.

Thus, in this paper, we present an approach to provide
approximate solutions to the game Γ. We first derive
an analytical characterization of a class of NE when the
monitoring sets are mutually disjoint. We then leverage
this result in Section 4 to derive a heuristic method for
computing an approximate solution in general.

Henceforth, we assume without loss of generality
that (i) b1 ≤ n, (ii) b2 ≤ |E|, (iii) each monitoring
set Ev (v ∈ V ) is nonempty, and (iv) every component
e ∈ E belongs to at least one monitoring set. Indeed,
if some components do not belong to any monitoring
set, then P2 will always target these components and
allocate his remaining resources among the components
that belong to at least one monitoring set.

Our game models scenarios where, for instance, each
component represents an asset that can be hacked, and
each node represents a computer on which software
protocols can be installed to detect cyber attacks. In
this scenario, our sensors are the software security
protocols, which each have a certain probability of
detecting a cyber attack. Stronger protocols are harder
to be bypassed, and will detect an intrusion with a higher
probability than a weaker protocol, which a hacker can
more easily bypass.

Finally, we note that in a zero-sum game, no player
has a first-mover advantage. This implies that if
the players were to play sequentially, the equilibrium
solutions would remain valid. Thus, the game Γ can be
used to model scenarios where the attacker selects his
attack strategy after observing the defender’s inspection
strategy. This type of situation is frequently encountered



in cybersecurity applications and various other security
problems more broadly.

3. Game-Theoretic Analysis for Mutually
Disjoint Monitoring Sets

In this section, we study the game Γ when all the
monitoring sets are mutually disjoint. That is, when
Ev ∩ Ew = ∅ for all (v, w) ∈ V 2 such that v 6= w.
Without loss of generality, we rewrite the set of nodes
as V = {v1, . . . , vn} so that |Ev1 | ≥ · · · ≥ |Evn |.
Furthermore, to simplify the equilibrium analysis, we
define for every (σ1, v) ∈ ∆(A1) × V the detection
probability of node v under σ1 as:

pσ1(v) :=

b1∑
j=1

λj
∑

{s∈A1|sj=v}

σ1
s .

That is, pσ1(v) represents the probability that an attack
in the monitoring setEv is detected under the inspection
strategy σ1.

Similarly, we define for every (σ2, e) ∈ ∆(A2)× E
the attack probability of component e under σ2 as

pσ2(e) :=
∑

{T∈A2|e∈T}

σ2
T .

That is, pσ2(e) represents the probability that e is
targeted under the attack strategy σ2.

In order to maximize the expected number of
undetected attacks, P2’s incentive is to spread his
attacks across the monitoring sets, thus making it more
challenging for P1 to detect the attacks. However, P2
is constrained by the topology of the network, and more
particularly by the sizes of the different monitoring sets.
This in turn will impact P1’s best-response inspection
strategy.

More formally, we consider the following quantity:

k∗ = min

{
k ∈ [n]

∣∣∣∣∣ b2 −
∑n
j=k+1 |Evj |
k

≥ |Evk+1
|

}
,

where we let |Evn+1 | := 0. Essentially,
{Ev1 , . . . , Evk∗} represents the monitoring sets
that are not fully targeted by P2 when he spreads his
attacks.

The next theorem then characterizes a class of NE
of the game Γ when the monitoring sets are mutually
disjoint:
Theorem 1. If Ev ∩ Ew = ∅ for all (v, w) ∈ V 2

such that v 6= w, then a strategy profile (σ1∗, σ2∗) ∈

∆(A1) × ∆(A2) is a NE if it satisfies the following
conditions:

pσ1∗(vi) =


1

k∗

min{b1,k∗}∑
j=1

λj if 1 ≤ i ≤ k∗

λi if k∗ < i ≤ b1
0 if max{b1, k∗} < i ≤ n,

(1)

∑
e∈Evi

pσ2∗(e) =


1

k∗

(
b2 −

n∑
j=k∗+1

|Evj |

)
if 1 ≤ i ≤ k∗

|Evi | if k∗ < i ≤ n.
(2)

Furthermore, the value of the game is given by the
following expression:

b2 −
b1∑
i=1

λi min

|Evi | , 1

k∗

b2 − n∑
j=k∗+1

|Evj |

 .

