
 
 

 
 

Report from the Steering 
Committee Meeting on  
Open Source Software 

Security 
 

July 2022 

  



2 
 

ORGANIZERS 

NATIONAL SCIENCE FOUNDATION 

Nina Amla 

Robert Beverly 

Jeremy Epstein 

Sol Greenspan 

James Joshi 

Juliana Nazaré 

Daniela Oliveira  

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY 

Jon Boyens 

Cherilyn Pascoe 

Matthew Scholl 

Kevin Stine 

  



3 
 

STEERING COMMITTEE MEMBERS 

Abhishek Arya 
Principal Engineer and Head of Google Open Source Security Team 

 

Abhishek Arya is a Principal Engineer and head of the Google Open Source 
Security Team. His team has been a key contributor to various security 
engineering efforts inside the Open Source Security Foundation (OpenSSF). This 
includes the Fuzzing Tools (Fuzz-Introspector), Supply Chain Security Framework 
(SLSA, Sigstore), Security Risk Measurement Platform (Scorecards, AllStar), 
Vulnerability Management Solution (OSV) and Package Analysis project. Prior to 
this, he was a founding member of the Google Chrome Security Team and built 
OSS-Fuzz, a highly scaled and automated fuzzing infrastructure that fuzzes all of 
Google and Open Source. His team also maintains FuzzBench, a free fuzzer 
benchmarking service that helps the community rigorously evaluate fuzzing 
research and make it easier to adopt. 

  

David Brumley 
CEO and Co-Founder of ForAllSecure and Full Professor at Carnegie Mellon University 

 

Dr. David Brumley is CEO and co-founder of ForAllSecure and a full professor at 
Carnegie Mellon University.  His accomplishments include winning the DARPA 
Cyber Grand Challenge, a United States Presidential Early Career Award for 
Scientists and Engineers (PECASE) from President Obama, a Sloan Foundation 
award, a Carnegie Science Award, several patents, numerous academic papers, 
a DEFCON black badge, and mentoring one of the most competitive hacking 
teams in the world. 
 

 
  



4 
 

Deirdre Connolly 
Cryptographic Engineer at the Zcash Foundation 

 

Deirdre Connolly is a cryptographic engineer at the Zcash Foundation. She works 
on secure implementations of cryptographic software with an eye on privacy 
applications, misuse-resistance, and an eye on quantum adversaries. She 
obtained her BS from MIT in 2009. 

 
Alex Gaynor 
Deputy Chief Technologist for Security at the Federal Trade Commission 

 

Alex currently serves as Deputy Chief Technologist for Security at the Federal 
Trade Commission. Prior to that he was at the United States Digital Service. He 
has previously worked at Alloy, Mozilla, and another stint at the United States 
Digital Service. Alex has a long history of involvement in the open source 
community. He is a core developer of the Python Cryptographic Authority and 
previously has served as a member of the board of directors of both the Python 
and Django Software Foundations. Alex lives in Washington, DC and likes delis 
and bagels. 
 

Royal Hansen 
Vice President of Privacy, Safety, and Security at Google 

 

 

Royal Hansen is Vice President of Privacy, Safety & Security at Google, where he 
is responsible for driving strategy and implementation in these areas across the 
company’s technical infrastructure and product lines. There, he was responsible 
for solutions protecting the security and integrity of the company’s technology 
systems and the customer, business, and employee information they processed. 
Before American Express, Royal served as both the Managing Director, 
Technology Risk and the Global Head of Application Security, Data Risk and 
Business Continuity Planning at Goldman Sachs. Royal was also previously at 
Morgan Stanley and Fidelity Investments, where he managed Enterprise IT Risk, 
Application Security and Disaster Recovery. Royal began his career as a software 
developer for Sapient before building a cyber-security practice in the financial 
services industry at @stake, which was acquired by Symantec. Royal holds a BA 
in Computer Science from Yale University. He was awarded a Fulbright Fellowship 
in information sciences and Arabic language study, which he completed at the 
United Arab Emirates University. 
 



5 
 

Sumana Harihareswara 
Project Manager, Programmer, and Trainer at the Python Software Foundation's Packaging 

Working Group and Founder of Changeset Consulting 

 

Sumana Harihareswara is a project manager, programmer, and trainer who leads 
a consultancy working with open source software projects and maintainers. She 
led the rollout of the next-generation PyPI.org and pip resolver, and has worked 
on HTTPS Everywhere, Autoconf, Mailman, MediaWiki, and several other open 
source projects across industry, academia, nonprofits, and volunteer settings. 
She works with the Secure Systems Lab at New York University on securing the 
software supply chain in Python and is a member of the Python Software 
Foundation's Packaging Working Group. She is writing a book on rejuvenating and 
managing legacy open source projects and teaches workshops in maintainership 
skills. She earned an Open Source Citizen Award in 2011 and a Google Open 
Source Peer Bonus in 2018. She lives in New York City and founded Changeset 
Consulting in 2015. 

 

Angelos Keromytis 
Professor, John H. Weitnauer Technology Transition Endowed Chair, and Georgia Research 

Alliance (GRA) Eminent Scholar at the Georgia Institute of Technology 

 

Dr. Angelos Keromytis is Professor, John H. Weitnauer Technology Transition 
Endowed Chair, and Georgia Research Alliance (GRA) Eminent Scholar at the 
Georgia Institute of Technology. He is an ACM and IEEE Fellow, and President of 
Voreas Laboratories Inc and Aether Argus Inc, two Georgia Tech 
technology spinoffs. He has served as Program Director with the National Science 
Foundation and Program Manager at DARPA. His field of research is systems and 
network security, and applied cryptography. 

