PAPERS
Applications
Uday Kamal, Saurabh Dash, Saibal Mukhopadhyay
ROSCOE: A Suite of Metrics for Scoring Step-by-Step Reasoning
Olga Golovneva, Moya Peng Chen, Spencer Poff, Martin Corredor, Luke Zettlemoyer, Maryam Fazel-Zarandi, Asli Celikyilmaz
AudioGen: Textually Guided Audio Generation
Felix Kreuk, Gabriel Synnaeve, Adam Polyak, Uriel Singer, Alexandre Défossez, Jade Copet, Devi Parikh, Yaniv Taigman, Yossi Adi
Xiangyu Peng, Chen Xing, Prafulla Kumar Choubey, Chien-Sheng Wu, Caiming Xiong
Parameter-Efficient Fine-Tuning Design Spaces
Jiaao Chen, Aston Zhang, Xingjian Shi, Mu Li, Alex Smola, Diyi Yang
Deep Learning and representational learning
Token Merging: Your ViT But Faster
Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, Judy Hoffman
Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning
Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, Tuo Zhao
Namjoon Suh, Tian-Yi Zhou, Xiaoming Huo
Equivariant Hypergraph Diffusion Neural Operators
Peihao Wang, Shenghao Yang, Yunyu Liu, Zhangyang Wang, Pan Li
FedSpeed: Larger Local Interval, Less Communication Round, and Higher Generalization Accuracy
Yan Sun, Li Shen, Tiansheng Huang, Liang Ding, Dacheng Tao
HomoDistil: Homotopic Task-Agnostic Distillation of Pre-trained Transformers
Chen Liang, Haoming Jiang, Zheng Li, Xianfeng Tang, Bing Yin, Tuo Zhao
Linearly Mapping from Image to Text Space
Jack Merullo, Louis Castricato, Carsten Eickhoff, Ellie Pavlick
General Machine Learning
Learning Hyper Label Model for Programmatic Weak Supervision
Renzhi Wu, Shen-En Chen, Jieyu Zhang, Xu Chu
LogicDP: Creating Labels for Graph Data via Inductive Logic Programming
Yuan Yang, Faramarz Fekri, James Clayton Kerce, Ali Payani
Spatio-temporal point processes with deep non-stationary kernels
Zheng Dong, Xiuyuan Cheng, Yao Xie
Generative models
gDDIM: Generalized denoising diffusion implicit models
Qinsheng Zhang, Molei Tao, Yongxin Chen
Discrete Predictor-Corrector Diffusion Models for Image Synthesis
Jose Lezama, Tim Salimans, Lu Jiang, Huiwen Chang, Jonathan Ho, Irfan Essa
Fast Sampling of Diffusion Models with Exponential Integrator
Qinsheng Zhang, Yongxin Chen
Score-based Continuous-time Discrete Diffusion Models
Haoran Sun, Lijun Yu, Bo Dai, Dale Schuurmans, Hanjun Dai
Machine Learning for Sciences
Competitive Physics Informed Networks
Qi Zeng, Yash Kothari, Spencer H Bryngelson, Florian Tobias Schaefer
Interpretable Geometric Deep Learning via Learnable Randomness Injection
Siqi Miao, Yunan Luo, Mia Liu, Pan Li
Optimization
Lingkai Kong, Yuqing Wang, Molei Tao
Probabilistic Methods
GRACE-C: Generalized Rate Agnostic Causal Estimation via Constraints
Mohammadsajad Abavisani, David Danks, Sergey Plis
Any-scale Balanced Samplers for Discrete Space
Haoran Sun, Bo Dai, Charles Sutton, Dale Schuurmans, Hanjun Dai
TILP: Differentiable Learning of Temporal Logical Rules on Knowledge Graphs
Siheng Xiong, Yuan Yang, Faramarz Fekri, James Clayton Kerce
Reinforcement Learning
In-context Reinforcement Learning with Algorithm Distillation
Michael Laskin, Luyu Wang, Junhyuk Oh, Emilio Parisotto, Stephen Spencer, Richie Steigerwald, DJ Strouse, Steven Stenberg Hansen, Angelos Filos, Ethan Brooks, maxime gazeau, Himanshu Sahni, Satinder Singh, Volodymyr Mnih
BC-IRL: Learning Generalizable Reward Functions from Demonstrations
Andrew Szot, Amy Zhang, Dhruv Batra, Zsolt Kira, Franziska Meier
Emergence of Maps in the Memories of Blind Navigation Agents
Erik Wijmans, Manolis Savva, Irfan Essa, Stefan Lee, Ari S. Morcos, Dhruv Batra
Learning Achievement Structure for Structured Exploration in Domains with Sparse Reward
Zihan Zhou, Animesh Garg
Planning with Sequence Models through Iterative Energy Minimization
Hongyi Chen, Yilun Du, Yiye Chen, Joshua B. Tenenbaum, Patricio A. Vela
Social Aspects of Machine Learning
CoRTX: Contrastive Framework for Real-time Explanation
Yu-Neng Chuang, Guanchu Wang, Fan Yang, Quan Zhou, Pushkar Tripathi, Xuanting Cai, Xia Hu
MultiViz: Towards Visualizing and Understanding Multimodal Models
Paul Pu Liang, Yiwei Lyu, Gunjan Chhablani, Nihal Jain, Zihao Deng, Xingbo Wang, Louis-Philippe Morency, Ruslan Salakhutdinov
Theory
On Accelerated Perceptrons and Beyond
Guanghui Wang, Rafael Hanashiro, Etash Kumar Guha, Jacob Abernethy
Xiang Ji, Minshuo Chen, Mengdi Wang, Tuo Zhao
Unsupervised and Self-supervised learning
Biswadeep Chakraborty, Saibal Mukhopadhyay
Shancong Mou, Xiaoyi Gu, Meng Cao, Haoping Bai, Ping Huang, Jiulong Shan, Jianjun Shi
SlotFormer: Unsupervised Visual Dynamics Simulation with Object-Centric Models
Ziyi Wu, Nikita Dvornik, Klaus Greff, Thomas Kipf, Animesh Garg
Unsupervised 3D Object Learning through Neuron Activity aware Plasticity
Beomseok Kang, Biswadeep Chakraborty, Saibal Mukhopadhyay
Unsupervised Learning for Combinatorial Optimization Needs Meta Learning
Haoyu Peter Wang, Pan Li
MORE RESEARCH
GeneDAE: A Sparse Denoising Autoencoder for Deriving Interpretable Gene Embeddings
Monica Isgut, Neha Jain, Andrew Hornback, Karan Samel, May Dongmei Wang
ICLR 2023 Workshop on Sparsity in Neural Networks: On practical limitations and tradeoffs between sustainability and efficiency
How to uncover the hierarchical modularity of a task through pruning and network analysis methods?
Shreyas Malakarjun Patil, Constantine Dovrolis