From Theorem 1, we obtain that when the
monitoring sets are mutually disjoint, a class of
NE can be described analytically using the players’
resources and the sizes of the monitoring sets. In
particular, we find that in equilibrium, P2 targets
all the components in Evk∗+1

, . . . , Evn , and allocates
his remaining resources uniformly among the first k∗

monitoring sets Ev1 , . . . , Evk∗ . By definition of k∗, we
have that:

b2 −
∑n
j=k∗+1 |Evj |
k∗

≥
∣∣Evk∗+1

∣∣ .
Therefore, since P1 aims to minimize the number

of undetected attacks, her incentive, given P2’s
equilibrium attack strategy, is to position her best
sensors (i.e., those with the highest accuracy) among
the nodes {v1, . . . , vk∗}. Moreover, since P2 targets
all components in Evk∗+1

, . . . , Evn , P1’s incentive is
to position her next best sensor (if available) to the
remaining node with the largest monitoring set, namely
vk∗+1. P1 then repeats this process until all her sensors
are positioned.

Since the monitoring sets Ev1 , . . . , Evk∗ are not
fully targeted under P2’s equilibrium attack strategy,
P1 must randomize the positioning of her best sensors
among the nodes {v1, . . . , vk∗} to ensure that P2 does
not have an incentive to deviate from his strategy. Thus,
P1’s equilibrium inspection strategy is such that the
detection probability of each node in {v1, . . . , vk∗} is

identical, and given by 1
k∗

∑min{b1,k∗}
j=1 λj . In the next



lemma, we construct a strategy profile that satisfies the
detection and attack probability conditions (1)-(2) of
Theorem 1:
Lemma 1.

1. – If b1 ≤ k∗, consider for every l ∈ [k∗] the
following sensor positioning:

sl :=


(vl, . . . , vl+b1−1)

if 1 ≤ l ≤ k∗ − b1 + 1

(vl, . . . , vk∗ , v1, . . . , vl+b1−k∗−1)

if k∗ − b1 + 1 < l ≤ k∗.

– If b1 > k∗, consider for every l ∈ [k∗] the
following sensor positioning:

sl :=


(v1, . . . , vk∗ , vk∗+1, . . . , vb1)

if l = 1

(vl, . . . , vk∗ , v1, . . . , vl−1, vk∗+1, . . . , vb1)

if 1 < l ≤ k∗.

Then, σ1∗ ∈ ∆(A1) defined by

σ1∗
sl =

1

k∗
∀l ∈ [k∗], and σ1∗

s = 0 otherwise,

satisfies condition (1) in Theorem 1.

2. Let b′2 := k∗
⌊

1
k∗

(
b2 −

∑n
j=k∗+1 |Evj |

)⌋
, and for

l ∈ [k∗] let

Cl := {1, . . . , l + b2 − b′2 − k∗ − 1}
∪ {l, . . . ,min{l + b2 − b′2 − 1, k∗}}.

Consider attack plans T l (l ∈ [k∗]) defined as
follows:

∣∣T l ∩ Evj ∣∣ :=


b′2
k∗ + 1 if j ∈ Cl

b′2
k∗ if j ∈ [k∗] \ Cl∣∣Evj ∣∣ if k∗ < j ≤ n.

Then, σ2∗ ∈ ∆(A2) defined by

σ2∗
T l =

1

k∗
∀l ∈ [k∗], and σ2∗

T = 0 otherwise,

satisfies condition (2) in Theorem 1.