 
  

 
  



6 
 

Mathias Payer 
Associate Professor, École Polytechnique Fédérale de Lausanne (EPFL) 

 

Mathias Payer is a security researcher and associate professor at EPFL, leading 
the HexHive group. His research focuses on protecting applications in the 
presence of vulnerabilities, with a focus on memory corruption and type 
violations. He is interested in software security, system security, binary 
exploitation, effective mitigations, fault isolation/privilege separation, strong 
sanitization, and software testing (fuzzing) using a combination of binary analysis 
and compiler-based techniques.  
 

Eric Rescorla 
Chief Technology Officer, Firefox at Mozilla 

 

Eric Rescorla is Chief Technology Officer, Firefox at Mozilla, where he is 
responsible for setting the overall technical strategy for the Firefox browser.  He 
has contributed extensively to many of the core security protocols used in the 
Internet, including TLS, DTLS, WebRTC, ACME, and QUIC.  He was editor of TLS 
1.3, which secures over 50% of web sites. In order to remove barriers to 
encryption on the web, he co-founded Let’s Encrypt, a free and automated 
certificate authority that now issues more than a million certificates a day, and 
helped HTTPS grow from around 30% of the web to over 80%.  Previously, he 
served on the California Secretary of State's Top To Bottom Review where he was 
part of a team that found severe vulnerabilities in multiple electronic voting 
devices. 
 

Nikhil Swamy 
Senior Principal Researcher at Microsoft Research 

 

Nikhil is a Senior Principal Researcher at Microsoft Research (MSR) at its 
headquarters in Redmond, USA, where he has worked since 2008. His expertise 
is in programming language design and semantics, formal verification, and 
software security. He is perhaps best known for his work on F*, a proof-oriented 
programming language. Verified cryptographic algorithms, communication 
protocols, blockchain components, and network virtualization software 
produced in F* are deployed in the Linux kernel, in Windows, in the Microsoft 
Azure cloud, in the Firefox web browser, and several other industrial software 
components, improving computer security and reliability for billions of users 
every day. 
 

 



7 
 

David A. Wheeler 
Director of Open Source Supply Chain Security at The Linux Foundation 

 

Dr. David A. Wheeler is an expert on open source software (OSS) and on 
developing secure software. His works on developing secure software include 
"Secure Programming HOWTO", the Open Source Security Foundation (OpenSSF) 
Secure Software Development Fundamentals Courses, and "Fully Countering 
Trusting Trust through Diverse Double-Compiling (DDC)". He also helped develop 
the 2009 U.S. Department of Defense (DoD) policy on OSS. David A. Wheeler is 
the Director of Open Source Supply Chain Security at the Linux Foundation and 
teaches a graduate course in developing secure software at George Mason 
University (GMU). Dr. Wheeler has a PhD in Information Technology, a Master's 
in Computer Science, a certificate in Information Security, a certificate in 
Software Engineering, and a B.S. in Electronics Engineering, all from George 
Mason University (GMU). He is a Certified Information Systems Security 
Professional (CISSP) and Senior Member of the Institute of Electrical and 
Electronics Engineers (IEEE). He lives in Northern Virginia. 
 

Laurie Williams 
Distinguished University Professor in the Computer Science Department at North Carolina State 

University 

 

Laurie Williams is a Distinguished University Professor in the Computer Science 
Department at North Carolina State University (NCSU). Laurie is a co-director of 
the NCSU Secure Computing Institute, the NCSU Science of Security Lablet, and 
the North Carolina Partnership for Cybersecurity Excellence (NC-PaCE).  Laurie's 
research focuses on software security; agile software development practices 
and processes, particularly continuous deployment; and software reliability, 
software testing and analysis. Laurie is an IEEE Fellow and an ACM Fellow. Laurie 
received her Ph.D. in Computer Science from the University of Utah, her MBA 
from Duke University Fuqua School of Business, and her BS in Industrial 
Engineering from Lehigh University.   She worked for IBM Corporation for nine 
years in Raleigh, NC and Research Triangle Park, NC before returning to 
academia.   

 

 

 

 

  



8 
 

CONTENTS 
Executive Summary ....................................................................................................................................... 9 

Theme 1: Trust and Safety .......................................................................................................................... 13 

Theme 2: Memory-Safe Programming Languages ...................................................................................... 16 

Theme 3: Dependency Management ......................................................................................................... 18 

Theme 4: Behavioral and Economic Incentives to Secure Open Source Software ..................................... 20 

Conclusions ................................................................................................................................................. 23 

 

  



9 
 

EXECUTIVE SUMMARY 
 

The Steering Committee members met on May 20, 2022, to discuss four main themes related to the 

security of open source software: (1) trust and safety, (2) memory-safe programming languages, (3) 

dependency management, and (4) behavioral and economic incentives to secure the open source 

software (OSS) ecosystem. These themes were uncovered by NSF and NIST staff based on position 

statements submitted by each Committee member. 

For each theme, the structured discussion focused on answering the following questions:   

1. What is the problem? (i.e., define the problem)  

2. What about the problem do we not yet understand?  

3. Where are the boundaries of the problem? Are there any constants that cannot be changed?  

4. Who are the key stakeholders (e.g., specific sectors or people) to get involved? 

 

TRUST AND SAFETY 

While coding mistakes leading to vulnerabilities are the most common type of weakness in OSS projects, 

socio-technical vulnerabilities present real and challenging threats. This type of vulnerabilities can be 

decomposed into the following categories: 

1. Cyber social-engineering attacks in OSS code repositories, e.g., code contributions that attempt 

to insert vulnerabilities by pretending to offer bug fixes or new features. 

