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Transient changes in direction during ambulation are typically performed using a step (outside) or spin
(inside) turning strategy, often identified through subjective and time-consuming visual rating. Here, we
present a computational, marker-based classification method utilizing pelvic center of mass (pCOM) tra-
jectory and time-distance parameters to quantitatively identify turning strategy. Relative to visual eval-
uation by three independent raters, sensitivity, specificity, and overall accuracy of the pCOM-based
classification method were evaluated for 90-degree turns performed by 3 separate populations (5 unin-
jured controls, 5 persons with transtibial amputation, and 5 persons with transfemoral amputation); each
completed turns using two distinct cueing paradigms (i.e., laser-guided ‘‘freeform” and verbally-guided
‘‘forced” turns). Secondarily, we compared the pCOM-based turn classification method to adapted ver-
sions of two existing computational turn classifiers which utilize trunk and shank angular velocities
(AV). Among 366 (of 486 total) turns with unanimous intra- and inter-rater agreement, the pCOM-
based classification algorithm was 94.5% accurate, with 96.6% sensitivity (accuracy of spin turn classifi-
cation), and 93.5% specificity (accuracy of step turn classification). The pCOM-based algorithm (vs. both
AV-based methods) was more accurate (94.5% vs. 81.1–80.6%; P < 0.001) overall, as well as specifically in
freeform (92.9 vs. 80.4–76.8%; P < 0.003) and forced (96.0 vs. 83.8–81.8%; P < 0.001) cueing, and among
individuals with (92.4 vs. 80.2–78.8%; P < 0.001) and without (99.1 vs. 86.2–80.8%; P < 0.001) amputa-
tion. The pCOM-based algorithm provides an efficient and objective method to accurately classify
90-degree turning strategies using optical motion capture in a laboratory setting, and may be extended
to various cueing paradigms and/or populations with altered gait.

Published by Elsevier Ltd.
1. Introduction

Turns during ambulation are ubiquitous in daily life (Glaister
et al., 2007). Several studies have therefore biomechanically evalu-
ated turns using a variety of experimental methods; for example,
with circular paths (Orendurff et al., 2006; Ventura et al., 2015)
to understand ‘‘steady-state” turns, or orthogonal paths (Taylor
et al., 2005), obstacles (Glaister et al., 2008), and other cues
(Hase and Stein, 1999; Patla et al., 1991) to model ‘‘transient” turns
(i.e., with more rapid changes in direction between 60� and 120�).
The latter, generally referred to as ‘‘90�” turns, can be performed
using two distinct turning strategies: (1) a step (outside) turn; a
change in direction contralateral to the stance limb (e.g., left turn
on the right leg), or (2) a spin (inside) turn; a pivot on the leg ipsi-
lateral to the direction of turn (e.g., left turn on left leg). Biome-
chanical attributes of each strategy, together with the prevalence
for a given turn type within a population, have been associated
with risk of falling (Cumming and Klineberg, 1994) and risk for
joint overloading after surgery (Wang and Zheng, 2010). Despite
the utility of knowledge pertaining to an activity so common in
daily life, the approach for identifying or classifying turns has
evolved little.

Classification of transient turning strategies has almost exclu-
sively relied on time-consuming visual ratings (i.e., identifying in
real-time or evaluating a video recording; Hase and Stein, 1999;
Patla et al., 1991; Taylor et al., 2005) which has the potential to
introduce error/bias due to rater experience or interpretation.
Interestingly, although numerous biomechanical attributes have
been compared between each visually rated turn (Glaister et al.,
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2008; Taylor and Strike, 2009; Taylor et al., 2006; Wang and Zheng,
2010; Xu et al., 2004), only angular velocities of the trunk and
shanks (collected using inertial measurement units [IMUs]) have
been proposed for computationally categorizing these turning
styles (Fino et al., 2015). Despite the recent increase in popularity
of IMUs, especially for field-based measurements, optical motion
capture remains the prevailing modality for comprehensive biome-
chanical analyses in a laboratory. Thus, here we present a novel
computational method for transient 90� turn classification utilizing
passive marker data. Secondarily, to understand whether the basis
of the proposed algorithm provides a similar level of quality rela-
tive to existing methods, we evaluate the accuracy of the algorithm
relative to the visually rated gold standard and modified angular
velocity-based classifiers by applying all to planned (‘‘forced”)
and unplanned (‘‘freeform”) turns, as well as within populations
with transtibial (TTA) and transfemoral (TFA) amputations.