From Lemma 1, we find that an equilibrium
inspection strategy can be constructed by “cycling” the
positioning of sensors 1, . . . ,min{k∗, b1} among the
nodes v1, . . . , vk∗ : s1 positions sensor 1 at node v1,
sensor 2 at node v2, and so on. Then, s2 positions sensor
1 at node v2, sensor 2 at node v3 and so on. Furthermore,
if b1 > k∗, then P1 deterministically positions sensors
k∗ + 1, . . . , b1 at the remaining nodes, in decreasing
order of their monitoring sets’ size: she positions sensor
k∗ + 1 at node vk∗+1, sensor k∗ + 2 at node vk∗+2, and
so on.

Similarly, an equilibrium attack strategy can
be constructed by first deterministically targeting
all the components in Evk∗+1

, . . . , Evn . Then,⌊
1
k∗

(
b2 −

∑n
i=k∗+1 |Evi |

)⌋
components are

deterministically targeted within each monitoring
set inEv1 , . . . , Evk∗ . Finally, P2 “cycles” his remaining
attack resources (if any are remaining) over the
remaining components in Ev1 , . . . , Evk∗ .

Next, we illustrate Theorem 1 and Lemma 1 with an
example.
Example 2. Consider the network shown in Figure 2.

v1 v2 v3 v4 v5

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5

Figure 2. Example of a network with 5 nodes, 16

components, and mutually disjoint monitoring sets.

In this illustration, each square represents a
component that can only be monitored from the node
indicated below it. Thus, in this example, |Ev1 | = 5,
|Ev2 | = 4, |Ev3 | = 4, |Ev4 | = 2, and |Ev5 | = 1.
To simplify our equilibrium description, let ei,j (i ∈
[n], j ∈ [|Evi |]) represent the component in layer j
of monitoring set Evi . This example can be used to
represent a computer network in which each computer
lies within a closed section of the network, and such
that each computer in a given closed section can detect
cyberattacks conducted against only the components in
its section.

Suppose that P1 has 4 sensors. Furthermore, we
consider that P2 has b2 = 10 attack resources. To spread
his attacks in equilibrium, P2 can first allocate 5 attack
resources to target one component in each monitoring
set (in layer 1). Then P2 can allocate 4 attack resources
to target one more component in each monitoring set
that is not fully targeted (in layer 2). Finally, P2



can uniformly randomize his remaining attack resource
among the remaining 3 monitoring sets that still have
untargeted components.

In particular, k∗ = 3 in this example, and an attack
strategy σ2∗ constructed from Lemma 1 is given as
follows:

σ2∗
T =


1
3 if T = T0 ∪ {e1,3}
1
3 if T = T0 ∪ {e2,3}
1
3 if T = T0 ∪ {e3,3}
0 otherwise,

where T0 = {e1,1, e2,1, e3,1, e4,1, e5,1, e1,2, e2,2, e3,2,
e4,2}. We note that σ2∗ satisfies conditions (2).

Since P1 has 4 > k∗ sensors, she cycles the
positioning of her 3 most accurate sensors among the
nodes v1, v2, v3, and deterministically positions her
remaining sensor at v4. The construction of such an
equilibrium inspection strategy σ1∗ from Lemma 1 is
given as follows:

σ1∗
s =


1
3 if s = (v1, v2, v3, v4)
1
3 if s = (v2, v3, v1, v4)
1
3 if s = (v3, v1, v2, v4)

0 otherwise.

The NE (σ1∗, σ2∗) is illustrated in Figure 3. In this
example, sensor 1 (in green) has accuracy λ1 = 0.9,
sensor 2 (in yellow) has accuracy λ2 = 0.5, sensor 3
(in orange) has accuracy λ3 = 0.4, and sensor 4 (in
maroon) has accuracy λ4 = 0.2.

b2 = 10

v1 v2 v3 v4 v5

1
3 1

3

1
3

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5

cycle

Figure 3. Example of a NE.