2. Attacks against the code repositories themselves, seeking to modify code or packages in 

surreptitious ways (e.g., bypassing code review). 

3. OSS developers/maintainers who started as or became malicious (e.g., bribed to insert a 

vulnerability). 

4. Malicious developer/maintainer ascendency leading to OSS project takeover (e.g., original 

developer paid to relinquish control). 

Socio-technical vulnerabilities in OSS projects is a challenging and under-studied topic. The Committee 

recommends that the following challenges be tackled. First, there are no good metrics on the prevalence 

and impact of such type of attacks and it is hard to distinguish among: (1) unintentional vulnerabilities, (2) 

vulnerabilities inserted by an external attacker subverting the project, and (3) vulnerabilities inserted by 

a developer/maintainer. The likelihood/prevalence decreases from (1) to (3), but severity and difficulty of 

detection increases. Second, there are no models for detection of malicious actors in the context of OSS 

project development and maintenance and no best practices for what to do once a bad actor is detected. 

For example, should a project keep the bad (developers/maintainers/software) out to begin with, or is it 



10 
 

acceptable to rely on detection and recovery/remediation of the process? It is likely that such socio-

technical issues are more pronounced in OSS ecosystems. For example, many critical OSS projects rely on 

a single maintainer, leading to a single point of failure of the OSS project, e.g., the developer might go 

rogue or fall for a social engineering attack. Finally, the community still does not know how to incentivize 

developers (especially in smaller projects) to adopt software security practices. 

MEMORY-SAFE PROGRAMMING LANGUAGES 

The software vulnerability landscape has not significantly changed in the last decade despite various 

innovations in exploit mitigations (e.g., Address Space Layout Randomization – ASLR- and Control Flow 

Integrity -CFI-) and software testing techniques (e.g., fuzzing and sanitization). Several recent reports1 

indicate that roughly 70% of all software vulnerabilities continue to be memory safety issues arising from 

the use of memory unsafe programming languages such as C and C++. How can we (gradually) transition 

software developers to use memory-safe languages?   

The Committee discussed several problems that have impeded this transition. Getting developers 

enthusiastic to learn and write in a new programming language while meeting their performance 

expectations is hard. Also, there is a large amount of legacy code and converting it to memory-safe 

programming languages will likely be a manual, cumbersome process that might take years.  

To make significant progress on this front, we need a better understanding of clear migration path for 

projects, tactical community interactions, and sustainable funding mechanisms and automation. While 

progress on transitioning software to memory-safe programming languages will mitigate memory 

corruption vulnerabilities, there is still the continued need for securing coding practices to prevent other 

classes of errors, such as design flaws, information disclosure, or Denial of Service -DoS- attacks. 

The Committee believes that the community needs to change the fundamental economics of software 

development. We need to incentivize developers to write secure code and make security a part of their 

training and course curriculums. The transition to memory-safe programming languages is several years 

away, but we can speed this process up by increasing investments in usability, interoperability, and 

automation. 

DEPENDENCY MANAGEMENT 

Software reuse is on the rise. Instead of writing code for a needed functionality themselves, developers 

are increasingly relying on external software libraries to fill that gap. This practice enables modularity, 

increases code reuse, and reduces software development costs. Similarly, if a software dependency is well 

developed and well maintained, then the overall security of the software will benefit. One example is 

 
1 Catalin Cimpanu. Microsoft: 70 percent of all security bugs are memory safety issues. February 11, 2019. ZDNet 
(https://www.zdnet.com/article/microsoft-70-percent-of-all-security-bugs-are-memory-safety-issues/). 



11 
 

widely used cryptographic libraries, which frees developers from having to implement their own 

cryptographic code. The downside of this practice of code reuse is that software dependencies become 

liabilities that need to be carefully managed. Any third-party code that is included in a software project 

becomes part of the trusted computing base of the developed software yet remains under external 

control. 

Key challenges of leveraging external software dependencies are: (1) tracking all dependencies, (2) 

keeping the dependencies up to date, and (3) detecting if any used feature has changed or requires an 

update. While bug fixes should be applied immediately, a developer may hold off on updates with feature 

changes as they will require changes to their code. 

Software dependency management is evolving, and different programming language and runtime 

environments have slightly different concerns and challenges. We must better understand the scope of 

the problem, such as how deep dependency chains are or how fast software changes. Alongside, we must 

define metrics on the security of software dependencies and develop technological solutions that 

empower developers to keep track of their externally included code. 

The Committee agrees that both research into solutions and metrics, along with development of better 

tooling will be necessary to address these challenges. Dependency management is an important and 

challenging problem that needs to be solved by integrating the solutions gradually into the developer 

workflow, enabling them to react to challenges whenever dependencies are updated. 

BEHAVIORAL AND ECONOMIC INCENTIVES TO SECURE THE OPEN SOURCE SOFTWARE 
ECOSYSTEM 

How do we incentivize cyber-resiliency in the teams of the volunteers that build open-source software 

(OSS)?  Resiliency includes both creating more secure software and creating robust systems for 

maintaining that security throughout the software lifecycle.   

The Linux Foundation reports2 that a key challenge is that OSS contributors are volunteers, and that 

efforts focused on increasing the time contributors spend on security are unlikely to be welcome.  Some 

studies 3 also show that most OSS developers have primarily non-monetary motivations, thus purely 

economic incentives (e.g., paying for better maintenance) are likely insufficient.  

Despite indications that monetary compensation alone does not necessarily drives developers towards 

security practices, we do not know what incentive structures would work.  Thus, the Committee’s 

 
2 The Linux Foundation & The Laboratory for Innovation Science at Harvard.  Report on the 2020 FOSS Contributor Survey, 
2020. 
3 Dr. Oliver Alexy. Free Revealing: How Firms Can Profit From Being Open (Innovation und Entrepreneurship). Gabler Verlag, 
2009. 