2. Methods

2.1. Participants

Five uninjured individuals (‘‘controls”), five persons with unilateral TTA, and
five persons with unilateral TFA completed the study (Table 1); all participants
were servicemembers, and each provided informed consent to procedures approved
by the Walter Reed National Military Medical Center Institutional Review Board.
Uninjured controls reported no orthopaedic or neurological disorders, while
persons with traumatic unilateral TTA or TFA could ambulate over even surfaces
without an assistive device. All participants were also screened for brain injuries
that may result in a functional impairment or inability to follow complex com-
mands, as well as any visual impairment that would detract from the ability to
follow a laser dot, and pain or discomfort (regardless of cause) greater than 4/10
on a Visual Analog Scale.

2.2. Study design and procedures

Each participant performed, at their self-selected pace, 90� turns cued using two
distinct paradigms: (1) freeform [median (range) = 17 (6–19) turns/participant],
and (2) forced [median (range) = 18 (6–20) turns/participant], resulting in a total
of 236 and 250 events, respectively. Briefly, freeform trials were intended to simu-
late non-steady state gait representative of daily life (i.e., containing starts/stops,
changes in direction, and in-line walking). For these, participants followed five dis-
tinct pseudorandom paths created by a laser dot as it moved along the floor surface
(Laser Enabled Gait System; Mitre Corporation, Bedford, MA). The speed at which
the laser moved was set according to each participant’s self-selected walking speed
(determined by timing an 80-m walk). 90� turns were extracted from the freeform
trials for the purpose of the current study. In contrast, forced trials were intended to
represent a more constrained, pre-planned turning event, involving repetitive bouts
of straight-line walking (�12 ft) with verbal instructions to turn left or right as the
participant approached a consistent point on the floor. In both freeform and forced
Table 1
Participant demographics by level of injury (RTTA/LTTA = Right/Left Transtibial Amputati
selected walking speeds (SSWS) are also indicated. Means and standard deviations (SD) fo

Injury Months since injury Gender

Controls N/A N/A F
N/A N/A M
N/A N/A M
N/A N/A M
N/A N/A M

Control mean (SD)

TTA RTTA 75.4 M
LTTA 59.7 M
RTTA 15.8 M
RTTA 59.0 M
RTTA 32.9 M

TTA mean (SD) 48.6 (23.8)

TFA RTFA 5.5 M
RTFA 54.0 M
RTFA 47.8 M
RKD 133.3 M
RTFA 17.7 M

TFA mean (SD) 51.7 (49.9)
trials, 70 reflective markers (modified Cleveland Clinic) were used for tracking
(120 Hz) full-body kinematics using a 27-camera motion capture system (Vicon,
Oxford, UK).

2.3. Data analyses

Pelvic center of mass (pCOM) position, trunk and shank angular velocities in the
sagittal and transverse planes, as well as the relative timing and position of gait
events (i.e., foot strike and foot off, calculated using foot position; Zeni et al.,
2008) were computed and preprocessed in Visual3D (Version 5.02.27, C-Motion
Inc., Germantown, MD). All marker trajectories were initially low pass filtered at
6 Hz using a 5th order Butterworth filter. Also note, each trial was cropped to
include a brief inline entry (approximately 3 steps), 90� turn, and inline exit
(approximately 3 steps) to minimize errors introduced by changes in direction
unrelated to the turning event of interest. All subsequent analyses were performed
in MATLAB (Release 2015a, The MathWorks, Inc., Natick, MA).