In this NE, we observe that the 3 most accurate
sensors are randomized so that the detection probability
of each node in {v1, v2, v3} has an identical detection
probability given by 1

3 (0.9 + 0.5 + 0.4) = 0.6. We also
note that node v5 is never monitored in this NE. The

expected number of attacks in each of the monitoring
sets Ev1 , Ev2 , Ev3 is given by 7

3 . Every component
in the remaining monitoring sets is deterministically
targeted. Thus, the value of the game Γ, i.e., the
expected number of undetected attacks in equilibrium,
for this example is given by 10−3×0.6× 7

3−0.2×2 =
5.4. 4

Theorem 1 demonstrates that there are scenarios
where it is beneficial for P1 to leave some components
completely unmonitored and instead allocate her
resources on parts of the network where there will be
a larger number of attacks. Such scenarios occur when
k∗ < n, i.e., when the number of attack resources
b2 is large enough and the monitoring sets are of
heterogeneous sizes.

Conversely, when k∗ = n, which occurs if and only
if b2 < n |Evn |, P1 randomizes her sensors over all
the nodes in the network and monitors every component
with identical probability. In fact, in such cases, we have
the following result:
Corollary 1. The set of equilibrium inspection
strategies is identical for any number of attack resources
satisfying b2 < n|Evn |.

Hence, if P1 does not know the exact number of
attack resources P2 has at his disposal, but knows that
b2 < n|Evn |, then she can compute an equilibrium
inspection strategy by simply assuming that b2 = 1.

Next, we investigate conditions under which P2
needs to use all of his b2 resources in equilibrium when
the monitoring sets are mutually disjoint:
Proposition 1. If b1 ≥ k∗ and λj = 1 for every j ∈
[k∗], then for any b2 > k∗|Evk∗+1

| +
∑n
j=k∗+1 |Evj |,

an attack plan T ∗ of size k∗|Evk∗+1
| +
∑n
j=k∗+1 |Evj |

that satisfies

∀j ∈ [n], |T ∗ ∩ Evj | = min{|Evj |, |Evk∗+1
|}

is an equilibrium attack strategy.
Otherwise, for any b2 ≤ |E|, any equilibrium attack

strategy σ2∗ necessarily randomizes over attack plans T
of size exactly b2.

This proposition shows that if P1 has at
least k∗ sensors with perfect detection accuracy,
then P2 does not need to utilize more than
k∗|Evk∗+1

| +
∑n
j=k∗+1 |Evj | attack resources in

equilibrium. Indeed, any additional attack resource
would be necessarily allocated to components
monitored by perfect sensors, and hence will be
detected with probability 1. Therefore, simply
targeting min{|Evj |, |Evk∗+1

|} components within
each monitoring set Evj ensures a maximum expected
number of undetected attacks in equilibrium.



Finally, the following proposition shows that P1
must always use all her sensors in equilibrium:
Proposition 2. For any b1 ≤ n, any equilibrium
inspection strategy σ1∗ necessarily randomizes over
sensor positionings s ∈ A1 such that sk 6= 0 for all
k ∈ [b1].

From this proposition, we conclude that in any NE,
P1’s inspection strategy must randomize over sensor
positionings that utilize all her resources when b1 ≤ n.

4. General Case Approximation

4.1. Solution Approach

In this section, we leverage our equilibrium results in
the case of disjoint monitoring sets to design a heuristic
approach for computing an approximate equilibrium
inspection strategy in general. In the general case when
monitoring sets are not necessarily disjoint, the main
challenge lies in determining the subset of nodes that
should receive sensors in equilibrium. As observed in
Section 3, P2 aims to spread his attacks to maximize the
number of undetected attacks. Therefore, P1’s incentive
is to position her sensors on nodes that collectively
monitor a large number of network components.

One natural candidate set of nodes to receive sensors
is given by a minimum set cover, i.e., a set of nodes
S ∈ 2V of minimum size that collectively monitors
all network components. Minimum set covers can be
obtained by solving the following optimization problem,
which can be formulated as an integer program:

min
S∈2V

|S| subject to ∪v∈S Ev = E.