12 
 

consensus is that the U.S. needs to fund and conduct more research into the behavioral and economics 

aspects of OSS software development security in at least three areas: 

1. Software development lifecycle. What incentive structures would encourage volunteer OSS 

developers to incorporate better software security practices? And how do we provide this 

information to developers?  During the software lifecycle, what incentive models encourage 

active and speedy remediations when security issues are discovered? What if there is only one 

primary developer, and they leave the project?  Are incentives purely contributor-based, or are 

there other incentive models, such as matching security experts to OSS projects? 

 

2. Using paid professional development/assistance wisely. How can we leverage the limited 

amounts of government, industry, and professional assistance to maximize our overall security 

posture?  How do we assess the security of OSS dependencies beyond the vendor-independent 

fashion? And how do we ensure that we encourage security practices in small startups rather than 

predominantly in large existing businesses?  Can we identify the weakest links, shore up security, 

and then rinse and repeat with the next highest priority?  For example, companies often 

professionally support OSS projects (e.g., through grants, computing resources, or paid on-going 

development), but cannot support every single project they depend upon.  How does the U.S. 

government, as well as individual companies, get the most bang for their buck out of the limited 

professional funding and development we can put behind OSS? 

 

3. Informed choice. Today’s OSS consumers (commercial users, governments, and even other OSS 

projects) do not heavily weigh security when making choices. How do we make security a priority 

feature in software development processes? 

These challenges also require that we create metrics to estimate whether security is improving or not. We 

do have some data, such as the total number of vulnerabilities and the total number of new OSS projects 

created each year. However, we do not have a code index for security to measure whether we are trending 

to more secure or less secure software on average over time.   



13 
 

THEME 1: TRUST AND SAFETY 

DISCUSSION LEAD: LAURIE WILLIAMS 

SCRIBE: ANGELOS KEROMYTIS 

WHAT IS THE PROBLEM? 

The Committee focused on the issue of socio-technical vulnerabilities of open source software (OSS) 

projects, decomposed to several different threat vectors/weaknesses: 

1. Cyber social-engineering attacks in OSS code repositories (e.g., code contributions that attempt 

to insert vulnerabilities by pretending to offer bug fixes or new features). 

2. Attacks against the code repositories themselves, seeking to modify code or packages in 

surreptitious ways (e.g., bypassing code review). 

3. OSS developers/maintainers who started as or became malicious (e.g., bribed to insert a 

vulnerability). 

4. Malicious developer/maintainer ascendency in a collaborative project or OSS project takeover 

(e.g., original developer paid to relinquish control). 

The group discussed the full scope of such socio-technical vulnerabilities in OSS, trying to bound the 

problem. In particular, there was lively discussion on the issue of coding mistakes that lead to 

vulnerabilities, which is viewed as by far the most common case. While there is a danger of over-expanding 

the problem scope, there was general agreement that finding ways to incentivize developers (especially 

in smaller projects) to adopt software security/quality tools and workflows is an open problem. 

While many of the same issues can manifest in commercial software development, vendors typically (but 

not always) do some type of background check of employees. Differently from commercial software 

development, OSS is driven by reputation, desire to participate, and quality of contributions, and these 

socio-technical issues manifest more acutely in such environment. 

Furthermore, many critical/widely used OSS projects/packages rely on a single maintainer, which 

increases the likelihood of attacks exploiting the weaknesses described above. For example, the scenario 

of an OSS contributor going rogue and eschewing any type of code peer review for components they are 

responsible for is not far-fetched. Thus, in such resource-limited projects, how do we incentivize good 

processes? Furthermore, many projects are critical but tiny (e.g., many Node Package Manager -NPM- 

projects have zero or one functions), which makes it hard to motivate and justify significant investment 

of resources, including time and effort, by the maintainers.  



14 
 

WHAT ABOUT THE PROBLEM DO WE NOT YET UNDERSTAND? 

The Committee agreed that we do not have models for detection of malicious actors in the context of OSS 

project development and maintenance. Research and products on insider threats are generic and do not 

address the specifics of software development, much less OSS development. 

The Committee is in consensus that it is hard to distinguish among: (1) unintentional vulnerabilities, (2) 

vulnerabilities inserted by an external attacker subverting the project, and (3) vulnerabilities inserted by 

a developer/maintainer. The likelihood/prevalence decreases from (1) to (3), but probable severity and 

difficulty of detection increases. What are the different classes of mechanisms that are applicable in each 

case, and how can they be made practical to wide adoption and use? One challenge to be confronted is 

that there are no good metrics on the prevalence and impact of these types of attacks.  

It is also hard to understand the “good” vs “bad” software packages, or even compare functionalities. 

Generally, developers do not understand the security/reliability guarantees they get from shared 

packages. This issue ties into Theme 4 - Behavioral and Economic Incentives to Secure the Open Source 

Software Ecosystem. 

Abstractly, establishing and managing trust seems key to addressing some of these issues. What does 

trust mean here, and to what does trust apply? Rather than applying trust only to the concrete outcome, 

perhaps we should build trust in the development process. 

The Committee posed the following question on resilience: Do we keep the bad 

(developers/maintainers/software) out to begin with, or is it acceptable to rely on detection and 

recovery/remediation of the process? We do not understand the tradeoffs involved, especially when 

downstream users, who may be software vendors/developers, are concerned. 

If we assume that there will be compromise and that we need to be in a better position to react, what can 

we do to harden OSS projects/systems and their dependencies? 

