Spin echo

$$
1 / 2 \pi l_{x}-t-\pi l_{y}-t
$$

t : as needed, not correlated with $1 / \mathrm{J}$.

Functions: 1. refocusing; 2. decoupling.

- Chemical shift evolution is refocused by the spin-echo.
- Heteronuclear J-couplings evolution are refocused by a spin-echo. Because only one spin experiences a 180° pulse.
- Homonuclear couplings evolution are not refocused by a spin-echo. Because both spins experiences a 180° pulse.
- It's also used for decoupling $\mathrm{H}^{1}-\mathrm{N}^{15}$ by refocusing the H^{1} magnetization.

INEPT - Insensitive Nucleus Enhanced by Polarization Transfer

$$
t=1 /\left(4^{* 1} \mathrm{~J}_{\mathrm{CH}}\right)=1 /\left(4^{*} 212 \mathrm{~Hz}\right)=1.18 \mathrm{~ms}
$$

INEPT sequence: transfer of population differences from ${ }^{1} \mathbf{H}$ to $\mathrm{X}\left(\mathrm{X}:{ }^{13} \mathrm{C}\right.$, ${ }^{15} \mathrm{~N}$ etc. ${ }^{1} \mathrm{H}$ and X are J-coupling interaction), (by inversion of populations of proton, \rightarrow changing populations of spin X). It can enhance signal intensity of X by $\gamma_{\mathrm{H}} / \gamma_{\mathrm{X}}\left({ }^{13} \mathrm{C}, \sim 4 ;{ }^{15} \mathrm{~N}, \sim 10\right)$, and is widely used in NMR experiments.

Refocused INEPT and Product operator analysis: - right hand rule

Reverse INEPT --- the reverse transfer is achieved.

${ }^{1} \mathrm{H}$

$$
t=1 /\left(4^{* 1} \mathrm{~J}_{\mathrm{CH}}\right)=1 /\left(4^{*} 212 \mathrm{~Hz}\right)=1.18 \mathrm{~ms}
$$

${ }^{13} \mathrm{C}$

In real 2D or 3D expt., the first 90 pulse on the ${ }^{13} \mathrm{C}$ is not needed because the antiphase magnetization is already present after t1 evolution, the reverse INEPT looks like the following in HSQC:

HSQC - Heteronuclear Single-Quantum Coherence

HSQC product operator analysis:

Here is the end of t_{1}.

PEP-HSQC keep this term too, increase sensitivity by up to $\sqrt{ } 2$.
$1 / 2 \pi\left(\mathrm{I}_{\mathrm{x}}+\mathrm{S}_{\mathrm{x}}\right)-\tau-\pi\left(\mathrm{I}_{\mathrm{x}}+\mathrm{S}_{\mathrm{x}}\right)-\tau$

The chemical shift of spin S cosine modulates the amplitude of peak I.

1. HSQC and HMQC provide single-bond heteronuclear shift correlations, the correlation data are equivalent for both.
2. Historically, HSQC is favored by biological community, and presents ${ }^{\mathbf{1}} \mathbf{H}$ ${ }^{15} \mathrm{~N}$ correlations in protein molecules; HMQC is favored by chemical community, and presents ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ correlations in small organic molecules.
3. Both HSQC and HMQC have the following 3 feathers:

- From known proton assignments, get to know the correlated heteronucleus assignments.
- Proton peaks disperse according to the heteronucleus shift.
- Can identify diastereotopic geminal pairs.

4. Only difference between HSQC and HMQC is during t_{1} period:

- HSQC, only heteronulear transverse SQ magnetization ($-2 I_{z} S_{y}$) evolves, - HMQC, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ MQ coherence $\left(-2 \mathrm{I}_{\mathrm{x}} \mathrm{S}_{\mathrm{y}}\right.$) evolves.

5. In HSQC, homonuclear ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ couplings do not influence heteronuclear X $\left(S_{y}\right)$ magnetization evolution \rightarrow signals do not contain homonuclear ${ }^{1} H-{ }^{1} H$ couplings along $\mathrm{f}_{1} \rightarrow$ improve resolution in $\mathrm{f}_{1} \rightarrow$ this is the principle advantage of HSQC over HMQC for small organic molecules. But HSQC use more pulses, especially 180° pulses on heteronuclears \rightarrow promoting intensity losses from pulse miscalibration, rf inhomogeneity...

PEP-HSQC --- "Preservation of Equivalent Pathways" developed by Rance and coworkers

After the first INEPT, $I_{z} \rightarrow-2 I_{z} S_{y}$, after t_{1} evolution ($\left.t_{1} / 2-\pi\left(I_{x}+K_{x}\right)-t_{1} / 2\right)$, $-2 I_{z} S_{y} \rightarrow 2 I_{z} S_{y} \cos \left(\Omega_{s} t_{1}\right)-2 I_{z} S_{x} \sin \left(\Omega_{s} t_{1}\right)$; these two orthogonal terms can be preserved, and sensitivity can be improved by a factor up to $\sqrt{ } 2$. When processing these kinds of 2D or 3D spectra, one should choose "Rance-Kay" as yMODE or zMODE in nmrPipe process macro. (Not for Bruker data.)

S3 ${ }^{3}$ T : spin-state-selective coherence transfer

The $\mathrm{S}^{3} \mathrm{CT}$ element can convert ZQ and DQ coherences to SQ coherence.