Although the minimum set cover problem is
NP-hard, modern mixed-integer optimization solvers
can be used to optimally solve large-scale problem
instances [14].

To utilize our results in Section 3, we must recreate
an instantiation where the monitoring sets are mutually
disjoint. To this end, we partition the set of network
components by utilizing the monitoring sets of the nodes
in a minimum set cover S = {v′1, . . . , v′m} ∈ 2V .
In Theorem 1, we observed that P2 cannot spread his
attacks as much in the disjoint case when the monitoring
sets are of heterogeneous sizes, thus leading to a lower
expected number of undetected attacks. Hence, we
partition the set of network components into m subsets
by greedily assigning each component to the largest
monitoring set containing that component. Specifically,
we first determine the monitoring set Ev , v ∈ S of
maximum size, suppose it isEv′1 , and then remove every
component that belongs toEv∩Ev′1 (for all v ∈ S\{v′1})

from Ev . We then repeat this process with the second
largest monitoring set, and so on until each network
component belongs to exactly one set in the partitioning.

Once this partitioning is obtained, we have an
instance with m disjoint monitoring sets. From this,
we construct an inspection strategy σ1′ according to
Lemma 1 that satisfies (1) in Theorem 1. Since
equilibrium inspection strategies are optimal solutions
of (P) (see Section 2), we evaluate the performance of
our approximate inspection strategy σ1′ by computing
its objective value in (P), i.e., maxT∈A2

U(σ1′ , T ).
This determines the worst-case expected number of
undetected attacks if P1 selects σ1′ as her inspection
strategy. Since for every attack plan T ∈ A2,
U(σ1′ , T ) =

∑
e∈T U(σ1′ , e), the largest number

of undetected attacks can be efficiently computed by
greedily selecting the b2 components with highest
probability of undetection under σ1′ .

Our heuristic approach can be summarized as
follows:

Algorithm 1: Heuristic Approach
Input: – Set of nodes V

– Set of components E
– Monitoring sets Ev, v ∈ V
– Number of sensors b1 ∈ N
– Number of attack resources b2 ∈ N
– Sensors’ accuracies λk∈(0, 1], k∈[b1]

Result: – Inspection strategy σ1′ ∈ ∆(A1)
1 Compute a minimum set cover S={v′1, . . . , v′m}
2 Set E′v ← Ev, ∀v ∈ S
3 Set V ′ ← S
4 while V ′ 6= ∅ do
5 Select v′ ∈ arg max{|E′v|, v ∈ V ′}
6 E′v ← E′v \ (E′v′ ∩ E′v), ∀v ∈ V ′ \ {v′}
7 V ′ ← V ′ \ {v′}
8 end
9 Order the nodes in S so that

∣∣E′v′1 ∣∣≥· · ·≥∣∣E′v′m∣∣
10 k∗←min

{
k ∈ [m]

∣∣∣∣∣
b2 −

n∑
j=k+1

∣∣E′v′j ∣∣
k

≥
∣∣E′v′k+1

∣∣}
11 Construct σ1′ according to Lemma 1.

Next, we implement our heuristic approach on an
example network and evaluate the performance of the
resulting inspection strategies.

4.2. Computational Study

We consider the benchmark cyber-physical
distribution network given in Figure 4.



Figure 4. Benchmark Kentucky distribution network.

This real-world network from Kentucky is composed
of 420 nodes that can receive sensors, and 492
components that are vulnerable to cyber-physical
attacks, which induce disruptions. To detect these
attacks, we consider that the defender has access to
flow and pressure sensors that can be deployed at
access points and shifted from one to another. These
sensors can measure signals which can be used to detect
the sudden rate of change of pressure or mass flow
at different locations of the network. In our study,
we compute the monitoring set of each node through
simulations using a threshold-based detection model, as
proposed in [23, 24]. All network simulations were
implemented in Matlab, and all optimization problems
were solved using Gurobi on a computer with a 2.3 GHz
8-Core Intel Core i9 processor and 32 GB of RAM.