What processes and metrics can there be to understand the trust chain of a package and its 

development/maintenance process? We cannot secure everything, so it is necessary to prioritize projects. 

If a developers’ reputation and/or credibility is an input to these metrics, how can it be measured and 

formalized? Can developers’ reputation be made robust against the types of adversarial behavior 

identified above (e.g., patient malicious contributors)? 

What does the implicit web of trust on sharing ownership and maintenance of OSS projects look like? Is 

there value in making this web of trust explicit? What would be the best way to provide guidance on how 

an individual OSS maintainer can do this in a responsible way (see Theme 4 discussion)? “Artificial 

Intelligence (AI) for code” is starting to be adopted, currently assisting code development, but eventually 



15 
 

perhaps leading to completely automatically generated code. How does “trust” translate in such scenario, 

not just for training data (inputs to the AI model), but on the output (i.e., produced code)? 

WHERE ARE THE BOUNDARIES OF THE PROBLEM? ARE THERE ANY CONSTANTS THAT CANNOT 
BE CHANGED? 

Generally, it was unclear to the Committee how far down the software supply chain one could or should 

go in addressing socio-technical vulnerabilities. For example, OSS projects are widely used in closed source 

but very popular ecosystems (e.g., app stores and associated platforms).  What is the interface between 

the open source and closed source software project worlds? While it would be great to have high-quality 

and high-assurance open source ecosystems, it is probably unrealistic to expect that end users’ (e.g., a 

cellphone consumer) preferences could be influenced significantly by such concerns. 

A big constraint is the large volume of software written in legacy code, which is unlikely to be re-written 

(and its dependencies migrated) anytime soon (see Theme 2 - Memory-safe Programming Languages for 

details) without some technological breakthrough, such as high-quality software translation. 

Often, there is close integration between package managers and programming language runtimes (e.g., 

NPM and JS/NodeJS4). While there are efforts to create universal package management tools, wherein 

various conceivable solutions could be integrated (e.g., Software Bill of Materials - SBOM - 

propagation/handling), in at least the near- and medium-term, any solution would have to deal with 

heterogeneous environments, as well as different rates of development across dependent packages. 

Ultimately, OSS developers get to choose the programming language and runtime environment to use, 

thus “memory safety” may not be something that they can be induced or incentivized to do. Are there 

solutions that can work in the presence of security-obstinate or disinterested (but not malicious) 

developers?  

When it comes to certain trust-building techniques, identity would appear to play a key role. How does 

that interact with privacy of these same developers? Furthermore, OSS development is global in nature; 

and yet, we live in an increasingly balkanized world. Is it possible to reconcile security-motivated 

restrictions (e.g., countries with foreign assets prohibition) with openness? 

It is also important to encourage the use of multi-factor authentication to limit the scope of exploitation 

of social engineering attacks, at least for the low-level (or most common) threats, especially against 

weakness number 2 listed above: attacks against the code repositories themselves, seeking to modify 

code or packages in surreptitious ways.  

 

 
4 An open-source JavaScript runtime environment that executes JavaScript code outside a web browser. 



16 
 

THEME 2: MEMORY-SAFE PROGRAMMING LANGUAGES 

DISCUSSION LEAD: ALEX GAYNOR 

SCRIBE: ABHISHEK ARYA 

WHAT IS THE PROBLEM? 

C and C++ are widely used programming languages and are a critical part of Internet users’ common day-

to-day activities, from the underlying operating systems (e.g., Windows, Linux) to web browsers, 

databases, and cloud applications. On one hand, these languages have high performance benefits and 

allow communication with lower layers of computer systems abstraction.  On the other hand, these 

languages are the leading cause of memory safety vulnerabilities that are explored in many cyberattacks. 

As per several recent reports1, roughly 70% of all software vulnerabilities are memory corruption issues 

coming from the use of these memory unsafe programming languages.  While exploit mitigations and 

automated testing have helped reduce bugs and made code exploitation harder, memory corruption 

errors are still widespread across software developed in memory unsafe programming languages. 

Over the last decade, we have seen the rise of several memory-safe programming languages, such as Rust 

and Go. They provide end-to-end memory management, hence mitigating several classes of memory 

safety bugs, such as buffer overflows, use-after-frees, and programming language type confusions.  We 

would have expected the software development community to have transitioned to these safer 

programming languages by now, but that has not been the case. One of the unsolved problems is how to 

incentivize new developers and their organizations to write code in these memory-safe languages, while 

maintaining certain performance and interoperability expectations. Another challenge is the large amount 

of legacy code, which makes rewriting it in memory safe languages either infeasible or extremely time-

consuming (probably years to conclude).  

Another issue is that, despite the security guarantees of memory-safe programming languages, there is 

always the risk that code written in such languages bypasses available safety guarantees via, for example, 

the use of unsafe modes or calls into unsafe third-party code.  

WHAT ABOUT THE PROBLEM DO WE NOT YET UNDERSTAND? 

In general, we do not understand the methodology and feasibility of transitioning projects, especially 

large, complex projects like operating systems, web browsers, or language environments to memory-safe 

programming languages. We lack an understanding of the community and ecosystem interactions needed 

to navigate through such a massive change. Also, it is unclear how we can expect critical projects to 

undertake these long-term initiatives without any sustainable funding incentives. 



17 
 

Several of the recent initiatives of adding support for memory-safe programming languages in critical 

places, such as the Linux kernel and web browsers, have been slow and painful due to a lack of 

understanding on where to start and whether any parts of this process could be automated (e.g., through 

shim5 generation). Another set of challenges are in the embedded device space, where there is limited 

availability of memory-safe languages (C is the most widely used) and no clear solution on how to update 

these devices to another language. 

