Spin echo

Functions: 1. refocusing; 2. decoupling.

- Chemical shift evolution is refocused by the spin-echo.
- Heteronuclear J-couplings evolution are refocused by a spin-echo. Because only one spin experiences a 180° pulse.
- Homonuclear couplings evolution are not refocused by a spin-echo. Because both spins experiences a 180° pulse.
- It's also used for decoupling H¹-N¹⁵ by refocusing the H¹ magnetization.

INEPT – Insensitive Nucleus Enhanced by Polarization Transfer

 $t = 1/(4^{*1}J_{CH}) = 1/(4^{*2}12Hz) = 1.18ms$

INEPT sequence: transfer of population differences from ¹H to X (X: ¹³C, ¹⁵N etc. ¹H and X are J-coupling interaction), (by inversion of populations of proton, \rightarrow changing populations of spin X). It can enhance signal intensity of X by $\gamma_{\rm H}/\gamma_{\rm X}$ (¹³C, ~4; ¹⁵N, ~10), and is widely used in NMR experiments.

Reverse INEPT ---- the reverse transfer is achieved.

In real 2D or 3D expt., the first 90 pulse on the ¹³C is not needed because the antiphase magnetization is already present after t1 evolution, the reverse INEPT looks like the following in HSQC:

HSQC — Heteronuclear Single-Quantum Coherence

HSQC product operator analysis:

 $\frac{1}{2}\pi(I_{x}+S_{x}) - \tau - \pi(I_{x}+S_{x}) - \tau$ $+2I_zS_vcos(\Omega_st_1)$ $-2I_zS_xsin(\Omega_st_1)$ $\frac{1}{2\pi I_{x}}$ $\frac{1}{2}\pi I_x$ $-2I_vS_vcos(\Omega_st_1)$ $+2I_vS_x\sin(\Omega_s t_1)$ $| \frac{1}{2}\pi S_x$ $\int \frac{1}{2}\pi S_x$ $-2I_vS_z\cos(\Omega_s t_1)$ $+2I_vS_x\sin(\Omega_s t_1)$ E/2 $+2I_vS_x\sin(\Omega_st_1)\bullet$ $+I_x \cos(\Omega_s t_1)$ • $-2I_vS_z\cos(\Omega_s t_1)$ • $\cos(\pi J \tau)$ $sin(\pi J\tau)$ $\cos(\pi J \tau)$ $| \pi \mathbf{I}_{\mathbf{x}} |$ $|\pi|_{x}$ $|\pi I_x|$ $+I_x \cos(\Omega_s t_1)$ • $-2I_vS_x\sin(\Omega_st_1)$ • $+2I_vS_z\cos(\Omega_s t_1)$ • $\cos(\pi J \tau)$ $sin(\pi J\tau)$ $\cos(\pi J\tau)$ πS_{r} πS_{v} πS_{v} $-2I_vS_x\sin(\Omega_s t_1)$ • $+I_x \cos(\Omega_s t_1) \bullet$ $-2I_vS_z\cos(\Omega_s t_1)$ • $\cos(\pi J \tau)$ $sin(\pi J\tau)$ $\cos(\pi J \tau)$ $+2I_vS_z\cos(\Omega_s t_1)$ • $-2I_yS_z\cos(\Omega_s t_1)$ • $+I_x \cos(\Omega_s t_1)$ • $-2I_vS_x\sin(\Omega_st_1)$ • $+I_x \cos(\Omega_s t_1) \bullet$ $sin(\pi J\tau)$ • $\cos(\pi J \tau)$ • $\cos(\pi J\tau)$ • $\cos(\pi J\tau)$ $\cos(\pi J \tau)$ • $sin(\pi J\tau)$ $\cos(\pi J \tau)$ $sin(\pi J\tau)$ $sin(\pi J\tau)$ + $I_v S_z cos(\Omega_s t_1)$ If $\tau = 1/(4J)$, $-I_v S_z cos(\Omega_s t_1)$ $+I_x \cos(\Omega_s t_1)$

+ $I_x cos(\Omega_s t_1)$

- 1. HSQC and HMQC provide single-bond heteronuclear shift correlations, the correlation data are equivalent for both.
- 2. Historically, HSQC is favored by biological community, and presents ¹H-¹⁵N correlations in protein molecules; HMQC is favored by chemical community, and presents ¹H-¹³C correlations in small organic molecules.
- 3. Both HSQC and HMQC have the following 3 feathers:
 - From known proton assignments, get to know the correlated heteronucleus assignments.
 - Proton peaks disperse according to the heteronucleus shift.
 - Can identify diastereotopic geminal pairs.
- 4. Only difference between HSQC and HMQC is during t₁ period:
 - HSQC, only heteronulear transverse SQ magnetization (-2I_zS_y) evolves,
 - HMQC, $^{1}H-^{13}C$ MQ coherence ($-2I_{x}S_{y}$) evolves.
- 5. In HSQC, homonuclear ¹H-¹H couplings do not influence heteronuclear X (S_y) magnetization evolution → signals do not contain homonuclear ¹H-¹H couplings along f₁ → improve resolution in f₁ → this is the principle advantage of HSQC over HMQC for small organic molecules. But HSQC use more pulses, especially 180° pulses on heteronuclears → promoting intensity losses from pulse miscalibration, rf inhomogeneity...

PEP-HSQC --- "Preservation of Equivalent Pathways" developed by Rance and coworkers

After the first INEPT, $I_z \rightarrow -2I_zS_y$, after t_1 evolution $(t_1/2 - \pi(I_x+K_x) - t_1/2)$, $-2I_zS_y \rightarrow 2I_zS_ycos(\Omega_st_1) - 2I_zS_xsin(\Omega_st_1)$; these two orthogonal terms can be preserved, and sensitivity can be improved by a factor up to $\sqrt{2}$. When processing these kinds of 2D or 3D spectra, one should choose "Rance-Kay" as yMODE or zMODE in nmrPipe process macro. (Not for Bruker data.)

S³CT : spin-state-selective coherence transfer

The S³CT element can convert ZQ and DQ coherences to SQ coherence.