To determine whether the turn was a step (outside) or spin (inside) using the
pCOM-based method, two lines of best fit were calculated for the first and last
100 frames of the pCOM trajectory (i.e., in-line periods before and after the turning
event). Note, longer windows could be used, though our experimental design with
freeform cueing precluded such an approach given the other gait events/changes in
direction flanking each 90-degree turn of interest. The intersection of the two lines
of best fit approximated the change in direction during a turn, hereafter referred to
as the predicted pivot point. Then, midstance events corresponding to the time
points midway between foot strike and foot off events of each leg were calculated
for each step in the trial. The pivot foot was then determined by whichever foot was
in midstance closest to the time when the pCOM was nearest to the predicted pivot
point. The direction of turn was identified by cumulative trapezoidal integration of
the axial angular velocity of the trunk; the sign of the resultant angle at 75% of the
trial determined if the turn was to the left (positive angle) or right (negative angle).
Together, the direction of turn and side of the predicted pivot foot defined the turn
type: step (outside) = a left turn on the right foot or a right turn on the left foot, spin
(inside) = a right turn on the right foot or a left turn on the left foot (Fig. 1).

Additionally, the pCOM-based method presented herein was also compared
against two existing classifiers which use angular velocity (AV) as the basis of clas-
sification. These two AV-based methods (Fino et al., 2015) – while likely intended
for field-based measurements and computed here using (filtered) marker data,
and not unfiltered IMU data as originally described – consist of the: (1) peak
method (PM) that sets the pivot foot as the shank with the lowest absolute sagittal
angular velocity at the instant of maximum trunk axial angular velocity, and (2) the
integrated method (IM), where the shank with the lowest absolute sagittal angular
velocity at the time when the axial trunk angle exceeds 45� constitutes the pivot
foot.

To compare the pCOM- and AV-based turn classification methods to the exist-
ing ‘‘gold standard”, all turning events were first visually classified. For this, three
independent raters classified all 486 turns as either a step or spin, three times each
in a randomized order. Intra- and inter-rater reliability were assessed using Cohen’s
kappa (Cohen, 1960), adjusted for greater than two ratings within a set (Light, 1971)
and qualitatively interpreted according to criteria set forth by Fleiss (1986): poor
(0.00–0.39), fair (0.40–0.59), good (0.60–0.74), and excellent (0.75–1.00).

Intra- and inter-rater reliabilities were consistently excellent, ranging from
0.82–0.84 and 0.83–0.85, respectively. However, of the initial 486 turns (328/158
visually classified step/spin turns), 366 (75%) turns were rated with unanimous
on; RTFA = Right Transfemoral Amputation; RKD = Right Knee Disarticulation). Self-
r each group are provided (bolded), where applicable.

Age (yr) Stature (cm) Mass (kg) SSWS (m/s)

20 180.0 61.5 1.37
28 169.0 88.4 1.37
31 188.5 105.7 1.40
28 185.0 72.6 1.30
29 178.5 83.5 1.30

27 (4) 180.2 (7.4) 82.3 (16.7) 1.35 (0.05)

35 183.0 85.5 1.27
34 179.0 90.9 1.40
23 179.0 106.9 1.40
26 187.5 89.9 1.50
25 184.5 135.6 1.50

29 (6) 182.6 (3.7) 101.8 (20.6) 1.41 (0.09)

24 170.0 71.4 1.08
26 178.5 94.1 1.20
27 186.0 96.2 1.40
34 172.0 74.9 1.40
45 174.0 101.2 1.15

31 (9) 176.1 (6.4) 87.6 (13.5) 1.25 (0.15)



Fig. 1. Representative pelvic center of mass (pCOM) trajectory and bilateral foot positions (gray/black represents right/left, respectively) during a spin (a) and step (b) turn to
the right. The predicted pivot point (⁄) and foot COM locations at midstance (s) are illustrated, with the black dashed line representing the sections of the pCOM extrapolated
to predict pivot point.
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agreement (248 step turns/188 spin turns). Only this subset of trials with unani-
mous intra- and inter-rater agreement was used to calculate sensitivity [true
spin/(true spin + false step)], specificity [true step/(true step + false spin), and over-
all accuracy [(true step + true spin)/total] of both the pCOM- and AV-based classifi-
cation methods. Each of these was computed by cueing paradigm and subject
populations, with additional comparisons between pivot leg among persons with
lower limb amputation (prosthetic vs. intact). Performance of the pCOM-based
method and each AV method (i.e., IM and PM, independently) was also assessed
using a binomial test (cf. Salzberg, 1997), which evaluates differences in the fre-
quency of accurate classification between the methods relative to the gold standard
(unanimous visual rating in this particular case); P values less than 0.004 indicate
statistical significance (Bonferroni correction for 12 total comparisons).