While memory-safe programming languages will fix most classes of memory corruption vulnerabilities, 

they should not be considered a panacea. There are several classes of bugs that impact memory safe 

languages, such as remote code execution (e.g., the log4j vulnerability), information disclosure, and denial 

of service (DoS) attacks. As we encourage developers to transition to memory safe languages, it will be 

important to educate them on secure coding techniques to avoid introducing these other types of 

vulnerabilities. 

WHERE ARE THE BOUNDARIES OF THE PROBLEM? ARE THERE ANY CONSTANTS THAT CANNOT 
BE CHANGED? 

To make progress on this front, we need some fundamental changes in the economics of software 

development. Currently, a developer makes a programming language choice for their project based on 

their own interests and knowledge, without considering security risks. A large percentage of software is 

developed by early-career developers whose focus is on writing more code, rather than secure code. 

There are several constraints that the Committee finds hard to change. One of them is the large amount 

of C/C++ legacy code that will take several years (if at all) to transition to a memory-safe variant. Currently, 

there are no requirements to transition away from them within critical systems, such as national defense, 

energy, and healthcare sectors. The lack of such requirements potentially creates a lack of incentive to 

transition.  Another constraint is the need for scalable funding models to help projects invest in these 

long-term initiatives and ways to deal with the migration challenges in regular software release cycles 

(e.g., Application Programming Interface -API- breakages, community acceptance, or user upgrades). We 

need to assume that the community transition to memory-safe programming languages is several years 

away, but we can speed up this process by increasing investments in usability, interoperability, and 

automation. 

  

 
5 From www.quora.com: “A shim is a small piece of software that fits between two layers of software that communicate with 
each other and is typically used to adapt one interface to another”. 

http://www.quora.com/


18 
 

THEME 3: DEPENDENCY MANAGEMENT 

DISCUSSION LEAD: ERIC RESCORLA 

SCRIBE: MATHIAS PAYER 

WHAT IS THE PROBLEM?  

The Committee is in consensus that the problem of software dependencies boils down to external 

software libraries becoming security liabilities. Software increasingly relies on third-party libraries that are 

included into the trusted computing base of the software. Due to lack of compartmentalization, any library 

included in a software project gets full privileges of all the software. The more libraries are included, the 

higher the risk of a developer either overlooking a vulnerability in a library or a library becoming a liability. 

Keeping track of software dependencies and their versions is extremely challenging. Thus far, there are 

no best practices for software dependency management and tools have no defined feature lists. Each 

software project is required to develop their own best practices. Software development strategies are 

changing and the practice of reusing existing functionality (instead of writing them from scratch) is 

increasingly encouraged. This leads to developers freely including dependencies for small functionality 

without considering the long-term effects of future engineering burdens and the security risk of externally 

controlled code. For example, Kubernetes, a container system for automating software deployment, now 

has more than 1000 dependencies. While some platforms like Rust, Python, or Node Package Manager 

(NPM) provide (inconsistent) dependency management systems, software written in C/C++ have no 

dependency management support at all. The only weak version of a dependency management system for 

C/C++ offering some consistency is the package manager of the underlying operating system, which 

provides a “bare bones” version of packages. 

One of the key challenges is that software library dependencies cannot simply be updated to their most 

recent version because their features and functionalities may change, thus potentially causing 

inconsistencies or failures in the software using them. While bug fixes should be applied immediately, a 

developer may hold off on updates with feature changes, as such changes will require modifications to 

their code and may also break existing tests and functionality. Developers value stability and, thus far, 

there is no way to distinguish security patches from feature updates, especially when going deeper in the 

dependency chain. Interoperability between different dependency management tools (if they even exist) 

is challenging. Software projects cannot easily support different kinds of dependency managers because 

of software legacy ties and the complexity of these managers. We will require powerful and flexible 

tooling to mitigate the risk of libraries becoming security liabilities. 



19 
 

WHAT ABOUT THE PROBLEM DO WE NOT YET UNDERSTAND? 

As software dependencies are evolving, we must better understand the scope. So far, we neither 

understand the breadth nor the depth of the problem. Dependency management has only recently 

started to evolve, together with the change in developers’ best practices of aggressively reusing 

components and quickly releasing new software library versions. Different programming languages have 

different challenges. We will have to infer the fanout depth for each language to evaluate to what extent 

different programming languages or platforms are prone to dependency violations. For C/C++, for 

instance, we need to figure out if some form of dependency management system is even feasible as so 

far, we rely on the operating system to provide this information. For example, the Debian package 

management system uses maintainers of software packages to keep track with upstream and to backport 

patches to their old and stable versions. This requires substantial work by maintainers to keep track with 

upstream and to provide patches for downstream. Other distributions have moved to a more aggressive 

model where they simply more closely follow the latest version of software libraries, likely at a more 

frequent exposure to security vulnerabilities. 

WHERE ARE THE BOUNDARIES OF THE PROBLEM? ARE THERE ANY CONSTANTS THAT CANNOT 
BE CHANGED? 

The focus of this theme’s discussion was primarily technical. While there will be human-based solutions 

and human-based training for some of the other themes, this theme will be primarily driven by advances 

in technology and tools. The boundaries are therefore the build infrastructure and the surrounding 

tooling. Similarly, secure distribution of signed binaries to customers, potentially along with pushing for 

reproducible builds (i.e., ensuring that the binary code has been compiled from untampered source code) 

will further increase trust into the software and its dependencies. 

The consensus of the discussion was that technical solutions will open many opportunities for making 

progress on this front. For example, software may only need a small part of the library functionality. 