To evaluate the performance of our heuristic
approach we consider 10 game instances where P2
has b2 = 1 attack resource and P1 has b1 ∈ [10]
sensors, with sensor k ∈ [b1] having accuracy λk =
1 − 0.05(k − 1). For such instances, (P) only has
494 constraints since b2 = 1. Therefore, equilibrium
inspection strategies of Γ can be obtained by solving (P)
using the column generation algorithm.

We now implement our heuristic approach: We solve
the minimum set cover problem, and obtain a set of 19
nodes. Next, we greedily partition the set of network
components into 19 sets. Finally, we construct an
inspection strategy σ1′ according to Lemma 1. The
worst-case expected number of undetected attacks under
the inspection strategy σ1′ is then computed by selecting
the b2 components with the highest probability of not
being detected under σ1′ . In Figure 5, we illustrate for

b1 ∈ [10] the optimality gap achieved by σ1′ , i.e., the
relative difference between the worst-case performance
of σ1′ and the value of the game (given by the optimal
value of (P)).

1 2 3 4 5 6 7 8 9 10
0 %

0.4 %

0.8 %

1.2 %

1.6 %

2 %

b1

Figure 5. Optimality gap of the heuristic solution

when b2 = 1.

From Figure 5, we observe that our heuristic solution
achieves a detection performance that is close to the
detection performance in equilibrium. However, we
note that as the number of sensors increases, the
optimality gap associated with our heuristic solution
increases. This is due to the fact that when P1 has
more sensors, she can strategically coordinate their
positioning so as to maximize the detection probabilities
of the components that are monitored from multiple
locations. In contrast, our heuristic approach assigns
such components to a single monitoring set to construct
an inspection strategy using a disjoint instance.

Next, we compare in Figure 6 the running times
of our heuristic method with the running times of the
column generation algorithm for computing equilibrium
inspection strategies.

Interestingly, we observe that our heuristic solution
is obtained in 0.11 seconds, and this running time is
almost identical for any number of sensors. The reason
is that most of the running time is spent computing a
minimum set cover. As previously mentioned, although
this problem is NP-hard, it can be efficiently solved
by modern mixed-integer optimization solvers. In
contrast, the time required to compute an equilibrium
inspection strategy using column generation increases
exponentially with the number of sensors b1. This is
due to the fact that the number of variables in (P)
grows combinatorially with respect to b1. For instance,
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Figure 6. Running times (in seconds) of the column

generation algorithm and the heuristic method.

when b1 = 10, the number of variables in (P) is is
approximately 1.54 · 1026 for this network.

Finally, we note that the column generation
algorithm for computing equilibrium inspection
strategies cannot be used in practice when b2 > 1, as
the number of constraints in (P) grows combinatorially
with respect to b2. By leveraging the analytical
characterization derived in Section 3, our heuristic
approach remains scalable for any value of b1 and b2,
and can be implemented for large-scale networks, as
minimum set covers have been shown to be efficiently
solvable for networks containing more than 100,000
nodes and components [14].

5. Conclusion

In this paper, we studied a network inspection game
in which a defender allocates sensors with potentially
heterogeneous detection capabilities in order to detect
multiple attacks caused by a strategic attacker. In this
two-person zero-sum game, the defender (resp. attacker)
seeks to minimize (resp. maximize) the expected
number of undetected attacks by selecting a potentially
randomized inspection (resp. attack) strategy. When
the monitoring sets are mutually disjoint, we derived
an analytical characterization of a class of NE for this
game. Additionally, we studied the dependence of
these NE on the network topology, sensor accuracies,
and the number of resources the attacker has at his
disposal. We then leveraged our equilibrium analysis to

design a heuristic solution approach for the general case
based on minimum set covers. Our computational study
on a benchmark cyber-physical distribution network
showed that our heuristic approach is computationally
tractable and provides inspection strategies with good
detection performance. In future work, we aim to refine
our heuristic solution approach and provide theoretical
performance guarantees.
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