3. Results

Overall, the pCOM-based method was 94.5% accurate relative to
visual rating, with 96.6% sensitivity (ability to classify spin turns in
agreement with visual rating) and 93.5% specificity (ability to clas-
sify step turns in agreement with visual rating). Accuracies tended
to be lower in freeform (92.9%) vs. forced (96.0%) trials, as well as
lower among persons with (92.4%) vs. without (99.1%) amputation
(Table 2).

Both the PM/IM methods performed similarly, with 81.1/80.6%
accuracy, 82.2/89.0% sensitivity, and 80.6/76.6% specificity relative
to visual rating. Both AV-based methods were generally less
accurate in freeform vs. forced turns (80.4/76.8% vs. 81.8/83.8%,
Table 2
Sensitivity, specificity, and overall accuracy of the pelvic center of mass (pCOM)-based
Method), designated for freeform and forced turning trials, by level of injury (TTA = Transtib
the accuracies of spin and step turn classification, respectively, relative to turns rated una

COM-based Controls Freeform
Forced

TTA Freeform
Forced

TFA Freeform
Forced

AV-based (PM) Controls Freeform
Forced

TTA Freeform
Forced

TFA Freeform
Forced

AV-based (IM) Controls Freeform
Forced

TTA Freeform
Forced

TFA Freeform
Forced
respectively), and less accurate for persons with (78.8/80.2%) vs.
without (86.2/80.8%) amputation (Table 2).

Among persons with amputation, specifically, overall (both
forced and freeform combined) accuracies for the pCOM/PM/IM
methods for turns executed on the prosthetic limb were
89.9%/78.9%/81.7%; respective values for turns on the intact limb
were 94.3%/78.7%/80.1% (Table 3).

The pCOM method agreed with unanimous visual ratings more
frequently than the PM and IM methods overall (P < 0.001), and
within subgroups of freeform trials (P < 0.003), forced trials
(P < 0.001), and persons with vs. without amputation (P < 0.003).
4. Discussion

Relative to the gold standard (visual rating), the pCOM-based
classification method was accurate for both freeform and forced
turns, as well as for participants with and without amputation.
Also, although the original AV-based methods were designed for
field-based measurements with unfiltered IMU data, the higher
sensitivity, specificity, and overall accuracy, the pCOM- vs.
AV-based classification algorithms suggest the pCOM is an effec-
tive basis for classifying turns using passive marker data, and an
improvement over existing approaches in this scenario.
and two angular velocity (AV)-based methods (PM = Peak Method, IM = Integrated
ial Amputation; TFA = Transfemoral Amputation). Sensitivity and specificity represent
nimously by visual raters.

Sensitivity (%) Specificity (%) Accuracy (%)

94.1 100.0 98.2
100.0 100.0 100.0
100.0 86.7 89.1
95.5 93.6 94.2
94.7 89.7 91.4
96.9 91.7 94.1

88.2 84.2 85.5
83.3 88.4 86.9
40.0 88.9 80.0
90.9 72.3 78.3
84.2 71.8 75.9
84.4 77.8 80.9

76.5 73.7 74.5
88.9 83.7 85.2
90.0 68.9 72.7
95.5 66.0 75.4
89.5 79.5 82.8
90.6 91.7 91.2



Table 3
Sensitivity, specificity, and overall accuracy of the pelvic center of mass (pCOM)-based and two angular velocity (AV)-based methods (PM = Peak Method, IM = Integrated Method)
among persons with lower limb amputation by pivot leg. Sensitivity and specificity represent the accuracies of spin and step turn classification, respectively, relative to
unanimous visual ratings.