Tracking this small subset of needed code would (1) reduce the risk of attacks (by reducing the attack 

surface), (2) allow tracking of code provenance (i.e., if the used features change), and (3) potentially 

enable automatic updating as the ultimate goal. Dependency management tools need to be built into 

native language tooling and package management. While we can change the tools, we cannot teach all 

developers to switch to completely new tools. The move will be gradual and incremental. 

  



20 
 

THEME 4: BEHAVIORAL AND ECONOMIC INCENTIVES TO 
SECURE OPEN SOURCE SOFTWARE 

DISCUSSION LEAD: SUMANA HARIHARESWARA 

SCRIBE: DAVID BRUMLEY 

WHAT IS THE PROBLEM? 

First, we use the term professional developer to mean a developer that is managed and paid for their 

work, e.g., as a company employee or independent consultant. Non-professional developer meant in our 

discussion someone not managed and paid for by a company, including those not paid at all for their work. 

We note that the word volunteer has two different meanings in the community. In the open source 

software (OSS) community (e.g., Linux Foundation), a volunteer means anyone doing work on OSS that is 

not expressly required to by their employer. Nevertheless, many people in the OSS community associate 

volunteer with unpaid work. An OSS contributor is anyone who is contributing (e.g., with code, test cases, 

or documentation) to an OSS project. 

During discussion, the most precise problem statement definition was “How do we incentivize human 

resilience in OSS teams?”  This definition included the idea that OSS development could be fragile, e.g., a 

project may depend upon a sole contributor.  It also included the idea of resilience, meaning that overall, 

the project should be in a secure state, even if is temporarily insecure at some points in time (eventual 

security). For example, the question the Committee focused on was rather how one would build an 

ecosystem that detects a malicious change and revert it, rather than how to prevent a malicious change 

altogether.  

The Committee’s focus was on building incentives and behaviors that specifically target security rather 

than just volume of contributors. The Committee agreed that current data shows that OSS contributors 

are not motivated by security, citing the Linux Foundation report2 that states that “efforts focused on 

dramatically increasing the time current contributors spend on security are unlikely to be welcome”.  

Most of the discussion focused on narrowing down the problem to behavioral incentives. For example, 

recognition by peers (e.g., a “secure badge” associated with a developer on a project repository) is a 

behavioral but non-economic motivation. The Committee also envisions the problem as one of group 

rather than individual incentives. For instance, one suggestion discussed was to pair a security researcher 

(who is intrinsically motivated by security) with a project lacking security experts. 

Another aspect of the discussion was that the OSS community seems especially inefficient at translating 

money to security gains.  For example, an additional problem identified was how to use the limited 

professional support (e.g., industry grants, government support) to have the most overall security impact.  



21 
 

Even large companies like Google depend upon far more open-source projects than they could support. 

The industry also has not systematized ways to train, hire, and deploy process-focused contributors (such 

as release managers and project managers) to work with maintainers to aid existing projects. 

WHAT ABOUT THE PROBLEM DO WE NOT YET UNDERSTAND? 

In general, there is a lack of understanding on how to build an effective ecosystem that creates secure 

software.  One aspect that the Committee does not know is how to include security training that is 

appropriate for everyone. Another aspect is that the community does not know how to support the wide 

variety of project sizes, especially the very small contributor team on a very important project. 

The Committee agreed that there is no consensus on what indicators of success would be. Moreover, 

there was a lack of new ideas compared to other themes in the meeting. The Committee posed questions, 

like “what are the dependent variables?” and “how do we measure if we’re getting better or worse over 

time?” Also, while each Committee member had an opinion on what would be a good motivator for adding 

security to OSS projects, the Committee were unsure about why people decide to adopt or not a secure 

approach, and how to measure that quantitatively. 

The Committee also noted that today the consumer of OSS often has little ability to judge its level of 

security or exposure.  For example, it is not clear what metrics would have identified log4J as a top 

weakness and top exposure compared to other OSS software.  The Committee conjectures that the ability 

to assess security would likely drive more secure development behavior because it was then measurable 

and obvious to others.  In this context, the idea of a badging system was given again as an example where 

getting a security badge might incentivize some contributors. However, we do not have data to support 

or refute this conjecture.  

Another point brought up during discussion is that the Committee does not understand the balance 

between detecting vs. preventing a problem.  There are economic factors such as cash investment. The 

Committee left open the possibility that detecting vulnerabilities after development may end up being a 

more scalable model. 

WHERE ARE THE BOUNDARIES OF THE PROBLEM? ARE THERE ANY CONSTANTS THAT CANNOT 
BE CHANGED? 

The Committee does not have good research on the constants and boundaries of this problem. The 

members overall had difficulty identifying specific known constraints or constraints for creating the 

economics that drive change. One aspect all agree on was that OSS contributors are not likely to be driven 

by monetary rewards. The Committee also agreed that there is a need to consider different levels of 

developers, from hobbyists just starting out to developers working on larger projects. Many projects start 

small, and then blow up. 



22 
 

There were also several conjectures raised during discussion. Some Committee members conjectured that 

changing infrastructure may be easier than changing behavior, but it was unclear where to go with that.  

Others conjectured that economic incentives will improve if we have tools that prevent vulnerabilities 

from being injected in the projects. 

Thus, the Committee’s consensus is that the U.S. needs to fund and conduct more research into the 

behavioral and economics aspects of OSS software development security in at least three areas: 

1. Software development lifecycle. What incentive structures would encourage volunteer OSS 

developers to incorporate better software security practices? And how do we provide this 

information to developers?  During the software lifecycle, what incentive models encourage 

active and speedy remediations when security issues are discovered? What if there is only one 

primary developer, and they leave the project?  Are incentives purely contributor-based, or are 

there other incentive models, such as matching security experts to OSS projects? 