Sensitivity (%) Specificity (%) Accuracy (%)

COM-based Intact Freeform 94.4 90.5 91.7
Forced 100.0 93.8 96.3

Prosthetic Freeform 100.0 85.7 88.7
Forced 90.5 91.4 91.1

AV-based (PM) Intact Freeform 72.2 78.6 76.7
Forced 97.0 68.8 80.2

Prosthetic Freeform 63.6 83.3 79.2
Forced 71.4 82.9 78.6

AV-based (IM) Intact Freeform 88.9 69.0 75.0
Forced 97.0 75.0 84.0

Prosthetic Freeform 90.9 78.6 81.1
Forced 85.7 80.0 82.1
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Initial iterations of the pCOM-based method sought to utilize
previously reported biomechanical metrics demonstrating relative
differences between step and spin turns, both kinetic (e.g., knee
moments and ground reaction forces; Taylor et al., 2005) and
kinematic (e.g., tibial torsion; Wang and Zheng, 2010). However,
such bases for turn categorization may be suboptimal choices for
development of a widely applicable algorithm. For example, a clas-
sifier based on kinetic metrics would be limited by the necessity of
clean foot strikes on a force platform. Full kinematic traces over the
course of a turn also may not be robust to compensatory adapta-
tions in different populations and environments, while single
extracted time points (i.e., extrema) may not provide the requisite
accuracy. Although the pCOM method required segmentation of
turns, and is therefore limited to a post-processing paradigm, pel-
vic COM trajectory provided a consistent, intuitive framework that
was resistant to variations in trunk angle; a confounding factor in
laser guided freeform trials (i.e., from a more downward-directed
gaze).

Both gait kinematics and kinetics are affected by turn method-
ology (i.e., circular/steady-state vs. orthogonal/transient turns;
Orendurff et al., 2006), gait velocity (Lelas et al., 2003), and gait
pathology (Bae et al., 2007; Bateni and Olney, 2002). Thus, tran-
sient turns performed by participants with varying levels of injury
and in a freeform, laser-cued environment were expected to chal-
lenge the pCOM-based algorithm. Consistently lower overall accu-
racies in rating freeform vs. forced turns suggest cueing paradigm
did influence the biomechanical metrics used here, even within
transient turning strategies. Although the pCOM-based method
was more accurate relative to AV-based methods in classifying
turns executed by both persons with and without lower limb
amputation, the 6.7% lower accuracy in pCOM classification of
turns among persons with vs. without amputation suggest that
some compensatory mechanism during turns may confound
pCOM-based algorithm performance. Future work may explore
which biomechanical deviations are drivers of this lower accuracy,
with potential starting points being deviations in trunk angular
velocity (Goujon-Pillet et al., 2008; Taylor and Strike, 2009),
ground reaction forces, and lower extremity joint moments
(Segal et al., 2011; Ventura et al., 2011) - all metrics affected by
adaptations persons with lower limb amputation use during turns.

Understanding sources of error in pCOM-based classification
between populations and cueing paradigms may guide the devel-
opment of subsequent classifiers through selection of bases robust
to biomechanical compensations. Additionally, more advanced
pattern recognition techniques (e.g., linear discriminant analysis
or artificial neural networks) may identify multi-step strategies
beyond step and spin, such as stutter stepping. The relatively
young servicemembers with traumatic amputation assessed in this
study were active and high functioning and, thus, may limit the
generalizability of results to those with other amputation etiolo-
gies or gait deficiencies.

Despite these limitations, the pCOM-based classification algo-
rithm presented here was effective and accurate for transient
90-degree turns executed in both forced and freeform cueing
paradigms, as well as in populations demonstrating marked
biomechanical alterations. The pCOM-based algorithm can be
implemented in place of subjective and time-consuming visual
ratings, and concurrently provides a platform for classification
and biomechanical analyses of transient turns performed using
optical motion capture within a laboratory setting.
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