 

2. Using paid professional development/assistance wisely. How can we leverage the limited 

amounts of government, industry, and professional assistance to maximize our overall security 

posture?  How do we assess the security of OSS dependencies beyond the vendor-independent 

fashion? And how do we ensure that we encourage security practices in small startups rather than 

predominantly in large existing businesses?  Can we identify the weakest links, shore up security, 

and then rinse and repeat with the next highest priority?  For example, companies often 

professionally support OSS projects (e.g., through grants, computing resources, or paid on-going 

development), but cannot support every single project they depend upon.  How does the U.S. 

government, as well as individual companies, get the most bang for their buck out of the limited 

professional funding and development we can put behind OSS? 

 

3. Informed choice. Today’s OSS consumers (commercial users, governments, and even other OSS 

projects) do not heavily weigh security when making choices. How do we make security a priority 

feature in software development processes? 

 

  



23 
 

CONCLUSIONS 
 

The Committee focused on defining the problem, the boundaries and the unknows in four themes related 

to the security of open source software ecosystems: (1) trust and safety, (2) memory-safe programming 

languages, (3) dependency management, and (4) behavioral and economic incentives to secure the open 

source software ecosystem.  

Socio-technical vulnerabilities in the OSS ecosystem are understudied. The following aspects are not well 

understood by the community: 

• How to incentivize developers to adopt security practices? Is it even reasonable to request 

developers to handle security and functionality requirements concurrently, given the high 

cognitive demands of both tasks? 

• How to detect bad actors, such as malicious or compromised developers or vulnerable team 

dynamics, such as suspicious developers’ ascendancy in projects? 

• How to distinguish and measure intentional vs. unintentional attacks to OSS projects? 

Although there is consensus on the crucial role memory-safe programming languages can play in securing 

the OSS ecosystem, the likelihood of ubiquitous use of such languages in software development is still 

unclear for the following reasons: 

• Prevalence of C/C++ in critical applications (operating systems, browsers, and databases) and in 

the IoT ecosystem. 

• Lack of economic incentives to transition legacy code to safer programming languages, a dauting 

task that can take years to complete without automatic tools. 

Software development has been increasingly relying on third-party libraries (dependencies), which 

become liabilities and are hard to manage for the following reasons:  

• There are no best practices on dependency management. 

• Developers need assurances for updating dependencies because new versions of dependencies 

can break existing code. 

• Dependency management systems need to handle individual programming languages 

idiosyncrasies and currently have poor interoperability. 

• The community does not know how to scope dependency management in terms of breadth and 

depth. 



24 
 

Related to socio-technical aspects of securing the OSS ecosystem are the underlying behavioral and 

economic incentives: how to incentivize developers to adopt security practices? This problem is 

understudied and challenging for the following reasons: 

• Initial research gives evidence that OSS contributors are not motivated by security. 

• There is a high diversity of roles in the OSS ecosystem: paid vs. unpaid and employed vs. 

unemployed developers. 

• OSS teams can be fragile, for instance, a single or a few maintainers responsible for a crucial piece 

of code. 

• Group vs. individual incentives are not necessarily aligned. 

• Monetary compensation for developers does not necessarily translate into security gains. 

A subsequent workshop with a larger and more diverse set of stakeholders will develop recommendations 

informed by the take-aways of this report with the ultimate goal of achieving tangible progress in securing 

OSS development processes. 


	Organizers
	National Science Foundation
	National Institute of Standards and Technology
	Steering Committee Members
	Abhishek Arya
	David Brumley
	Deirdre Connolly
	Alex Gaynor
	Royal Hansen
	Sumana Harihareswara
	Angelos Keromytis
	Mathias Payer
	Eric Rescorla
	Nikhil Swamy
	David A. Wheeler
	Laurie Williams

	Abhishek Arya is a Principal Engineer and head of the Google Open Source Security Team. His team has been a key contributor to various security engineering efforts inside the Open Source Security Foundation (OpenSSF). This includes the Fuzzing Tools (Fuzz-Introspector), Supply Chain Security Framework (SLSA, Sigstore), Security Risk Measurement Platform (Scorecards, AllStar), Vulnerability Management Solution (OSV) and Package Analysis project. Prior to this, he was a founding member of the Google Chrome Security Team and built OSS-Fuzz, a highly scaled and automated fuzzing infrastructure that fuzzes all of Google and Open Source. His team also maintains FuzzBench, a free fuzzer benchmarking service that helps the community rigorously evaluate fuzzing research and make it easier to adopt.
	contents
	executive summary
	trust and safety
	memory-safe programming languages
	dependency management
	Behavioral and economic incentives to secure the open source software ecosystem
	Theme 1: Trust and Safety
	Discussion Lead: Laurie Williams
	Scribe: Angelos Keromytis
	What is the problem?
	What about the problem do we not yet understand?
	Where are the boundaries of the problem? Are there any constants that cannot be changed?
	Theme 2: Memory-Safe Programming Languages
	Discussion Lead: Alex Gaynor
	Scribe: Abhishek Arya
	What is the problem?
	What about the problem do we not yet understand?
	Where are the boundaries of the problem? Are there any constants that cannot be changed?
	Theme 3: Dependency Management
	Discussion Lead: Eric Rescorla
	Scribe: Mathias Payer
	What is the problem?
	What about the problem do we not yet understand?
	Where are the boundaries of the problem? Are there any constants that cannot be changed?
	Theme 4: Behavioral and Economic Incentives to Secure Open Source Software
	Discussion Lead: Sumana Harihareswara
	Scribe: David Brumley
	What is the problem?
	What about the problem do we not yet understand?
	Where are the boundaries of the problem? Are there any constants that cannot be changed?
	conclusions

